617
Views
2
CrossRef citations to date
0
Altmetric
Review

Advances of SERS applications in clinic samples analysis

, , , , & ORCID Icon

References

  • Guohui, T.; Yajie, C.; Qingmao, F. Development and Application of Raman Technology. Chem. Eng. J. 2008, 148, 34–36.
  • Herrero, A. M. Raman spectroscopy a Promising Technique for Quality Assessment of Meat and Fish: A Review. Food Chem. 2008, 107, 1642–1651.
  • Al-Ogaidi, I.; Gou, H.; Al-Kazaz, A. K. A.; Aguilar, Z. P.; Melconian, A. K.; Zheng, P.; Wu, N. A gold@ Silica Core–Shell Nanoparticle-Based Surface-Enhanced Raman Scattering Biosensor for Label-Free Glucose Detection. Anal. Chim. Acta 2014, 811, 76–80.
  • Han, H.; Yan, X.; Dong, R.; Ban, G.; Li, K. Analysis of Serum from Type II Diabetes Mellitus and Diabetic Complication Using Surface-Enhanced Raman Spectra (SERS). Appl. Phys. B 2009, 94, 667–672.
  • Pichardo-Molina, J.; Frausto-Reyes, C.; Barbosa-García, O.; Huerta-Franco, R.; González-Trujillo, J.; Ramírez-Alvarado, C.; Gutiérrez-Juárez, G.; Medina-Gutiérrez, C. Raman spectroscopy and Multivariate Analysis of Serum Samples from Breast Cancer Patients. Lasers Med. Sci. 2007, 22, 229–236. doi:10.1007/s10103-006-0432-8
  • Sharma, B.; Frontiera, R. R.; Henry, A.-I.; Ringe, E.; Van Duyne, R. P. SERS: Materials, Applications, and the Future. Mater. Today 2012, 15, 16–25.
  • Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166.
  • Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.
  • Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Anal. Chim. 2019, 91, 3885–3892.
  • Schlücker, S. Surface‐Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. Engl. 2014, 53, 4756–4795.
  • Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 2018, 118, 4946–4980. doi:10.1021/acs.chemrev.7b00668
  • Wang, Z.; Zong, S.; Wang, Y.; Li, N.; Li, L.; Lu, J.; Wang, Z.; Chen, B.; Cui, Y. Screening and Multiple Detection of Cancer Exosomes Using an SERS-Based Method. Nanoscale 2018, 10, 9053–9062.
  • Pang, Y.; Wang, C.; Lu, L.; Wang, C.; Sun, Z.; Xiao, R. Dual-SERS Biosensor for One-Step Detection of microRNAs in Exosome and Residual Plasma of Blood Samples for Diagnosing Pancreatic Cancer. Biosens. Bioelectron. 2019, 130, 204–213.
  • Iancu, S. D.; Cozan, R. G.; Stefancu, A.; David, M.; Moisoiu, T.; Moroz-Dubenco, C.; Bajcsi, A.; Chira, C.; Andreica, A.; Leopold, L. F.; et al. SERS liquid Biopsy in Breast Cancer. What Can We Learn from SERS on Serum and Urine? Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 273, 120992. doi:10.1016/j.saa.2022.120992
  • Li, H.; Wang, Q.; Tang, J.; Gao, N.; Yue, X.; Zhong, F.; Lv, X.; Fu, J.; Wang, T.; Ma, C. Establishment of a Reliable Scheme for Obtaining Highly Stable SERS Signal of Biological Serum. Biosens. Bioelectron. 2021, 189, 113315.
  • Rohleder, D.; Kiefer, W.; Petrich, W. Quantitative Analysis of Serum and Serum Ultrafiltrate by Means of Raman Spectroscopy. Analyst 2004, 129, 906–911. doi:10.1039/b408927h
  • Wang, J.; Lin, D.; Lin, J.; Yu, Y.; Huang, Z.; Chen, Y.; Lin, J.; Feng, S.; Li, B.; Liu, N. Label-Free Detection of Serum Proteins Using Surface-Enhanced Raman Spectroscopy for Colorectal Cancer Screening. J. Biomed. Opt. 2014, 19, 087003.
  • Zhu, S.; Li, Y.; Gao, H.; Hou, G.; Cui, X.; Chen, S.; Ding, C. Identification and Assessment of Pulmonary Cryptococcus neoformans Infection by Blood Serum Surface-Enhanced Raman Spectroscopy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 260, 119978.
  • Carlomagno, C.; Cabinio, M.; Picciolini, S.; Gualerzi, A.; Baglio, F.; Bedoni, M. SERS‐Based Biosensor for Alzheimer Disease Evaluation through the Fast Analysis of Human Serum. J. Biophotonics 2020, 13, e201960033.
