752
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Mid-infrared absorption spectroscopy with enhanced detection performance for biomedical applications

, , , , &

References

  • Du, Z.; Zhang, S.; Li, J.; Gao, N.; Tong, K. Mid-Infrared Tunable Laser-Based Broadband Fingerprint Absorption Spectroscopy for Trace Gas Sensing: A Review. Appl. Sci. 2019, 9, 338. doi:10.3390/app9020338.
  • Chen, C.; Ren, Q.; Wang, Y. Z. Review on Multi Gas Detector Using Infrared Spectral Absorption Technology. Appl. Spectrosc. Rev 2019, 54, 425–444. doi:10.1080/05704928.2018.1474766.
  • Fu, B.; Zhang, C.; Lyu, W.; Sun, J.; Shang, C.; Cheng, Y.; Xu, L. Recent Progress on Laser Absorption Spectroscopy for Determination of Gaseous Chemical Species. Appl. Spectrosc. Rev 2022, 57, 112–152. doi:10.1080/05704928.2020.1857258.
  • Hu, J.; Wan, F.; Wang, P.; Ge, H.; Chen, W. Application of Frequency-Locking Cavity-Enhanced Spectroscopy for Highly Sensitive Gas Sensing: A Review. Appl. Spectrosc. Rev 2022, 57, 378–410. doi:10.1080/05704928.2021.1894438
  • Zhou, T.; Wu, T.; Wu, Q.; Ye, C.; Hu, R.; Chen, W.; He, X. Real-Time Measurement of CO2 Isotopologue Ratios in Exhaled Breath by a Hollow Waveguide Based Mid-Infrared Gas Sensor. Opt. Express. 2020, 28, 10970–10980. doi:10.1364/.OE.385103
  • Yao, C.; Gao, S.; Wang, Y.; Wang, P.; Jin, W.; Ren, W. Silica Hollow-Core Negative Curvature Fibers Enable Ultrasensitive Mid-Infrared Absorption Spectroscopy. J. Lightwave Technol. 2020, 38, 2067–2072. doi:10.1109/jlt.2019.2960804.
  • Yao, C.; Hu, M.; Ventura, A.; Hayashi, J. G.; Poletti, F.; Ren, W. Tellurite Hollow-Core Antiresonant Fiber-Coupled Quantum Cascade Laser Absorption Spectroscopy. J. Lightwave Technol. 2021, 39, 5662–5668. doi:10.1109/jlt.2021.3088140
  • Adato, R.; Aksu, S.; Altug, H. Engineering Mid-Infrared Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy. Mater. Today 2015, 18, 436–446. doi:10.1016/j.mattod.2015.03.001
  • Mun, J.; Lee, D.; So, S.; Badloe, T.; Rho, J. Surface-Enhanced Spectroscopy: Toward Practical Analysis Probe. Appl. Spectrosc. Rev. 2019, 54, 142–175. doi:10.1080/05704928.2018.1467438
  • Tittel, F. K.; Richter, D.; Fried, A. Mid-Infrared Laser Applications in Spectroscopy. In Solid-State Mid-Infrared Laser Sources, Sorokina, I. T., Vodopyanov, K. L., Eds.; Springer: Berlin, 2003; Vol. 89, pp 445–510
  • Nitzsche, L.; Goldschmidt, J.; Kiessling, J.; Wolf, S.; Kuhnemann, F.; Wollenstein, J. Tunable Dual-Comb Spectrometer for Mid-Infrared Trace Gas Analysis from 3 to 4.7 Microm. Opt. Express. 2021, 29, 25449–25461. doi:10.1364/OE.428709
  • Guo, L.; Yang, Y.; Zhao, S.; Li, T.; Qiao, W.; Ma, B.; Nie, H.; Ye, S.; Wang, R.; Zhang, B.; et al. Room Temperature Watt-Level 3.87 Microm MgO:PPLN Optical Parametric Oscillator under Pumping with a Tm:Yap Laser. Opt. Express. 2020, 28, 32916–32924. doi:10.1364/OE.409093
  • Heckl, O. H.; Bjork, B. J.; Winkler, G.; Bryan Changala, P.; Spaun, B.; Porat, G.; Bui, T. Q.; Lee, K. F.; Jiang, J.; Fermann, M. E.; et al. Three-Photon Absorption in Optical Parametric Oscillators Based on OP-GaAs. Opt. Lett. 2016, 41, 5405–5408. doi:10.1364/OL.41.005405
  • Foote, D. B.; Cich, M. J.; Hurlbut, W. C.; Eismann, U.; Heiniger, A. T.; Haimberger, C. High-Resolution, Broadly-Tunable mid-IR Spectroscopy Using a Continuous Wave Optical Parametric Oscillator. Opt. Express. 2021, 29, 5295–5303. doi:10.1364/OE.418287
  • Petersen, C. R.; Prtljaga, N.; Farries, M.; Ward, J.; Napier, B.; Lloyd, G. R.; Nallala, J.; Stone, N.; Bang, O. Mid-Infrared Multispectral Tissue Imaging Using a Chalcogenide Fiber Supercontinuum Source. Opt. Lett. 2018, 43, 999–1002. doi:10.1364/OL.43.000999
  • Abbas, M. A.; Jahromi, K. E.; Nematollahi, M.; Krebbers, R.; Liu, N.; Woyessa, G.; Bang, O.; Huot, L.; Harren, F. J. M.; Khodabakhsh, A. Fourier Transform Spectrometer Based on High-Repetition-Rate Mid-Infrared Supercontinuum Sources for Trace Gas Detection. Opt. Express. 2021, 29, 22315–22330. doi:10.1364/OE.425995
  • Gattinger, P.; Zorin, I.; Ebner, A.; Rankl, C.; Brandstetter, M. Mid-Infrared DMD-Based Spectral-Coding Spectroscopy with a Supercontinuum Laser Source. Opt. Express. 2022, 30, 6440–6449. doi:10.1364/OE.452221
  • Zorin, I.; Gattinger, P.; Ebner, A.; Brandstetter, M. Advances in Mid-Infrared Spectroscopy Enabled by Supercontinuum Laser Sources. Opt. Express. 2022, 30, 5222–5254. doi:10.1364/OE.447269
  • Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C. CO2 Laser Photoacoustic Measurements of Ethanol Absorption Coefficients within Infrared Region of 9.2-10.8 Mum. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2016, 163, 115–119. doi:10.1016/j.saa.2016.03.038
  • Kamat, P. C.; Roller, C. B.; Namjou, K.; Jeffers, J. D.; Faramarzalian, A.; Salas, R.; McCann, P. J. Measurement of Acetaldehyde in Exhaled Breath Using a Laser Absorption Spectrometer. Appl. Opt. 2007, 46, 3969–3975. doi:10.1364/ao.46.003969
  • Horka-Zelenkova, V.; Seyfang, G.; Dietiker, P.; Quack, M. Nuclear Spin Symmetry Conservation Studied for Symmetric Top Molecules (CH3D, CHD3, CH3F, and CH3Cl) in Supersonic Jet Expansions. J. Phys. Chem. A 2019, 123, 6160–6174. doi:10.1021/acs.jpca.9b02580
  • Yang, R. Q. Infrared-Laser Based on Intersubband Transitions in Quantum-Wells. Superlattices Microstruct. 1995, 17, 77–83. doi:10.1006/spmi.1995.1017
