307
Views
2
CrossRef citations to date
0
Altmetric
Review

An overview of natural and anthropogenic sources of ultrafine airborne particles: analytical determination to assess the multielemental profiles

&

References

  • Kerminen, V. M.; Chen, X.; Vakkari, V.; Petäjä, T.; Kulmala, M.; Bianchi, F. Atmospheric New Particle Formation and Growth: Review of Field Observations. Environ. Res. Lett. 2018, 13, 103003. DOI:10.1088/1748-9326/aadf3c.
  • Sanderson, P.; Delgado-Saborit, J. M.; Harrison, R. M. A Review of Chemical and Physical Characterisation of Atmospheric Metallic Nanoparticles. Atmos. Environ. 2014, 94, 353–365. 10.1016/j.atmosenv.2014.05.023
  • Lungu, M.; Neculae, A.; Bunoiu, M.; Biris, C. Nanoparticles’ Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment; Springer Nature: Cham, Switzerland, 2015.
  • Costa, D. L. Historical Highlights of Air Pollution Toxicology. Toxicol. Sci. 2018, 164, 5–8. 10.1093/toxsci/kfy117
  • Smichowski, P.; Gómez, D. R. Investigation of Airborne Nanoparticles: The Focus on Analytical Chemistry. In Environmental Nanopollutants: Sources, Occurrence, Analysis and Fate; Szpunar, J.; Jiménez-Lamana, J.; Eds. Royal Society of Chemistry: London, 2023; pp. 82–112
  • Kulmala, M.; Vehkamäki, H.; Petäjä, T.; Dal Maso, M.; Lauri, A.; Kerminen, V. M.; Birmili, W.; McMurry, P. H. Formation and Growth Rates of Ultrafine Atmospheric Particles: A Review of Observations. J. Aerosol. Sci. 2004, 35, 143–176. 10.1016/j.jaerosci.2003.10.003
  • Spinazzè, A.; Borghi, F.; Rovelli, S.; Mihucz, V. G.; Bergmans, B.; Cattaneo, A.; Cavallo, D. M. Combined and Modular Approaches for Multicomponent Monitoring of Indoor Air Pollutants. Appl. Spectrosc. Rev. 2022, 57, 780–816. 10.1080/05704928.2021.1995405
  • Buzea, C.; Pacheco, I.. Toxicity of Nanoparticles. In Nanotechnology in Eco-Efficient Construction Pacheco-Torgal, F.; Diamanti, M. V.; Nazari, A.; Granqvist, C. G.; Pruna, A.; Amirkhanian, S.; Eds. Elsevier: New York, 2019, pp. 705–754
  • Schweitzer, M. D.; Calzadilla, A. S.; Salamo, O.; Sharifi, A.; Kumar, N.; Holt, G.; Campos, M.; Mirsaeidi, M. Lung Health in Era of Climate Change and Dust Storms. Environ. Res. 2018, 163, 36–42. 10.1016/j.envres.2018.02.001
  • Churg, A.; Brauer, M. Human Lung Parenchyma Retains PM2.5. Am. J. Respir. Crit. Care Med. 1997, 155, 2109–2111. 10.1164/ajrccm.155.6.9196123
  • Hoet, P. H.; Brüske-Hohlfeld, I.; Salata, O. V. Nanoparticles–Known and Unknown Health Risks. J. Nanobiotechnol. 2004, 2, 12–15. 10.1186/1477-3155-2-12
  • Li, X.; Liu, W.; Sun, L.; Aifantis, K. E.; Yu, B.; Fan, Y.; Qingling, F.; Cui, F.; Watari, F. Effects of Physicochemical Properties of Nanomaterials on Their Toxicity. J. Biomed. Mater. Res. A 2015, 103, 2499–2507. 10.1002/jbm.a.35384
  • Pujalté, I.; Passagne, I.; Brouillaud, B.; Tréguer, M.; Durand, E.; Ohayon-Courtès, C.; l‘Azou, B. Cytotoxicity and Oxidative Stress Induced by Different Metallic Nanoparticles on Human Kidney Cells. Part. Fibre Toxicol. 2011, 8, 1–16.