  • Știufiuc, G. F.; Toma, V.; Buse, M.; Mărginean, R.; Morar-Bolba, G.; Culic, B.; Tetean, R.; Leopold, N.; Pavel, I.; Lucaciu, C. M. Solid plasmonic Substrates for breast cancer Detection by Means of SERS Analysis of Blood Plasma. Nanomaterials 2020, 10, 1212.
  • Geng, Z.-Q.; Xu, D.; Song, Y.; Wang, W.-P.; Li, Y.-P.; Han, C.-Q.; Yang, G.-H.; Qu, L.-L.; Ajayan, P. M. Sensitive label-Free Detection of Bilirubin in Blood Using Boron Nitride-Modified Nanorod Arrays as SERS Substrates. Sensors. Actua B-Chem. 2021, 334, 129634.
  • Xu, D.; Duan, L.; Jia, W.; Yang, G.; Gu, Y. Fabrication of Ag@ Fe2O3 Hybrid Materials as Ultrasensitive SERS Substrates for the Detection of Organic Dyes and Bilirubin in Human Blood. Microchem. J. 2021, 161, 105799.
  • Ryzhikova, E.; Ralbovsky, N. M.; Halámková, L.; Celmins, D.; Malone, P.; Molho, E.; Quinn, J.; ZiMMerman, E. A.; Lednev, I. K. Multivariate statistical Analysis of Surface Enhanced Raman Spectra of Human Serum for Alzheimer’s Disease Diagnosis. Appl. Sci. 2019, 9, 3256.
  • Zhu, X.; Li, J.; He, H.; Huang, M.; Zhang, X.; Wang, S. Application of Nanomaterials in the Bioanalytical Detection of Disease-Related Genes. Biosens. Bioelectron. 2015, 74, 113–133.
  • Zito, G.; Rusciano, G.; Pesce, G.; Dochshanov, A.; Sasso, A. Surface-Enhanced Raman Imaging of Cell Membrane by a Highly Homogeneous and Isotropic Silver Nanostructure. Nanoscale 2015, 7, 8593–8606. doi:10.1039/c5nr01341k
  • Chen, R.; Liu, B.; Ni, H.; Chang, N.; Luan, C.; Ge, Q.; Dong, J.; Zhao, X. Vertical flow Assays Based on Core–Shell SERS Nanotags for Multiplex Prostate Cancer Biomarker Detection. Analyst 2019, 144, 4051–4059. doi:10.1039/c9an00733d
  • Stefancu, A.; Moisoiu, V.; Couti, R.; Andras, I.; Rahota, R.; Crisan, D.; Pavel, I. E.; Socaciu, C.; Leopold, N.; Crisan, N. Combining SERS Analysis of Serum with PSA Levels for Improving the Detection of Prostate Cancer. Nanomedicine (Lond) 2018, 13, 2455–2467.
  • Xue, L.; Yan, B.; Li, Y.; Tan, Y.; Luo, X.; Wang, M. Surface-Enhanced Raman Spectroscopy of Blood Serum Based on Gold Nanoparticles for Tumor Stages Detection and Histologic Grades Classification of Oral Squamous Cell Carcinoma. Inter. J. Nanomed. 2018, 13, 4977.
  • Hong, Y.; Li, Y.; Huang, L.; He, W.; Wang, S.; Wang, C.; Zhou, G.; Chen, Y.; Zhou, X.; Huang, Y.; et al. Label‐Free Diagnosis for Colorectal Cancer through Coffee Ring‐Assisted Surface‐Enhanced Raman Spectroscopy on Blood Serum. J. Biophotonics 2020, 13, e201960176.
  • Moisoiu, V.; Stefancu, A.; Gulei, D.; Boitor, R.; Magdo, L.; Raduly, L.; Pasca, S.; Kubelac, P.; Mehterov, N.; Chiș, V. SERS-Based Differential Diagnosis between Multiple Solid Malignancies: Breast, Colorectal, Lung, Ovarian and Oral Cancer. Inter. J. Nanomed. 2019, 14, 6165.
  • Szekeres, G. P.; Kneipp, J. Different binding Sites of Serum Albumins in the Protein Corona of Gold Nanoparticles. Analyst 2018, 143, 6061–6068. doi:10.1039/c8an01321g
  • Zhang, H.; Ma, X.; Liu, Y.; Duan, N.; Wu, S.; Wang, Z.; Xu, B. Gold nanoparticles Enhanced SERS Aptasensor for the Simultaneous Detection of Salmonella Typhimurium and Staphylococcus aureus. Biosens. Bioelectron. 2015, 74, 872–877.