  • Razeghi, M.; Tournié, E.; Brown, G. J.; von Edlinger, M.; Scheuermann, J.; Nähle, L.; Zimmermann, C.; Hildebrandt, L.; Fischer, M.; Koeth, J.; et al. 2013 DFB Interband Cascade Lasers for Tunable Laser Absorption Spectroscopy from 3 to 6 μm. In Quantum Sensing and Nanophotonic Devices XI, 8993, 899318. doi:10.1117/12.2039734
  • Zheng, H.; Liu, Y.; Lin, H.; Kan, R.; Patimisco, P.; Sampaolo, A.; Giglio, M.; Zhu, W.; Yu, J.; Tittel, F. K.; et al. Sub-Ppb-Level CH4 Detection by Exploiting a Low-Noise Differential Photoacoustic Resonator with a Room-Temperature Interband Cascade Laser. Opt. Express. 2020, 28, 19446–19456. doi:10.1364/OE.391322
  • Bandyopadhyay, N.; Slivken, S.; Bai, Y.; Razeghi, M. High Power, Continuous Wave, Room Temperature Operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-Based Quantum Cascade Lasers. Appl. Phys. Lett. 2012, 100, 212104. doi:10.1063/1.4719110
  • Nguyen Van, H.; Loghmari, Z.; Philip, H.; Bahriz, M.; Baranov, A.; Teissier, R. Long Wavelength (λ > 17 µm) Distributed Feedback Quantum Cascade Lasers Operating in a Continuous Wave at Room Temperature. Photonics 2019, 6, 31. doi:10.3390/photonics6010031
  • Lendl, B.; Frank, J.; Schindler, R.; Muller, A.; Beck, M.; Faist, J. Mid-Infrared Quantum Cascade Lasers for Flow Injection Analysis. Anal. Chem. 2000, 72, 1645–1648. doi:10.1021/ac990833b
  • Schwarm, K. K.; Strand, C. L.; Miller, V. A.; Spearrin, R. M. Calibration-Free Breath Acetone Sensor with Interference Correction Based on Wavelength Modulation Spectroscopy near 8.2 μm. Appl. Phys. B 2020, 126, 9. doi:10.1007/s00340-019-7358-x
  • Zhou, S.; Yang, W.; Liu, C.; Zhang, L.; Yu, B.; Li, J. CO2-Broadening Coefficients for the NO2 Transitions at 6.2 µm Measured by Mid-Infrared Absorption Spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2020, 242, 106754. doi:10.1016/j.jqsrt.2019.106754
  • Yang, C.; Deng, H.; Qian, Y.; Li, M.; Chen, B.; Xu, Z.; Kan, R. Absorption Lines Measurements of Carbon Disulfide at 4.6 µm with Quantum Cascade Laser Absorption Spectroscopy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 225, 117478. doi:10.1016/j.saa.2019.117478
  • Sebbag, Y.; Zektzer, R.; Barash, Y.; Levy, U. Toward Stand-Alone Alkali-Based Mid-Infrared Frequency References. ACS Photonics 2020, 7, 1508–1514. doi:10.1021/acsphotonics.0c00308
  • Vrancic, C.; Kroger, N.; Gretz, N.; Neudecker, S.; Pucci, A.; Petrich, W. A Quantitative Look inside the Body: Minimally Invasive Infrared Analysis in Vivo. Anal. Chem. 2014, 86, 10511–10514. doi:10.1021/ac5028808
  • Schaden, S.; Domínguez-Vidal, A.; Lendl, B. Simultaneous Measurement of Two Compounds in Aqueous Solution with Dual Quantum Cascade Laser Absorption Spectroscopy. Appl. Phys. B 2006, 83, 135–139. doi:10.1007/s00340-006-2133-1
  • Lee, B. G.; Belkin, M. A.; Pflugl, C.; Diehl, L.; Zhang, H. A.; Audet, R. M.; MacArthur, J.; Bour, D. P.; Corzine, S. W.; Hofler, G. E.; Capasso, F. DFB Quantum Cascade Laser Arrays. IEEE J. Quantum Electron. 2009, 45, 554–565. doi:10.1109/jqe.2009.2013175
  • Brandstetter, M.; Genner, A.; Anic, K.; Lendl, B. Tunable External Cavity Quantum Cascade Laser for the Simultaneous Determination of Glucose and Lactate in Aqueous Phase. Analyst 2010, 135, 3260–3265. doi:10.1039/c0an00532k
  • Alcaraz, M. R.; Schwaighofer, A.; Kristament, C.; Ramer, G.; Brandstetter, M.; Goicoechea, H.; Lendl, B. External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution. Anal. Chem. 2015, 87, 6980–6987. doi:10.1021/acs.analchem.5b01738
  • Schwaighofer, A.; Montemurro, M.; Freitag, S.; Kristament, C.; Culzoni, M. J.; Lendl, B. Beyond Fourier Transform Infrared Spectroscopy: External Cavity Quantum Cascade Laser-Based Mid-Infrared Transmission Spectroscopy of Proteins in the Amide I and Amide II Region. Anal. Chem. 2018, 90, 7072–7079. doi:10.1021/acs.analchem.8b01632
  • Isensee, K.; Muller, N.; Pucci, A.; Petrich, W. Towards a Quantum Cascade Laser-Based Implant for the Continuous Monitoring of Glucose. Analyst 2018, 143, 6025–6036. doi:10.1039/c8an01382a
  • Klocke, J. L.; Kottke, T. A Quantum Cascade Laser Setup for Studying Irreversible Photoreactions in H2O with Nanosecond Resolution and Microlitre Consumption. Phys. Chem. Chem. Phys. 2020, 22, 26459–26467. doi:10.1039/d0cp03164j
  • Koyama, T.; Shibata, N.; Kino, S.; Sugiyama, A.; Akikusa, N.; Matsuura, Y. A Compact Mid-Infrared Spectroscopy System for Healthcare Applications Based on a Wavelength-Swept, Pulsed Quantum Cascade Laser. Sensors (Basel) 2020, 20, 3438. doi:10.3390/s20123438
  • Schwaighofer, A.; Akhgar, C. K.; Lendl, B. Broadband Laser-Based mid-IR Spectroscopy for Analysis of Proteins and Monitoring of Enzyme Activity. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 253, 119563. doi:10.1016/j.saa.2021.119563
  • Ghorbani, R.; Schmidt, F. M. Real-Time Breath Gas Analysis of CO and CO2 Using an EC-QCL. Appl. Phys. B 2017, 123, 144. doi:10.1007/s00340-017-6715-x
  • Nadeem, F.; Mandon, J.; Khodabakhsh, A.; Cristescu, S. M.; Harren,.; F. J. M. Sensitive Spectroscopy of Acetone Using a Widely Tunable External-Cavity Quantum Cascade Laser. Sensors (Basel) 2018, 18, 2050. doi:10.3390/s18072050.
  • Maity, A.; Pal, M.; Maithani, S.; Banik, G. D.; Pradhan, M. Wavelength Modulation Spectroscopy Coupled with an External-Cavity Quantum Cascade Laser Operating between 7.5 and 8 µm. Laser Phys. Lett. 2018, 15, 045701. doi:10.1088/1612-202X/aaa61a.