  • Naqvi, S.; Samim, M.; Abdin, M. Z.; Ahmed, F. J.; Maitra, A. N.; Prashant, C. K.; Dinda, A. K. Concentration-Dependent Toxicity of Iron Oxide Nanoparticles Mediated by Increased Oxidative Stress. Int. J. Nanomed. 2010, 5, 983–989. 10.2147/IJN.S13244
  • Mannucci, P. M.; Harari, S.; Martinelli, I.; Franchini, M. Effects on Health of Air Pollution: A Narrative Review. Intern. Emerg. Med. 2015, 10, 657–662. 10.1007/s11739-015-1276-7
  • Xu, Y.; Li, H.; Hedmer, M.; Hossain, M. B.; Tinnerberg, H.; Broberg, K.; Albin, M. Occupational Exposure to Particles and Mitochondrial DNA-Relevance for Blood Pressure. Environ. Health 2017, 16, 1–10. 10.1186/s12940-017-0234-4
  • Bhargava, A.; Shukla, A.; Bunkar, N.; Shandilya, R.; Lodhi, L.; Kumari, R.; Gupta, P. K.; Rahman, A.; Chaudhury, K.; Tiwari, R.; et al. Exposure to Ultrafine Particulate Matter Induces NF-κβ Mediated Epigenetic Modifications. Environ. Pollut. 2019, 252, 39–50. 10.1016/j.envpol.2019.05.065
  • Moreno-Ríos, A. L.; Tejeda-Benítez, L.; Bustillo-Lecompte, C. Sources, Characteristics, Toxicity, and Control of Ultrafine Particles: An Overview. Geosci. Front. 2022, 13, 101147. DOI:10.1016/j.gsf.2021.101147-. 10.1016/j.gsf.2021.101147
  • Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. Biomed. Res. Int. 2013, 2013, 942916. DOI:10.1155/2013/942916.
  • Boutzis, E. I.; Zhang, J.; Moran, M. D. Expansion of a Size Disaggregation Profile Library for Particulate Matter Emissions Processing from Three Generic Profiles to 36 Source-Type-Specific Profiles. J. Air Waste Manag. Assoc. 2020, 70, 1067–1100. 10.1080/10962247.2020.1743794
  • Biswas, P.; Wu, C. Y. Nanoparticles and the Environment. J. Air Waste Manag. Assoc. 2005, 55, 708–746. 10.1080/10473289.2005.10464656
  • Martínez, G.; Merinero, M.; Pérez-Aranda, M.; Pérez-Soriano, E. M.; Ortiz, T.; Villamor, E.; Begines, B.; Alcudia, A. Environmental Impact of Nanoparticles’ Application as an Emerging Technology: A Review. Materials 2020, 14, 166. DOI:10.3390/ma14010166.
  • Lighty, J. S.; Veranth, J. M.; Sarofim, A. F. Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. J. Air Waste Manag. Assoc. 2000, 50, 1565–1618. 10.1080/10473289.2000.10464197
  • Michelsen, H. A.; Colket, M. B.; Bengtsson, P.-E.; D'Anna, A.; Desgroux, P.; Haynes, B. S.; Miller, J. H.; Nathan, G. J.; Pitsch, H.; Wang, H. A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions. ACS Nano 2020, 14, 12470–12490. 10.1021/acsnano.0c06226
  • Carbone, F. Physicochemical Characterization of Combustion Generated Inorganic Nanoparticles. PhD Disertation, Universita degli Studi di Napoli Federico II, Italy, 2008.