  • Bhamidipati, M.; Fabris, L. Multiparametric assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry. Bioconjug. Chem. 2017, 28, 449–460. doi:10.1021/acs.bioconjchem.6b00605
  • Lin, D.; Wu, Z.; Li, S.; Zhao, W.; Ma, C.; Wang, J.; Jiang, Z.; Zhong, Z.; Zheng, Y.; Yang, X. Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy. ACS Nano 2017, 11, 1478–1487.
  • Zhao, S.; Ma, W.; Xu, L.; Wu, X.; Kuang, H.; Wang, L.; Xu, C. Ultrasensitive SERS Detection of VEGF Based on a Self-Assembled Ag Ornamented–AU Pyramid Superstructure. Biosens. Bioelectron. 2015, 68, 593–597. doi:10.1016/j.bios.2015.01.056
  • Zhao, L.; Kim, T.-H.; Kim, H.-W.; Ahn, J.-C.; Kim, S. Y. Surface-Enhanced Raman Scattering (SERS)-Active Gold Nanochains for Multiplex Detection and Photodynamic Therapy of Cancer. Acta Biomater. 2015, 20, 155–164. doi:10.1016/j.actbio.2015.03.036
  • Song, C.; Jiang, X.; Yang, Y.; Zhang, J.; Larson, S.; Zhao, Y.; Wang, L. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array. ACS Appl. Mater. 2020, 12, 31242–31254.
  • Zheng, X.; Lv, G.; Du, G.; Zhai, Z.; Mo, J.; Lv, X. Rapid and Low-Cost Detection of Thyroid Dysfunction Using Raman Spectroscopy and an Improved Support Vector Machine. IEEE Photonics J. 2018, 10, 1–12.
  • Stefancu, A.; Badarinza, M.; Moisoiu, V.; Iancu, S. D.; Serban, O.; Leopold, N.; Fodor, D. SERS-Based Liquid Biopsy of Saliva and Serum from Patients with Sjögren’s Syndrome. Anal. Bioanal. Chem. 2019, 411, 5877–5883. doi:10.1007/s00216-019-01969-x
  • Bonifacio, A.; Cervo, S.; Sergo, V. Label-Free Surface-Enhanced Raman Spectroscopy of Biofluids: Fundamental Aspects and Diagnostic Applications. Anal. Bioanal. Chem. 2015, 407, 8265–8277. doi:10.1007/s00216-015-8697-z
  • Jin, H.; Lu, Q.; Song, J. S.; Zou, Z.; Ding, Y.; Gao, H.; Chen, H. X. Research on Measurement Conditions for Obtaining Significant, Stable, and Repeatable Sers Signal of Human Blood Serum. IEEE Photonics J. 2017, 9, 1–10.
  • Lane, L. A.; Qian, X.; Nie, S. SERS nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chem. Rev. 2015, 115, 10489–10529.
  • Kudelski, A. Analytical applications of Raman Spectroscopy. Talanta 2008, 76, 1–8. doi:10.1016/j.talanta.2008.02.042
  • Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20.
  • Weller, D.; Vedsted, P.; Rubin, G.; Walter, F. M.; Emery, J.; Scott, S.; Campbell, C.; Andersen, R. S.; Hamilton, W.; Olesen, F.; et al. The Aarhus Statement: Improving Design and Reporting of Studies on Early Cancer Diagnosis. Br. J. Cancer 2012, 106, 1262–1267.
  • Tirpe, H. Overview on Hypoxia-Mediated Mechanisms with a Focus on the Role of HIF Genes. Int. J. Mol. Sci. 2020, 20, 6140.
  • Premasiri, W.; Lee, J.; Ziegler, L. Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing. J. Phys. Chem. B 2012, 116, 9376–9386.
  • Baker, M. J.; Byrne, H. J.; Chalmers, J.; Gardner, P.; Goodacre, R.; HendeRSon, A.; Kazarian, S. G.; Martin, F. L.; Moger, J.; Stone, N.; Sulé-Suso, J. Clinical applications of Infrared and Raman Spectroscopy: State of Play and Future Challenges. Analyst 2018, 143, 1735–1757. doi:10.1039/c7an01871a
  • Cervo, S.; Mansutti, E.; Mistro, D.; Spizzo, G.; Colombatti, R.; Steffan, A.; Sergo, A.; Bonifacio, V. A. SERS Analysis of Serum for Detection of Early and Locally Advanced Breast Cancer. Anal. Bioanal. Chem. 2015, 407, 7503–7509.
  • Li, X.; Yang, T.; Li, S.; Jin, L.; Wang, D.; Guan, D.; Ding, J. Noninvasive liver Diseases Detection Based on Serum Surface Enhanced Raman Spectroscopy and Statistical Analysis. Opt. Express. 2015, 23, 18361–18372.