  • Tang, J.; Li, B.; Wang, J. High-Precision Measurements of Nitrous Oxide and Methane in Air with Cavity Ring-down Spectroscopy at 7.6 µm. Atmos. Meas. Tech. 2019, 12, 2851–2861. doi:10.5194/amt-12-2851-2019
  • Villa, N.; Strubi, G.; Gresch, T.; Butet, J.; Blaser, S.; Muller, A. Quantum Cascade Lasers with Discrete and Non Equidistant Extended Tuning Tailored by Simulated Annealing. Opt. Express. 2019, 27, 26701–26707. doi:10.1364/OE.27.026701
  • Freitag, S.; Baer, M.; Buntzoll, L.; Ramer, G.; Schwaighofer, A.; Schmauss, B.; Lendl, B. Polarimetric Balanced Detection: Background-Free Mid-IR Evanescent Field Laser Spectroscopy for Low-Noise, Long-Term Stable Chemical Sensing. ACS Sens. 2021, 6, 35–42. doi:10.1021/acssensors.0c01342
  • Li, J.; Sun, F.; Jin, Y.; Chua, Y. D.; Tan, K. H.; Wicaksono, S.; Sirtori, C.; Yoon, S. F.; Wang, Q. J. Widely Tunable Single-Mode Slot Waveguide Quantum Cascade Laser Array. Opt. Express. 2022, 30, 629–640. doi:10.1364/OE.446454
  • Rieker, G. B.; Jeffries, J. B.; Hanson, R. K. Calibration-Free Wavelength-Modulation Spectroscopy for Measurements of Gas Temperature and Concentration in Harsh Environments. Appl. Opt. 2009, 48, 5546–5560. doi:10.1364/ao.48.005546
  • Cui, H.; Wang, F.; Huang, Q.; Yan, J.; Cen, K. Sensitive Detection of NO Using a Compact Portable CW DFB-QCL-Based WMS Sensor. Appl. Opt. 2020, 59, 9491–9498. doi:10.1364/AO.402484
  • Chon, B.; Xu, S.; Lee, Y. J. Compensation of Strong Water Absorption in Infrared Spectroscopy Reveals the Secondary Structure of Proteins in Dilute Solutions. Anal. Chem. 2021, 93, 2215–2225. doi:10.1021/acs.analchem.0c04091
  • Akhgar, C. K.; Ramer, G.; Żbik, M.; Trajnerowicz, A.; Pawluczyk, J.; Schwaighofer, A.; Lendl, B. The Next Generation of IR Spectroscopy: EC-QCL-Based Mid-IR Transmission Spectroscopy of Proteins with Balanced Detection. Anal. Chem. 2020, 92, 9901–9907. doi:10.1021/acs.analchem.0c01406
  • Dabrowska, A.; David, M.; Freitag, S.; Andrews, A. M.; Strasser, G.; Hinkov, B.; Schwaighofer, A.; Lendl, B. Broadband Laser-Based Mid-Infrared Spectroscopy Employing a Quantum Cascade Detector for Milk Protein Analysis. Sens. Actuators, B 2022, 350, 130873. doi:10.1016/j.snb.2021.130873
  • Meng, B.; Singleton, M.; Shahmohammadi, M.; Kapsalidis, F.; Wang, R.; Beck, M.; Faist, J. Mid-Infrared Frequency Comb from a Ring Quantum Cascade Laser. Optica 2020, 7, 162. doi:10.1364/optica.377755
  • Chang, L.; Liu, S.; Bowers, J. E. Integrated Optical Frequency Comb Technologies. Nat. Photon. 2022, 16, 95–108. doi:10.1038/s41566-021-00945-1
  • Hugi, A.; Villares, G.; Blaser, S.; Liu, H. C.; Faist, J. Mid-Infrared Frequency Comb Based on a Quantum Cascade Laser. Nature 2012, 492, 229–233. doi:10.1038/nature11620
  • Jouy, P.; Wolf, J. M.; Bidaux, Y.; Allmendinger, P.; Mangold, M.; Beck, M.; Faist, J. Dual Comb Operation of λ ∼ 8.2 μm Quantum Cascade Laser Frequency Comb with 1 W Optical Power. Appl. Phys. Lett. 2017, 111, 141102. doi:10.1063/1.4985102.
  • Faist, J.; Villares, G.; Scalari, G.; Rösch, M.; Bonzon, C.; Hugi, A.; Beck, M. Quantum Cascade Laser Frequency Combs. Nanophotonics 2016, 5, 272–291. doi:10.1515/nanoph-2016-0015
  • Consolino, L.; Nafa, M.; Cappelli, F.; Garrasi, K.; Mezzapesa, F. P.; Li, L.; Davies, A. G.; Linfield, E. H.; Vitiello, M. S.; De Natale, P.; Bartalini, S. Fully Phase-Stabilized Quantum Cascade Laser Frequency Comb. Nat. Commun. 2019, 10, 2938. doi:10.1038/s41467-019-10913-7.
  • Villares, G.; Hugi, A.; Blaser, S.; Faist, J. Dual-Comb Spectroscopy Based on Quantum-Cascade-Laser Frequency Combs. Nat. Commun. 2014, 5, 5192. doi:10.1038/ncomms6192
  • Klocke, J. L.; Mangold, M.; Allmendinger, P.; Hugi, A.; Geiser, M.; Jouy, P.; Faist, J.; Kottke, T. Single-Shot Sub-Microsecond Mid-Infrared Spectroscopy on Protein Reactions with Quantum Cascade Laser Frequency Combs. Anal. Chem. 2018, 90, 10494–10500. doi:10.1021/acs.analchem.8b02531
  • Komagata, K.; Shehzad, A.; Terrasanta, G.; Brochard, P.; Matthey, R.; Gianella, M.; Jouy, P.; Kapsalidis, F.; Shahmohammadi, M.; Beck, M.; et al. Coherently-Averaged Dual Comb Spectrometer at 7.7 µm with Master and Follower Quantum Cascade Lasers. Opt. Express. 2021, 29, 19126–19139.
  • Gianella, M.; Nataraj, A.; Tuzson, B.; Jouy, P.; Kapsalidis, F.; Beck, M.; Mangold, M.; Hugi, A.; Faist, J.; Emmenegger, L. High-Resolution and Gapless Dual Comb Spectroscopy with Current-Tuned Quantum Cascade Lasers. Opt. Express. 2020, 28, 6197–6208.