  • Zhuang, Y.; Kim, Y. J.; Lee, T. G.; Biswas, P. Experimental and Theoretical Studies of Ultra-Fine Particle Behavior in Electrostatic Precipitators. J. Electrostat. 2000, 48, 245–260. 10.1016/S0304-3886(99)00072-8
  • Gonet, T.; Maher, B. A. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. Environ. Sci. Technol. 2019, 53, 9970–9991. 10.1021/acs.est.9b01505
  • Alam, M. S.; Zeraati-Rezaei, S.; Stark, C. P.; Liang, Z.; Xu, H.; Harrison, R. M. The Characterisation of Diesel Exhaust Particles–Composition, Size Distribution and Partitioning. Faraday Discuss 2016, 189, 69–84. 10.1039/c5fd00185d
  • Giechaskiel, B.; Manfredi, U.; Martini, G. Engine Exhaust Solid Sub-23 nm Particles: I. Literature Survey. SAE Int. J. Fuels Lubr 2014, 7, 950–964. 10.4271/2014-01-2834
  • Awad, O. I.; Ma, X.; Kamil, M.; Ali, O. M.; Zhang, Z.; Shuai, S. Particulate Emissions from Gasoline Direct Injection Engines: A Review of How Current Emission Regulations Are Being Met by Automobile Manufacturers. Sci. Total Environ. 2020, 718, 137302. DOI: 10.1016/j.scitotenv.2020.137302.
  • Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R. M. Nanoparticle Emissions from 11 Non-Vehicle Exhaust Sources–a Review. Atmos. Environ. 2013, 67, 252–277. 10.1016/j.atmosenv.2012.11.011
  • Austin, E.; Xiang, J.; Gould, T. R.; Shirai, J. H.; Yun, S.; Yost, M. G.; Larson, T. V.; Seto, E. Distinct Ultrafine Particle Profiles Associated with Aircraft and Roadway Traffic. Environ. Sci. Technol. 2021, 55, 2847–2858. 10.1021/acs.est.0c05933
  • Masiol, M.; Harrison, R. M. Aircraft Engine Exhaust Emissions and Other Airport-Related Contributions to Ambient Air Pollution: A Review. Atmos. Environ. (1994) 2014, 95, 409–455. 10.1016/j.atmosenv.2014.05.070
  • Moldanová, J.; Fridell, E.; Winnes, H.; Holmin-Fridell, S.; Boman, J.; Jedynska, A.; Tishkova, V.; Demirdjian, B.; Joulie, S.; Bladt, H.; et al. Physical and Chemical Characterisation of PM Emissions from Two Ships Operating in European Emission Control Areas. Atmos. Meas. Tech. 2013, 6, 3577–3596. 10.5194/amt-6-3577-2013
  • Popovicheva, O.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Bladt, H.; Ivleva, N. P.; Niessner, R.; Moldanová, J. Microscopic Characterization of Individual Particles from Multicomponent Ship Exhaust. J. Environ. Monit. 2012, 14, 3101–3110. 10.1039/c2em30338h
  • Saikia, B. K.; Saikia, J.; Rabha, S.; Silva, L. F.; Finkelman, R. Ambient Nanoparticles/Nanominerals and Hazardous Elements from Coal Combustion Activity: Implications on Energy Challenges and Health Hazards. Geosci. Front. 2018, 9, 863–875. 10.1016/j.gsf.2017.11.013
  • Wu, J.; Tou, F.; Guo, X.; Liu, C.; Sun, Y.; Xu, M.; Liu, M.; Yang, Y. Vast Emission of Fe-and Ti-Containing Nanoparticles from Representative Coal-Fired Power Plants in China and Environmental Implications. Sci. Total. Environ. 2022, 838, 156070. DOI: 10.1016/j.scitotenv.2022.156070.
  • Mayer, A.; Czerwinski, J.; Kasper, M.; Ulrich, A.; Mooney, J. J. Metal Oxide Particle Emissions from Diesel and Petrol Engines. SAE Technical Paper 2012-01-0841. 2012. DOI:10.4271/2012-01-0841.
  • Sigsgaard, T.; Forsberg, B.; Annesi-Maesano, I.; Blomberg, A.; Bølling, A.; Boman, C.; Bønløkke, J.; Brauer, M.; Bruce, N.; Heroux, M.-E.; et al. Health Impacts of Anthropogenic Biomass Burning in the Developed World. Eur. Respir. J. 2015, 46, 1577–1588.
  • Bergmans, B.; Cattaneo, A.; Duarte, R. M.; Gomes, J. F.; Saraga, D.; Rodenas Garcia, M.; Querol, X.; Liotta, L. F.; Safell, J.; Spinazzé, A.; et al. Particulate Matter Indoors: A Strategy to Sample and Monitor Size-Selective Fractions. Appl. Spectrosc. Rev. 2022, 57, 675–704. 10.1080/05704928.2022.2088554
  • Trojanowski, R.; Fthenakis, V. Nanoparticle Emissions from Residential Wood Combustion: A Critical Literature Review, Characterization, and Recommendations. Renew. Sustain. Energy Rev. 2019, 103, 515–528. 10.1016/j.rser.2019.01.007
  • Simoneit, B. R.; Schauer, J. J.; Nolte, C. G.; Oros, D. R.; Elias, V. O.; Fraser, M. P.; Rogge, W.; Cass, G. R. Levoglucosan, a Tracer for Cellulose in Biomass Burning and Atmospheric Particles. Atmos. Environ. 1999, 33, 173–182. 10.1016/S1352-2310(98)00145-9
  • Ozgen, S.; Becagli, S.; Bernardoni, V.; Caserini, S.; Caruso, D.; Corbella, L.; Dell’Acqua, M.; Fermo, P.; Gonzalez, R.; Lonati, G.; et al. (2017) Analysis of the Chemical Composition of Ultrafine Particles from Two Domestic Solid Biomass Fired Room Heaters under Simulated Real-World Use. Atmos. Environ. 2017, 150, 87–97. 10.1016/j.atmosenv.2016.11.048
  • Hata, M.; Chomanee, J.; Thongyen, T.; Bao, L.; Tekasakul, S.; Tekasakul, P.; Otani, Y.; Furuuchi, M. Characteristics of Nanoparticles Emitted from Burning of Biomass Fuels. J. Environ. Sci. (China) 2014, 26, 1913–1920. 10.1016/j.jes.2014.07.005
  • Prichard, H. M.; Fisher, P. C. Identification of Platinum and Palladium Particles Emitted from Vehicles and Dispersed into the Surface Environment. Environ. Sci. Technol. 2012, 46, 3149–3154. 10.1021/es203666h
  • Weckwerth, G. Verification of Traffic Emitted Aerosol Components in the Ambient Air of Cologne (Germany). Atmos. Environ. 2001, 35, 5525–5536. 10.1016/S1352-2310(01)00234-5
  • Wei, C.; Morrison, G. M. Platinum Analysis and Speciation in Urban Gullypots. Anal. Chim. Acta 1994, 284, 587–592. 10.1016/0003-2670(94)85063-1
  • Folens, K.; Van Acker, T.; Bolea-Fernandez, E.; Cornelis, G.; Vanhaecke, F.; Du Laing, G.; Rauch, S. Identification of Platinum Nanoparticles in Road Dust Leachate by Single Particle Inductively Coupled Plasma-Mass Spectrometry. Sci. Total Environ. 2018, 615, 849–856. 10.1016/j.scitotenv.2017.09.285
  • Liu, H.; Ding, F.; Liu, Y.; Wang, Z.; Shen, Y.; Zhang, L.; Liu, C. The Temporal Distribution of Platinum Group Elements (PGEs) in PM2. 5. Environ. Monit. Assess. 2022, 194, 1–11. 10.1007/s10661-021-09706-7
  • Goel, A.; Kumar, P. A Review of Fundamental Drivers Governing the Emissions, Dispersion and Exposure to Vehicle-Emitted Nanoparticles at Signalised Traffic Intersections. Atmos. Environ. 2014, 97, 316–331. 10.1016/j.atmosenv.2014.08.037
  • Alves, C.; Vicente, A.; Calvo, A.; Baumgardner, D.; Amato, F.; Querol, C.; Pio, C.; Gustafsson, M. Physical and Chemical Properties of Non-Exhaust Particles Generated from Wear between Pavements and Tyres. Atmos. Environ. 2020, 224, 117252. DOI:10.1016/j.atmosenv.2019.117252.