  • Zhang, G.; Horvath, R.; Liu, D.; Geiser, M.; Farooq, A. QCL-Based Dual-Comb Spectrometer for Multi-Species Measurements at High Temperatures and High Pressures. Sensors (Basel). 2020, 20, 3602. doi:10.3390/s20123602
  • Manninen, A.; Tuzson, B.; Looser, H.; Bonetti, Y.; Emmenegger, L. Versatile Multipass Cell for Laser Spectroscopic Trace Gas Analysis. Appl. Phys. B 2012, 109, 461–466. doi:10.1007/s00340-012-4964-2
  • Yang, Z.; Guo, Y.; Ming, X.; Sun, L. Generalized Optical Design of the Double-Row Circular Multi-Pass Cell. Sensors (Basel). 2018, 18, 2680. doi:10.3390/s18082680
  • Maithani, S.; Mandal, S.; Maity, A.; Pal, M.; Pradhan, M. High-Resolution Spectral Analysis of Ammonia near 6.2 μm Using a cw EC-QCL Coupled with Cavity Ring-down Spectroscopy. Analyst 2018, 143, 2109–2114. doi:10.1039/c7an02008b
  • O'Keefe, A. Integrated Cavity Output Analysis of Ultra-Weak Absorption. Chem. Phys. Lett. 1998, 293, 331–336. doi:10.1016/s0009-2614(98)00785-4
  • Paul, J. B.; Lapson, L.; Anderson, J. G. Ultrasensitive Absorption Spectroscopy with a High-Finesse Optical Cavity and off-Axis Alignment. Appl. Opt. 2001, 40, 4904–4910. doi:10.1364/ao.40.004904
  • Centeno, R.; Mandon, J.; Cristescu, S. M.; Harren, F. J. Sensitivity Enhancement in off-Axis Integrated Cavity Output Spectroscopy. Opt. Express. 2014, 22, 27985–27991. doi:10.1364/OE.22.027985
  • Manfred, K. M.; Hunter, K. M.; Ciaffoni, L.; Ritchie, G. A. ICL-Based of-CEAS: A Sensitive Tool for Analytical Chemistry. Anal. Chem. 2017, 89, 902–909. doi:10.1021/acs.analchem.6b04030
  • Ventrillard, I.; Gorrotxategi-Carbajo, P.; Romanini, D. Part per Trillion Nitric Oxide Measurement by Optical Feedback Cavity-Enhanced Absorption Spectroscopy in the Mid-Infrared. Appl. Phys. B 2017, 123, 180. doi:10.1007/s00340-017-6750-7
  • Richard, L.; Romanini, D.; Ventrillard, I. Nitric Oxide Analysis down to Ppt Levels by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy. Sensors (Basel). 2018, 18, 1997. doi:10.3390/s18071997
  • Charlton, C. M.; Thompson, B. T.; Mizaikoff, B. Hollow Waveguide Infrared Spectroscopy and Sensing. In Frontiers in Chemical Sensors; Springer-Verlag: Berlin, Germany, 2005; pp 133–167
  • Verdaasdonk, R. M.; van Swol, C. F. Laser Light Delivery Systems for Medical Applications. Phys. Med. Biol. 1997, 42, 869–894. doi:10.1088/0031-9155/42/5/010
  • Giglio, M.; Patimisco, P.; Sampaolo, A.; Kriesel, J.; Tittel, F.; Spagnolo, V. Low-Loss and Single-Mode Tapered Hollow-Core Waveguides Optically Coupled with Interband and Quantum Cascade Lasers. Opt. Engineering 2017, 57, 011004. doi:10.1117/1.OE.57.1.011004
  • Kokoric, V.; Wissel, P. A.; Wilk, A.; Mizaikoff, B. muciPRECON: Multichannel Preconcentrators for Portable Mid-Infrared Hydrocarbon Gas Sensors. Anal. Methods 2016, 8, 6645–6650. doi:10.1039/C6AY01447J
  • Katagiri, T.; Yaegashi, K.; Matsuura, Y. Sensitivity Improvement of Midinfrared Gas Sensing System Using Single-Wavelength Quantum Cascade Laser and Hollow-Waveguide Gas Cell. Opt. Eng. 2017, 56, 1. doi:10.1117/1.OE.56.8.080503
  • Hvozdara, L.; Gianordoli, S.; Strasser, G.; Schrenk, W.; Unterrainer, K.; Gornik, E.; Murthy, C. S. S. S.; Kraft, M.; Pustogow, V.; Mizaikoff, B.; et al. Spectroscopy in the Gas Phase with GaAs/AlGaAs Quantum-Cascade Lasers. Appl. Opt. 2000, 39, 6926–6930. doi:10.1364/AO.39.006926
  • Iwai, K.; Takaku, H.; Miyagi, M.; Shi, Y.-W.; Matsuura, Y. Fabrication of Shatter-Proof Metal Hollow-Core Optical Fibers for Endoscopic Mid-Infrared Laser Applications. Fibers 2018, 6, 24. doi:10.3390/fib6020024.
  • Huang, S. H.; Huang, Y.-J.; Chui, H.-C. Trace Methane Sensor Using Mid-Infrared Light Emitting Diode in Hollow-Core Fiber. Sens. Actuators, B 2019, 282, 599–602. doi:10.1016/j.snb.2018.11.106
  • Francis, D.; Hodgkinson, J.; Livingstone, B.; Black, P.; Tatam, R. P. Low-Volume, Fast Response-Time Hollow Silica Waveguide Gas Cells for mid-IR Spectroscopy. Appl. Opt. 2016, 55, 6797–6806. doi:10.1364/AO.55.006797
  • Patimisco, P.; Sampaolo, A.; Mihai, L.; Giglio, M.; Kriesel, J.; Sporea, D.; Scamarcio, G.; Tittel, F.; Spagnolo, V. Low-Loss Coupling of Quantum Cascade Lasers into Hollow-Core Waveguides with Single-Mode Output in the 3.7–7.6 μm Spectral Range. Sensors 2016, 16, 533. doi:10.3390/s16040533
  • Hart, S. D.; Maskaly, G. R.; Temelkuran, B.; Prideaux, P. H.; Joannopoulos, J. D.; Fink, Y. External Reflection from Omnidirectional Dielectric Mirror Fibers. Science 2002, 296, 510–513. doi:10.1126/science.1070050
  • Charlton, C.; Temelkuran, B.; Dellemann, G.; Mizaikoff, B. Midinfrared Sensors Meet Nanotechnology: Trace Gas Sensing with Quantum Cascade Lasers inside Photonic Band-Gap Hollow Waveguides. Appl. Phys. Lett. 2005, 86, 194102. doi:10.1063/1.1925777
  • Wörle, K.; Seichter, F.; Wilk, A.; Armacost, C.; Day, T.; Godejohann, M.; Wachter, U.; Vogt, J.; Radermacher, P.; Mizaikoff, B. Breath Analysis with Broadly Tunable Quantum Cascade Lasers. Anal. Chem. 2013, 85, 2697–2702. doi:10.1021/ac3030703
  • Tütüncü, E.; Kokoric, V.; Wilk, A.; Seichter, F.; Schmid, M.; Hunt, W. E.; Manuel, A. M.; Mirkarimi, P.; Alameda, J. B.; Carter, J. C.; Mizaikoff, B. Fiber-Coupled Substrate-Integrated Hollow Waveguides: An Innovative Approach to Mid-Infrared Remote Gas Sensors. ACS Sens. 2017, 2, 1287–1293. doi:10.1021/acssensors.7b00253
  • Selvaraj, R.; Vasa, N. J.; Nagendra, S. M. S.; Mizaikoff, B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020, 25, 2227. doi:10.3390/molecules25092227.