  • Kim, J.; Yang, S. I.; Moon, H.; Hong, J.; Hong, J.; Choi, W.; Son, H.; Lee, B.-C.; Kim, G.-B.; Kim, Y. Potential Release of Nano-Carbon Black from Tire-Wear Particles through the Weathering Effect. J. Ind. Eng. Chem. 2021, 96, 322–329. 10.1016/j.jiec.2021.01.036
  • von Uexküll, O.; Skerfving, S.; Doyle, R.; Braungart, M. Antimony in Brake Pads-a Carcinogenic Component? J. Clean. Prod. 2005, 13, 19–31. 10.1016/j.jclepro.2003.10.008
  • Fujiwara, F.; Rebagliati, R. J.; Marrero, J.; Gómez, D.; Smichowski, P. Antimony as a Traffic-Related Element in Size-Fractionated Road Dust Samples Collected in Buenos Aires. Microchem. J. 2011, 97, 62–67. 10.1016/j.microc.2010.05.006
  • Peltola, P.; Wikström, E. Tyre Stud Derived Tungsten Carbide Particles in Urban Street Dust. Boreal Environ. Res. 2006, 11, 161–168.
  • Hedberg, Y. S.; Hedberg, J. F.; Isaksson, S.; Mei, N.; Blomberg, E.; Wold, S.; Wallinder, I. O. Nanoparticles of WC-Co, WC, Co and Cu of Relevance for Traffic Wear Particles–Particle Stability and Reactivity in Synthetic Surface Water and Influence of Humic Matter. Environ. Pollut. 2017, 224, 275–288. 10.1016/j.envpol.2017.02.006
  • Furberg, A.; Arvidsson, R.; Molander, S. Environmental Life Cycle Assessment of Cemented Carbide (WC-Co) Production. J. Clean. Prod. 2019, 209, 1126–1138.
  • Nowack, B. Evaluation of Environmental Exposure Models for Engineered Nanomaterials in a Regulatory Context. NanoImpact 2017, 8, 38–47. 10.1016/j.impact.2017.06.005
  • Keller, A. A.; Lazareva, A. Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. Environ. Sci. Technol. Lett. 2014, 1, 65–70. 10.1021/ez400106t
  • Ahirwar, H.; Zhou, Y.; Mahapatra, C.; Ramakrishna, S.; Kumar, P.; Nanda, H. S. Materials for Orthopedic Bioimplants: Modulating Degradation and Surface Modification Using Integrated Nanomaterials. Coatings 2020, 10, 264. 10.3390/coatings10030264
  • Viana, M.; Fonseca, A. S.; Querol, X.; López-Lilao, A.; Carpio, P.; Salmatonidis, A.; Monfort, E. Workplace Exposure and Release of Ultrafine Particles during Atmospheric Plasma Spraying in the Ceramic Industry. Sci. Total Environ. 2017, 599, 2065–2073.
  • Fuente, G. F. Ultrafine and Nanoparticle Formation and Emission Mechanisms during Laser Processing of Ceramic Materials. J. Aerosol. Sci. 2015, 88, 48–57.
  • Zahra, Z.; Habib, Z.; Hyun, S.; Sajid, M. Nanowaste: Another Future Waste, Its Sources, Release Mechanism, and Removal Strategies in the Environment. Sustainability 2022, 14, 2041. 10.3390/su14042041
  • Koponen, I. K.; Jensen, K. A.; Schneider, T. Sanding Dust from Nanoparticle-Containing Paints: Physical Characterisation. J. Phys.: Conf. Ser. 2009, 012048, 1–9.
  • Thokchom, A. K.; Zhou, Q.; Kim, D. J.; Ha, D.; Kim, T. Characterizing Self-Assembly and Deposition Behavior of Nanoparticles in Inkjet-Printed Evaporating Droplets. Sens. Actuators B 2017, 252, 1063–1070. 10.1016/j.snb.2017.06.045
  • Silva, L. F.; Hower, J. C.; Izquierdo, M.; Querol, X. Complex Nanominerals and Ultrafine Particles Assemblages in Phosphogypsum of the Fertilizer Industry and Implications on Human Exposure. Sci. Total. Environ. 2010, 408, 5117–5122. 10.1016/j.scitotenv.2010.07.023
  • Oliveira, M. L.; Izquierdo, M.; Querol, X.; Lieberman, R. N.; Saikia, B. K.; Silva, L. F. Nanoparticles from Construction Wastes: A Problem to Health and the Environment. J. Clean. Prod. 2019, 219, 236–243. 10.1016/j.jclepro.2019.02.096
  • Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic Contamination in an Urban Area: A Case Study in Greater Paris. Environ. Chem. 2015, 12, 592–599. 10.1071/EN14167
  • Bianco, A.; Passananti, M. Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem. Sustainability 2020, 12, 7327. DOI:10.3390/su12187327.
  • La Nasa, J.; Lomonaco, T.; Manco, E.; Ceccarini, A.; Fuoco, R.; Corti, A.; Modugno, F.; Castelvetro, V.; Degano, I. Plastic Breeze: Volatile Organic Compounds (VOCs) Emitted by Degrading Macro- and Microplastics Analyzed by Selected Ion Flow-Tube Mass Spectrometry. Chemosphere 2021, 270, 128612. DOI:10.1016/j.chemosphere.2020.128612.
  • Picó, Y.; Barceló, D. Analysis of Microplastics and Nanoplastics: How Green Are the Methodologies Used? Curr. Opin. Green Sustain. Chem. 2021, 31, 100503. DOI:10.1016/j.cogsc.2021.100503.
  • Velimirovic, M.; Tirez, K.; Verstraelen, S.; Frijns, E.; Remy, S.; Koppen, G.; Rotander, A.; Bolea-Fernandez, E.; Vanhaecke, F. Mass Spectrometry as a Powerful Analytical Tool for the Characterization of Indoor Airborne Microplastics and Nanoplastics. J. Anal. At. Spectrom. 2021, 36, 695–705. 10.1039/D1JA00036E
  • Strambeanu, N.; Demetrovici, L.; Dragos, D. Natural Sources of Nanoparticles. In Nanoparticles’ Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment; Lungu, M.; Neculae, A.; Bunoiu, M.; Biris, C; Eds. Springer Nature: Cham, Switzerland, 2015; pp. 9–19
  • Ermolin, M. S.; Fedotov, P. S.; Malik, N. A.; Karandashev, V. K. Nanoparticles of Volcanic Ash as a Carrier for Toxic Elements on the Global Scale. Chemosphere 2018, 200, 16–22. 10.1016/j.chemosphere.2018.02.089
  • Shi, Z.; Shao, L.; Jones, T. P.; Lu, S. Microscopy and Mineralogy of Airborne Particles Collected during Severe Dust Storm Episodes in Beijing, China. J. Geophys. Res. 2005, 110, D01303, 1–10. DOI:10.1029/2004JD005073.