  • Dumas, P.; Tobin, R. G.; Richards, P. L. Study of Adsorption States and Interactions of CO on Evaporated Noble Metal Surfaces by Infrared Absorption Spectroscopy: I. Silver. Surf. Sci. 1986, 171, 555–578. doi:10.1016/0039-6028(86)91060-5
  • Adato, R.; Artar, A.; Erramilli, S.; Altug, H. Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems. Nano Lett. 2013, 13, 2584–2591. doi:10.1021/nl400689q
  • Neubrech, F.; Pucci, A.; Cornelius, T.; Karim, S.; Garcia-Etxarri, A.; Aizpurua, J. Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection. Phys. Rev. Lett. 2008, 101, 157403. doi:10.1103/PhysRevLett.101.157403
  • Novotny, L. Effective Wavelength Scaling for Optical Antennas. Phys. Rev. Lett. 2007, 98, 266802. doi:10.1103/PhysRevLett.98.266802
  • Adato, R.; Yanik, A. A.; Amsden, J. J.; Kaplan, D. L.; Omenetto, F. G.; Hong, M. K.; Erramilli, S.; Altug, H. Ultra-Sensitive Vibrational Spectroscopy of Protein Monolayers with Plasmonic Nanoantenna Arrays. Proc. Natl. Acad. Sci. U S A 2009, 106, 19227–19232. doi:10.1073/pnas.0907459106
  • Weber, D.; Albella, P.; Alonso-González, P.; Neubrech, F.; Gui, H.; Nagao, T.; Hillenbrand, R.; Aizpurua, J.; Pucci, A. Longitudinal and Transverse Coupling in Infrared Gold Nanoantenna Arrays: Long Range versus Short Range Interaction Regimes. Opt. Express. 2011, 19, 15047–15061. doi:10.1364/OE.19.015047
  • Bagheri, S.; Weber, K.; Gissibl, T.; Weiss, T.; Neubrech, F.; Giessen, H. Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement. ACS Photonics 2015, 2, 779–786. doi:10.1021/acsphotonics.5b00141
  • Di Meo, V.; Caporale, A.; Crescitelli, A.; Janneh, M.; Palange, E.; De Marcellis, A.; Portaccio, M.; Lepore, M.; Rendina, I.; Ruvo, M.; Esposito, E. Metasurface Based on Cross-Shaped Plasmonic Nanoantennas as Chemical Sensor for Surface-Enhanced Infrared Absorption Spectroscopy. Sens. Actuators, B 2019, 286, 600–607. doi:10.1016/j.snb.2019.02.014
  • Cubukcu, E.; Zhang, S.; Park, Y.-S.; Bartal, G.; Zhang, X. Split Ring Resonator Sensors for Infrared Detection of Single Molecular Monolayers. Appl. Phys. Lett. 2009, 95, 043113–043113. doi:10.1063/1.3194154
  • Brown, L. V.; Yang, X.; Zhao, K.; Zheng, B. Y.; Nordlander, P.; Halas, N. J. Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA). Nano Lett. 2015, 15, 1272–1280. doi:10.1021/nl504455s
  • Dong, L.; Yang, X.; Zhang, C.; Cerjan, B.; Zhou, L.; Tseng, M. L.; Zhang, Y.; Alabastri, A.; Nordlander, P.; Halas, N. J. Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. Nano Lett. 2017, 17, 5768–5774. doi:10.1021/acs.nanolett.7b02736
  • Wei, J.; Li, Y.; Chang, Y.; Hasan, D. M. N.; Dong, B.; Ma, Y.; Qiu, C.-W.; Lee, C. Ultrasensitive Transmissive Infrared Spectroscopy via Loss Engineering of Metallic Nanoantennas for Compact Devices. ACS Appl. Mater. Interfaces. 2019, 11, 47270–47278. doi:10.1021/acsami.9b18002
  • Li, D.; Zhou, H.; Hui, X.; He, X.; Mu, X. Plasmonic Biosensor Augmented by a Genetic Algorithm for Ultra-Rapid, Label-Free, and Multi-Functional Detection of COVID-19. Anal. Chem. 2021, 93, 9437–9444. doi:10.1021/acs.analchem.1c01078
  • Rodrigo, D.; Tittl, A.; John-Herpin, A.; Limaj, O.; Altug, H. Self-Similar Multiresonant Nanoantenna Arrays for Sensing from near- to Mid-Infrared. ACS Photonics 2018, 5, 4903–4911. doi:10.1021/acsphotonics.8b01050
  • Gottheim, S.; Zhang, H.; Govorov, A. O.; Halas, N. J. Fractal Nanoparticle Plasmonics: The Cayley Tree. ACS Nano. 2015, 9, 3284–3292. doi:10.1021/acsnano.5b00412
  • Wallace, G. Q.; Foy, H. C.; Rosendahl, S. M.; Lagugné-Labarthet, F. Dendritic Plasmonics for Mid-Infrared Spectroscopy. J. Phys. Chem. C 2017, 121, 9497–9507. doi:10.1021/acs.jpcc.7b02039
  • Aslan, E.; Aslan, E.; Wang, R.; Hong, M. K.; Erramilli, S.; Turkmen, M.; Saracoglu, O. G.; Dal Negro, L. Multispectral Cesaro-Type Fractal Plasmonic Nanoantennas. ACS Photonics 2016, 3, 2102–2111. doi:10.1021/acsphotonics.6b00540
  • Hegde, R. S.; Khoo, E. H. Broadband Optical Response in Ternary Tree Fractal Plasmonic Nanoantenna. Plasmonics 2016, 11, 465–473. doi:10.1007/s11468-015-0059-3
  • Wallace, G. Q.; Lagugné-Labarthet, F. Advancements in Fractal Plasmonics: Structures, Optical Properties, and Applications. Analyst 2018, 144, 13–30. doi:10.1039/C8AN01667D
  • Simon, T.; Li, X.; Martin, J.; Khlopin, D.; Stéphan, O.; Kociak, M.; Gérard, D. Aluminum Cayley Trees as Scalable, Broadband, Multiresonant Optical Antennas. Proc. Natl. Acad. Sci. USA. 2022, 119, e2116833119. doi:10.1073/pnas.2116833119
  • Vogt, J.; Huck, C.; Neubrech, F.; Toma, A.; Gerbert, D.; Pucci, A. Impact of the Plasmonic near- and Far-Field Resonance-Energy Shift on the Enhancement of Infrared Vibrational Signals. Phys. Chem. Chem. Phys. 2015, 17, 21169–21175. doi:10.1039/C4CP04851B
  • Neuman, T.; Huck, C.; Vogt, J.; Neubrech, F.; Hillenbrand, R.; Aizpurua, J.; Pucci, A. Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas. J. Phys. Chem. C 2015, 119, 26652–26662. doi:10.1021/acs.jpcc.5b08344
  • Huck, C.; Vogt, J.; Sendner, M.; Hengstler, D.; Neubrech, F.; Pucci, A. Plasmonic Enhancement of Infrared Vibrational Signals: Nanoslits versus Nanorods. ACS Photonics 2015, 2, 1489–1497. doi:10.1021/acsphotonics.5b00390
  • Miao, X.; Yan, L.; Wu, Y.; Liu, P. Q. High-Sensitivity Nanophotonic Sensors with Passive Trapping of Analyte Molecules in Hot Spots. Light. Sci. Appl. 2021, 10, 5. doi:10.1038/s41377-020-00449-7
  • Miklós, A.; Hess, P.; Bozóki, Z. Application of Acoustic Resonators in Photoacoustic Trace Gas Analysis and Metrology. Rev. Sci. Instrum 2001, 72, 1937–1955. doi:10.1063/1.1353198
  • Pushkarsky, M.; Webber, M.; Baghdassarian, O.; Narasimhan, L.; Patel, C. K. N. Laser-Based Photoacoustic Ammonia Sensors for Industrial Applications. Appl. Phys. B 2002, 75, 391–396.