  • Taylor, D. A. Dust in the Wind. Environ. Health Perspect. 2002, 110, A80–A87. 10.1289/ehp.110-a80
  • Husar, R. B.; Tratt, D. M.; Schichtel, B. A.; Falke, S. R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N. S.; Lu, F.; et al. Asian Dust Events of April 1998. J. Geophys. Res 2001, 106, 18317–18330. 10.1029/2000JD900788
  • Anastasio, C.; Martin, S. T. Atmospheric Nanoparticles. Rev. Mineral. Geochem. 2001, 44, 293–349. 10.2138/rmg.2001.44.08
  • Gong, S. L.; Barrie, L. A.; Blanchet, J. P. Modeling Sea‐Salt Aerosols in the Atmosphere: 1. J. Geophys. Res. 1997, 102, 3805–3818. 10.1029/96JD02953
  • Berg, O. H.; Swietlicki, E.; Krejci, R. Hygroscopic Growth of Aerosol Particles in the Marine Boundary Layer over the Pacific and Southern Oceans during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 1998, 103, 16535–16545. 10.1029/97JD02851
  • Viippola, V.; Yli-Pelkonen, V.; Järvi, L.; Kulmala, M.; Setälä, H. Effects of Forests on Particle Number Concentrations in near-Road Environments across Three Geographic Regions. Environ. Pollut. 2020, 266, 115294. 10.1016/j.envpol.2020.115294
  • Joutsensaari, J.; Loivamäki, M.; Vuorinen, T.; Miettinen, P.; Nerg, A. M.; Holopainen, J. K.; Laaksonen, A. Nanoparticle Formation by Ozonolysis of Inducible Plant Volatiles. Atmos. Chem. Phys. 2005, 5, 1489–1495. 10.5194/acp-5-1489-2005
  • Fonseca, A.; Talbot, N.; Schwarz, J.; Ondracek, J.; Zdimal, V.; Kozakova, J.; Viana, M.; Karanasiou, A.; Querol, X.; Alastuey, A. Intercomparison of Four Different Cascade Impactors for Fine and Ultrafine Particle Sampling in Two European Locations. Atmos. Chem. Phys. Discuss. January 19, 2016. https://acp.copernicus.org/preprints/acp-2015-1016/ (accessed Jan 4, 2023).
  • de Souza, S. L. Q.; Martins, E. M.; Corrêa, S. M.; da Silva, J. L.; de Castro, R. R.; de Souza Assed, F. Determination of Trace Elements in the Nanometer, Ultrafine, Fine, and Coarse Particulate Matters in an Area Affected by Light Vehicular Emissions in the City of Rio De Janeiro. Environ. Monit. Assess. 2021, 193, 1–16. 10.1007/s10661-021-08891-9
  • Gelman Constantin, J.; Londonio, A.; Bajano, H.; Smichowski, P.; Gómez, D. R. Plasma-Based Technique Applied to the Determination of 21 Elements in Ten Size Fractions of Atmospheric Aerosols. Microchem. J. 2021, 160, 105736. 10.1016/j.microc.2020.105736
  • Fletcher, R. A.; Ritchie, N. W.; Anderson, I. M.; Small, J. A. Microscopy and Microanalysis of Individual Collected Particles Aerosol. In Measurement, Principles, Techniques, and Applications. Kulkarni, P.; Baron, P. A.; Willeke, K.; Eds. John Wiley & Sons: Hoboken, New Jersey, USA, 2011, pp. 179–232
  • Ferreira da Silva, B.; Pérez, S.; Gardinalli, P.; Singhal, R. K.; Mozeto, A. A.; Barceló, D. Analytical Chemistry of Metallic Nanoparticles in Natural Environments. TrAC, Trends Anal. Chem. 2011, 30, 528–540. 10.1016/j.trac.2011.01.008
  • Simonet, B. M.; Valcárcel, M. Monitoring Nanoparticles in the Environment. Anal. Bioanal. Chem. 2009, 393, 17–21. 10.1007/s00216-008-2484-z
  • Duarte, R. M.; Gomes, J. F.; Querol, X.; Cattaneo, A.; Bergmans, B.; Saraga, D.; Maggos, T.; Di Gilio, A.; Rovelli, S.; Villanueva, F. Advanced Instrumental Approaches for Chemical Characterization of Indoor Particulate Matter. Appl. Spectrosc. Rev. 2022, 57, 705–745. 10.1080/05704928.2021.2018596
  • Kawaguchi, H.; Fukasawa, N.; Mizuike, A. Investigation of Airborne Particles by Inductively Coupled Plasma Emission Spectrometry Calibrated with Monodisperse Aerosols. Spectrochim. Acta Part B 1986, 41, 1277–1286. 10.1016/0584-8547(86)80006-4
  • Flores, K.; Turley, R. S.; Valdes, C.; Ye, Y.; Cantu, J.; Hernandez-Viezcas, J. A.; Parsons, J. G.; Gardea-Torresdey, J. L. Environmental Applications and Recent Innovations in Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS). Appl. Spectrosc. Rev. 2021, 56, 1–26. 10.1080/05704928.2019.1694937
  • Montaño, M. D.; Olesik, J. W.; Barber, A. G.; Challis, K.; Ranville, J. F. Single Particle ICP-MS: Advances toward Routine Analysis of Nanomaterials. Anal. Bioanal. Chem. 2016, 408, 5053–5074. 10.1007/s00216-016-9676-8
  • Suárez-Oubiña, C.; Herbello-Hermelo, P.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Single-Particle Inductively Coupled Plasma Mass Spectrometry Using Ammonia Reaction Gas as a Reliable and Free-Interference Determination of Metallic Nanoparticles. Talanta 2022, 242, 123286. DOI:10.1016/j.talanta.2022.123286.