  • Kosterev, A. A.; Bakhirkin, Y. A.; Curl, R. F.; Tittel, F. K. Quartz-Enhanced Photoacoustic Spectroscopy. Opt. Lett. 2002, 27, 1902–1904. doi:10.1364/ol.27.001902
  • Koskinen, V.; Fonsen, J.; Roth, K.; Kauppinen, J. Progress in Cantilever Enhanced Photoacoustic Spectroscopy. Vib. Spectrosc. 2008, 48, 16–21. doi:10.1016/j.vibspec.2008.01.013
  • Hofstetter, D.; Beck, M.; Faist, J.; Nägele, M.; Sigrist, M. W. Photoacoustic Spectroscopy with Quantum Cascade Distributed-Feedback Lasers. Opt. Lett. 2001, 26, 887–889. doi:10.1364/OL.26.000887
  • Harren, F. J. M.; Mandon, J.; Cristescu, S. M. Photoacoustic Spectroscopy in Trace Gas Monitoring. In Encyclopedia of Analytical Chemistry, Meyers, R. A., Eds.; John Wiley & Sons, Ltd: New York, 2000; pp 2203–2226.
  • Bijnen, F. G. C.; Reuss, J.; Harren, F. J. M. Geometrical Optimization of a Longitudinal Resonant Photoacoustic Cell for Sensitive and Fast Trace Gas Detection. Rev. Sci. Instrum 1996, 67, 2914–2923. doi:10.1063/1.1147072
  • Lima, J. P.; Vargas, H.; Miklós, A.; Angelmahr, M.; Hess, P. Photoacoustic Detection of NO2 and N2O Using Quantum Cascade Lasers. Appl. Phys. B 2006, 85, 279–284. doi:10.1007/s00340-006-2357-0
  • Sgobba, F.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Menduni, G.; Ranieri, A. C.; Hoelzl, C.; Rossmadl, H.; Brehm, C.; Mackowiak, V.; et al. Compact and Portable Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Carbon Monoxide Environmental Monitoring in Urban Areas. Photoacoustics 2022, 25, 100318. doi:10.1016/j.pacs.2021.100318
  • Liao, C.-S.; Blanchard, R.; Pfluegl, C.; Azimi, M.; Huettig, F.; Vakhshoori, D. Portable Broadband Photoacoustic Spectroscopy for Trace Gas Detection by Quantum Cascade Laser Arrays. Opt. Lett. 2020, 45, 3248–3251. doi:10.1364/OL.395202
  • Ma, Y.; Qiao, S.; Patimisco, P.; Sampaolo, A.; Wang, Y.; Tittel, F. K.; Spagnolo, V. In-Plane Quartz-Enhanced Photoacoustic Spectroscopy. Appl. Phys. Lett. 2020, 116, 061101. doi:10.1063/1.5142330
  • Christen, M., Air and Gas Damping of Quartz Tuning Forks. Sensors and Actuators. 1983, 4, 555–564. doi:10.1016/0250-6874(83)85067-7
  • Patimisco, P.; Sampaolo, A.; Giglio, M.; Dello Russo, S.; Mackowiak, V.; Rossmadl, H.; Cable, A.; Tittel, F. K.; Spagnolo, V. Tuning Forks with Optimized Geometries for Quartz-Enhanced Photoacoustic Spectroscopy. Opt. Express. 2019, 27, 1401–1415. doi:10.1364/OE.27.001401
  • Lin, H.; Zheng, H.; Montano, B. A. Z.; Wu, H.; Giglio, M.; Sampaolo, A.; Patimisco, P.; Zhu, W.; Zhong, Y.; Dong, L.; et al. Ppb-Level Gas Detection Using on-Beam Quartz-Enhanced Photoacoustic Spectroscopy Based on a 28 kHz Tuning Fork. Photoacoustics 2022, 25, 100321. doi:10.1016/j.pacs.2021.100321
  • Dello Russo, S.; Zhou, S.; Zifarelli, A.; Patimisco, P.; Sampaolo, A.; Giglio, M.; Iannuzzi, D.; Spagnolo, V. Photoacoustic Spectroscopy for Gas Sensing: A Comparison between Piezoelectric and Interferometric Readout in Custom Quartz Tuning Forks. Photoacoustics 2020, 17, 100155. doi:10.1016/j.pacs.2019.100155
  • Helman, M.; Moser, H.; Dudkowiak, A.; Lendl, B. Off-Beam Quartz-Enhanced Photoacoustic Spectroscopy-Based Sensor for Hydrogen Sulfide Trace Gas Detection Using a Mode-Hop-Free External Cavity Quantum Cascade Laser. Appl. Phys. B 2017, 123, 141. doi:10.1007/s00340-017-6717-8
  • Ma, Y.; He, Y.; Zhang, L.; Yu, X.; Zhang, J.; Sun, R.; Tittel, F. K. Ultra-High Sensitive Acetylene Detection Using Quartz-Enhanced Photoacoustic Spectroscopy with a Fiber Amplified Diode Laser and a 30.72 kHz Quartz Tuning Fork. Appl. Phys. Lett. 2017, 110, 031107. doi:10.1063/1.4974483
  • Katagiri, T.; Shibayama, K.; Iida, T.; Matsuura, Y. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts. Sensors (Basel). 2018, 18, 995. doi:10.3390/s18040995
  • Tutuncu, E.; Nagele, M.; Becker, S.; Fischer, M.; Koeth, J.; Wolf, C.; Kostler, S.; Ribitsch, V.; Teuber, A.; Groger, M.; et al. Advanced Photonic Sensors Based on Interband Cascade Lasers for Real-Time Mouse Breath Analysis. ACS Sens. 2018, 3, 1743–1749. doi:10.1021/acssensors.8b00477
  • Robinson, I.; Butcher, H. L.; Macleod, N. A.; Weidmann, D. Hollow Waveguide Integrated Laser Spectrometer for 13CO2/12CO2 Analysis. Opt. Express. 2019, 27, 35670–35688. doi:10.1364/OE.27.035670
  • Pakmanesh, N.; Cristescu, S. M.; Ghorbanzadeh, A.; Harren, F. J. M.; Mandon, J. Quantum Cascade Laser-Based Sensors for the Detection of Exhaled Carbon Monoxide. Appl. Phys. B 2016, 122, 10. doi:10.1007/s00340-015-6294-7
  • Ghorbani, R.; Schmidt, F. M. ICL-Based TDLAS Sensor for Real-Time Breath Gas Analysis of Carbon Monoxide Isotopes. Opt. Express. 2017, 25, 12743–12752. doi:10.1364/OE.25.012743
  • Zhou, S.; Shen, C.-Y.; Zhang, L.; Liu, N.-W.; He, T.-B.; Yu, B.-L.; Li, J.-S. Dual-Optimized Adaptive Kalman Filtering Algorithm Based on BP Neural Network and Variance Compensation for Laser Absorption Spectroscopy. Opt. Express. 2019, 27, 31874–31888. doi:10.1364/OE.27.031874
  • Lang, N.; Macherius, U.; Zimmermann, H.; Glitsch, S.; Wiese, M.; Ropcke, J.; van Helden, J. H. RES-Q-Trace: A Mobile CEAS-Based Demonstrator for Multi-Component Trace Gas Detection in the MIR. Sensors (Basel). 2018, 18, 2058. doi:10.3390/s18072058
  • Aseev, O.; Tuzson, B.; Looser, H.; Scheidegger, P.; Liu, C.; Morstein, C.; Niederhauser, B.; Emmenegger, L. High-Precision Ethanol Measurement by mid-IR Laser Absorption Spectroscopy for Metrological Applications. Opt. Express. 2019, 27, 5314–5325. doi:10.1364/OE.27.005314
  • Reyes-Reyes, A.; Horsten, R. C.; Urbach, H. P.; Bhattacharya, N. Study of the Exhaled Acetone in Type 1 Diabetes Using Quantum Cascade Laser Spectroscopy. Anal. Chem. 2015, 87, 507–512. doi:10.1021/ac504235e
  • Centeno, R.; Mandon, J.; Harren, F.; Cristescu, S. Influence of Ethanol on Breath Acetone Measurements Using an External Cavity Quantum Cascade Laser. Photonics 2016, 3, 22. doi:10.3390/photonics3020022
  • Gadedjisso-Tossou, K. S.; Stoychev, L. I.; Mohou, M. A.; Cabrera, H.; Niemela, J.; Danailov, M. B.; Vacchi, A. Cavity Ring-Down Spectroscopy for Molecular Trace Gas Detection Using a Pulsed DFB QCL Emitting at 6.8 µm. Photonics 2020, 7, 74. doi:10.3390/photonics7030074
  • Marchenko, D.; Mandon, J.; Cristescu, S. M.; Merkus, P. J. F. M.; Harren, F. J. M. Quantum Cascade Laser-Based Sensor for Detection of Exhaled and Biogenic Nitric Oxide. Appl. Phys. B 2013, 111, 359–365. doi:10.1007/s00340-013-5341-5
  • Zhou, S.; Han, Y.; Li, B. Pressure Optimization of an EC-QCL Based Cavity Ring-down Spectroscopy Instrument for Exhaled NO Detection. Appl. Phys. B 2018, 124, 27. doi:10.1007/s00340-018-6898-9
  • Zhang, G.; Hao, H.; Wang, Y.; Jiang, Y.; Shi, J.; Yu, J.; Cui, X.; Li, J.; Zhou, S.; Yu, B. Optimized Adaptive Savitzky-Golay Filtering Algorithm Based on Deep Learning Network for Absorption Spectroscopy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 263, 120187. doi:10.1016/j.saa.2021.120187
  • Huang, S. H.; Li, J.; Fan, Z.; Delgado, R.; Shvets, G. Monitoring the Effects of Chemical Stimuli on Live Cells with Metasurface-Enhanced Infrared Reflection Spectroscopy. Lab Chip. 2021, 21, 3991–4004. doi:10.1039/D1LC00580D
  • Brandstetter, M.; Sumalowitsch, T.; Genner, A.; Posch, A. E.; Herwig, C.; Drolz, A.; Fuhrmann, V.; Perkmann, T.; Lendl, B. Reagent-Free Monitoring of Multiple Clinically Relevant Parameters in Human Blood Plasma Using a Mid-Infrared Quantum Cascade Laser Based Sensor System. Analyst 2013, 138, 4022–4028. doi:10.1039/c3an00300k
  • Jernelv, I. L.; Strom, K.; Hjelme, D. R.; Aksnes, A. Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements towards Biomedical Applications. Sensors (Basel). 2019, 19, 5130. doi:10.3390/s19235130
  • Pleitez, M. A.; Lieblein, T.; Bauer, A.; Hertzberg, O.; von Lilienfeld-Toal, H.; Mäntele, W. In Vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy. Anal. Chem. 2013, 85, 1013–1020. doi:10.1021/ac302841f
  • Kottmann, J.; Grob, U.; Rey, J.; Sigrist, M. Mid-Infrared Fiber-Coupled Photoacoustic Sensor for Biomedical Applications. Sensors (Basel) 2013, 13, 535–549. doi:10.3390/s130100535
  • Bauer, A.; Hertzberg, O.; Küderle, A.; Strobel, D.; Pleitez, M. A.; Mäntele, W. IR-Spectroscopy of Skin in Vivo: Optimal Skin Sites and Properties for Non-Invasive Glucose Measurement by Photoacoustic and Photothermal Spectroscopy. J. Biophotonics 2018, 11, e201600261. doi:10.1002/jbio.201600261
  • Aloraynan, A.; Rassel, S.; Xu, C.; Ban, D. A Single Wavelength Mid-Infrared Photoacoustic Spectroscopy for Noninvasive Glucose Detection Using Machine Learning. Biosensors (Basel). 2022, 12, 166. doi:10.3390/bios12030166
  • Brandstetter, M.; Volgger, L.; Genner, A.; Jungbauer, C.; Lendl, B. Direct Determination of Glucose, Lactate and Triglycerides in Blood Serum by a Tunable Quantum Cascade Laser-Based mid-IR Sensor. Appl. Phys. B 2013, 110, 233–239. doi:10.1007/s00340-012-5080-z
  • Alimagham, F. C.; Hutter, D.; Marco-Garcia, N.; Gould, E.; Highland, V. H.; Huefner, A.; Giorgi-Coll, S.; Killen, M. J.; Zakrzewska, A. P.; Elliott, S. R.; et al. Cerebral Microdialysate Metabolite Monitoring Using Mid-Infrared Spectroscopy. Anal. Chem. 2021, 93, 11929–11936. doi:10.1021/acs.analchem.1c01149
  • Akhgar, C. K.; Ebner, J.; Spadiut, O.; Schwaighofer, A.; Lendl, B. QCL-IR Spectroscopy for in-Line Monitoring of Proteins from Preparative Ion-Exchange Chromatography. Anal. Chem. 2022, 94, 5583–5590. doi:10.1021/acs.analchem.1c05191
  • Limaj, O.; Etezadi, D.; Wittenberg, N. J.; Rodrigo, D.; Yoo, D.; Oh, S.-H.; Altug, H. Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes. Nano Lett. 2016, 16, 1502–1508. doi:10.1021/acs.nanolett.5b05316
  • Rodrigo, D.; Tittl, A.; Ait-Bouziad, N.; John-Herpin, A.; Limaj, O.; Kelly, C.; Yoo, D.; Wittenberg, N. J.; Oh, S.-H.; Lashuel, H. A.; Altug, H. Resolving Molecule-Specific Information in Dynamic Lipid Membrane Processes with Multi-Resonant Infrared Metasurfaces. Nat. Commun. 2018, 9, 2160. doi:10.1038/s41467-018-04594-x
  • Hui, X.; Yang, C.; Li, D.; He, X.; Huang, H.; Zhou, H.; Chen, M.; Lee, C.; Mu, X. Infrared Plasmonic Biosensor with Tetrahedral DNA Nanostructure as Carriers for Label-Free and Ultrasensitive Detection of miR-155. Adv. Sci. 2021, 8, 2100583. doi:10.1002/advs.202100583
  • Yao, Z.; Zhang, Q.; Zhu, W.; Galluzzi, M.; Zhou, W.; Li, J.; Zayats, A. V.; Yu, X.-F. Rapid Detection of SARS-CoV-2 Viral Nucleic Acids Based on Surface Enhanced Infrared Absorption Spectroscopy. Nanoscale 2021, 13, 10133–10142. doi:10.1039/D1NR01652K