  • Mozhayeva, D.; Engelhard, C. A Critical Review of Single Particle Inductively Coupled Plasma Mass Spectrometry–a Step towards an Ideal Method for Nanomaterial Characterization. J. Anal. At. Spectrom. 2020, 35, 1740–1783. 10.1039/C9JA00206E
  • Williams, A.; Beauchemin, D. Integrating instead of Averaging Signal Intensity to Simplify Nanoparticle Mass Measurement by Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2020, 92, 12778–12782. 10.1021/acs.analchem.0c01415
  • Lamsal, R. P.; Jerkiewicz, G.; Beauchemin, D. Improving Accuracy in Single Particle Inductively Coupled Plasma Mass Spectrometry Based on Conventional Standard Solution Calibration. Microchem. J. 2018, 137, 485–489. 10.1016/j.microc.2017.12.015
  • Peters, R. J.; van Bemmel, G.; Herrera-Rivera, Z.; Helsper, H. P.; Marvin, H. J.; Weigel, S.; Tromp, P. C.; Oomen, A. G.; Rietveld, A. G.; Bouwmeester, H. Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods to Define Nanoparticles. J. Agric. Food Chem. 2014, 62, 6285–6293. 10.1021/jf5011885
  • Rahim, M. F.; Pal, D.; Ariya, P. A. Physicochemical Studies of Aerosols at Montreal Trudeau Airport: The Importance of Airborne Nanoparticles Containing Metal Contaminants. Environ. Pollut. 2019, 246, 734–744. 10.1016/j.envpol.2018.12.050
  • Laborda, F.; Bolea, E.; Jiménez-Lamana, J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 2014, 86, 2270–2278. 10.1021/ac402980q
  • López-Mayán, J. J.; Álvarez-Fernández, B.; Peña-Vázquez, E.; Barciela-Alonso, M. C.; Moreda-Pineiro, A.; Bermejo-Barrera, P. Ultrasonication Followed by Enzymatic Hydrolysis as a Sample Pre-Treatment for the Determination of Ag Nanoparticles in Edible Seaweed by SP-ICP-MS. Talanta 2022, 247, 123556. 10.1016/j.talanta.2022.123556
  • Aramendía, M.; García-Mesa, J. C.; Alonso, E. V.; Garde, R.; Bazo, A.; Resano, J.; Resano, M. A Novel Approach for Adapting the Standard Addition Method to Single Particle-ICP-MS for the Accurate Determination of NP Size and Number Concentration in Complex Matrs. Anal. Chim Acta 2022, 1205, 339738. DOI:10.1016/j.aca.2022.339738.
  • Inoue, M.; Murase, A.; Yamamoto, M.; Kubo, S. Analysis of Volatile Nanoparticles Emitted from Diesel Engine Using TOF-SIMS and Metal-Assisted SIMS (MetA-SIMS). Appl. Surf. Sci. 2006, 252, 7014–7017. 10.1016/j.apsusc.2006.02.169
  • Fukuhara, N.; Suzuki, K.; Takeda, K.; Nihei, Y. Characterization of Environmental Nanoparticles. Appl. Surf. Sci. 2008, 255, 1538–1540. 10.1016/j.apsusc.2008.05.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.