  • Schwaighofer, A.; Alcaraz, M. R.; Araman, C.; Goicoechea, H.; Lendl, B. External Cavity-Quantum Cascade Laser Infrared Spectroscopy for Secondary Structure Analysis of Proteins at Low Concentrations. Sci. Rep. 2016, 6, 33556. doi:10.1038/srep33556
  • Zucchiatti, P.; Birarda, G.; Cerea, A.; Semrau, M. S.; Hubarevich, A.; Storici, P.; De Angelis, F.; Toma, A.; Vaccari, L. Binding of Tyrosine Kinase Inhibitor to Epidermal Growth Factor Receptor: Surface-Enhanced Infrared Absorption Microscopy Reveals Subtle Protein Secondary Structure Variations. Nanoscale 2021, 13, 7667–7677. doi:10.1039/D0NR09200B
  • Alcaraz, M. R.; Schwaighofer, A.; Goicoechea, H.; Lendl, B. EC-QCL mid-IR Transmission Spectroscopy for Monitoring Dynamic Changes of Protein Secondary Structure in Aqueous Solution on the Example of Beta-Aggregation in Alcohol-Denaturated Alpha-Chymotrypsin. Anal. Bioanal. Chem. 2016, 408, 3933–3941. doi:10.1007/s00216-016-9464-5
  • Schwaighofer, A.; Alcaraz, M. R.; Lux, L.; Lendl, B. pH Titration of Beta-Lactoglobulin Monitored by Laser-Based Mid-IR Transmission Spectroscopy Coupled to Chemometric Analysis. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 226, 117636. doi:10.1016/j.saa.2019.117636
  • Adato, R.; Altug, H. In-Situ Ultra-Sensitive Infrared Absorption Spectroscopy of Biomolecule Interactions in Real Time with Plasmonic Nanoantennas. Nat. Commun. 2013, 4, 2154. doi:10.1038/ncomms3154
  • Di Meo, V.; Moccia, M.; Sanita, G.; Crescitelli, A.; Lamberti, A.; Galdi, V.; Rendina, I.; Esposito, E. Probing Denaturation of Protein a via Surface-Enhanced Infrared Absorption Spectroscopy. Biosensors (Basel). 2022, 12, 530. doi:10.3390/bios12070530
  • Etezadi, D.; Warner, J. B.; Lashuel, H. A.; Altug, H. Real-Time in Situ Secondary Structure Analysis of Protein Monolayer with Mid-Infrared Plasmonic Nanoantennas. ACS Sens. 2018, 3, 1109–1117. doi:10.1021/acssensors.8b00115
  • John-Herpin, A.; Tittl, A.; Altug, H. Quantifying the Limits of Detection of Surface-Enhanced Infrared Spectroscopy with Grating Order-Coupled Nanogap Antennas. ACS Photonics. 2018, 5, 4117–4124. doi:10.1021/acsphotonics.8b00847
  • Dold, J.; Kehr, C.; Hollmann, C.; Langowski, H. C. Non-Destructive Measuring Systems for the Evaluation of High Oxygen Stored Poultry: Development of Headspace Gas Composition, Sensory and Microbiological Spoilage. Foods 2022, 11, 592. doi:10.3390/foods11040592
  • Kuligowski, J.; Schwaighofer, A.; Alcaraz, M. R.; Quintas, G.; Mayer, H.; Vento, M.; Lendl, B. External Cavity-Quantum Cascade Laser (EC-QCL) Spectroscopy for Protein Analysis in Bovine Milk. Anal. Chim. Acta. 2017, 963, 99–105. doi:10.1016/j.aca.2017.02.003
  • Schwaighofer, A.; Kuligowski, J.; Quintas, G.; Mayer, H. K.; Lendl, B. Fast Quantification of Bovine Milk Proteins Employing External Cavity-Quantum Cascade Laser Spectroscopy. Food Chem. 2018, 252, 22–27. doi:10.1016/j.foodchem.2018.01.082
  • Montemurro, M.; Schwaighofer, A.; Schmidt, A.; Culzoni, M. J.; Mayer, H. K.; Lendl, B. High-Throughput Quantitation of Bovine Milk Proteins and Discrimination of Commercial Milk Types by External Cavity-Quantum Cascade Laser Spectroscopy and Chemometrics. Analyst 2019, 144, 5571–5579. doi:10.1039/c9an00746f
  • Chen, H.; Singhal, G.; Neubrech, F.; Liu, R.; Katz, J. S.; Matteucci, S.; Arturo, S. G.; Wasserman, D.; Giessen, H.; Braun, P. V. Measuring Molecular Diffusion through Thin Polymer Films with Dual-Band Plasmonic Antennas. ACS Nano. 2021, 15, 10393–10405. doi:10.1021/acsnano.1c02701
  • Yumoto, M.; Kawata, Y.; Abe, T.; Matsuyama, T.; Wada, S. Non-Destructive mid-IR Spectroscopy with Quantum Cascade Laser Can Detect Ethylene Gas Dynamics of Apple Cultivar 'Fuji’ in Real Time. Sci. Rep. 2021, 11, 20695. doi:10.1038/s41598-021-00254-1
  • Wang, Z.; Wang, C. Is Breath Acetone a Biomarker of Diabetes? A Historical Review on Breath Acetone Measurements. J. Breath Res. 2013, 7, 037109. doi:10.1088/1752-7155/7/3/037109
  • Saasa, V.; Malwela, T.; Beukes, M.; Mokgotho, M.; Liu, C. P.; Mwakikunga, B. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics (Basel) 2018, 8, 12. doi:10.3390/diagnostics8010012
  • Španěl, P.; Smith, D. What is the Real Utility of Breath Ammonia Concentration Measurements in Medicine and Physiology? J. Breath Res. 2018, 12, 027102. doi:10.1088/1752-7163/aa907f
  • Som, S.; Dutta Banik, G.; Maity, A.; Chaudhuri, S.; Pradhan, M. Exhaled Nitric Oxide as a Potential Marker for Detecting Non-Ulcer Dyspepsia and Peptic Ulcer Disease. J. Breath Res. 2018, 12, 026005. doi:10.1088/1752-7163/aa8efb
  • Neubrech, F.; Beck, S.; Glaser, T.; Hentschel, M.; Giessen, H.; Pucci, A. Spatial Extent of Plasmonic Enhancement of Vibrational Signals in the Infrared. ACS Nano. 2014, 8, 6250–6258. doi:10.1021/nn5017204
  • Harren, F. J. M.; Berkelmans, R.; Kuiper, K.; Te Lintel Hekkert, S.; Scheepers, P.; Dekhuijzen, R.; Hollander, P.; Parker, D. H. On-Line Laser Photoacoustic Detection of Ethene in Exhaled Air as Biomarker of Ultraviolet Radiation Damage of the Human Skin. Appl. Phys. Lett. 1999, 74, 1761–1763. doi:10.1063/1.123680
  • Campbell, S. D.; Yee, S. S.; Afromowitz, M. A. Applications of Photoacoustic Spectroscopy to Problems in Dermatology Research. IEEE Trans. Biomed. Eng. 1979, BME26, 220–227. doi:10.1109/tbme.1979.326561

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.