  • Wei, Y.; Zhu, Y-y.; M-L, W. Surface-Enhanced Raman Spectroscopy of Gastric Cancer Serum with Gold Nanoparticles/Silicon Nanowire Arrays. Optik 2016, 127, 7902–7907.
  • Cai, C.; Liu, Y.; Li, J.; Wang, L.; Zhang, K. Serum fingerprinting by Slippery Liquid-Infused Porous SERS for Non-Invasive Lung Cancer Detection. Analyst 2022, 147, 4426–4432.
  • Wang, Q.; Wang, S.; Cui, S.; Yang, D.; Huang, Z.; Xie, S. Multivariate analysis of Serum Surface-Enhanced Raman Spectroscopy of Liver Cancer Patients. J. Innov. Opt. Heal Sci. 2022, 15, 2250032.
  • Tahir, M. A.; Dina, N. E.; Cheng, H.; Valev, V. K.; Zhang, L. Surface-Enhanced Raman Spectroscopy for Bioanalysis and Diagnosis. Nanoscale 2021, 13, 11593–11634. doi:10.1039/d1nr00708d
  • Wang, J.; Koo, K. M.; Wee, E. J.; Wang, Y.; Trau, M. A nanoplasmonic Label-Free Surface-Enhanced Raman Scattering Strategy for Non-Invasive Cancer Genetic Subtyping in Patient Samples. Nanoscale 2017, 9, 3496–3503. doi:10.1039/c6nr09928a
  • Lin, D.; Pan, J.; Huang, H.; Chen, G.; Qiu, S.; Shi, H.; Chen, W.; Yu, Y.; Feng, S.; Chen, R. Label-Free Blood Plasma Test Based on Surface-Enhanced Raman Scattering for Tumor Stages Detection in Nasopharyngeal Cancer. Sci. Rep. 2014, 4, 1–8.
  • Lin, J.; Weng, Y.; Lin, X.; Qiu, S.; Huang, Z.; Pan, C.; Li, Y.; Kong, K. V.; Zhang, X.; Feng, S. Highly Efficient Blood Protein Analysis Using Membrane Purification Technique and Super-Hydrophobic SERS Platform for Precise Screening and Staging of Nasopharyngeal Carcinoma. Nanomaterials 2022, 12, 2724.
  • Liao, L.; Du, S.; Ding, Y.; Su, M.; Yu, T.; Duan, T.; Li, Q.; He, S.; Wang, H.; Liu, H. Highly stable Surface-Enhanced Raman Spectroscopy Assay on Abnormal Thrombin Levels in the Blood Plasma of Cancer Patients. Anal Chem. 2021, 13, 4328–4333.
  • Li, S.; Li, L.; Zeng, Q.; Zhang, Y.; Guo, Z.; Liu, Z.; Jin, M.; Su, C.; Lin, L.; Xu, J. Characterization and Noninvasive Diagnosis of Bladder Cancer with Serum Surface Enhanced Raman Spectroscopy and Genetic Algorithms. Sci. Rep. 2015, 5, 1–7.
  • Zong, M.; Zhou, L.; Guan, Q.; Lin, D.; Zhao, J.; Qi, H.; Harriman, D.; Fan, L.; Zeng, H.; Du, C. Comparison of Surface-Enhanced Raman Scattering Properties of Serum and Urine for the Detection of Chronic Kidney Disease in Patients. Appl. Spectrosc. 2021, 75, 412–421.
  • Bai, X.; Lin, J.; Wu, X.; Lin, Y.; Zhao, X.; Du, W.; Gao, J.; Hu, Z.; Xu, Q.; Li, T.; Yu, Y. Label-Free Detection of Bladder Cancer and Kidney Cancer Plasma Based on SERS and Multivariate Statistical Algorithm. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2022, 279, 121336. doi:10.1016/j.saa.2022.121336
  • Ferrari, C.; Nacmias, B.; Sorbi, S. The diagnosis of Dementias: A Practical Tool Not to Miss Rare Causes. Neurol. Sci. 2018, 39, 615–627.
  • Kim, H.; Lee, J. U.; Song, S.; Kim, S.; Sim, S. J. A shape-Code Nanoplasmonic Biosensor for Multiplex Detection of Alzheimer’s Disease Biomarkers. Biosens. Bioelectron. 2018, 101, 96–102.
  • El-Said, W. A.; Kim, T.-H.; Yea, C.-H.; Kim, H.; Choi, J.-W. Fabrication of Gold Nanoparticle Modified ITO Substrate to Detect β-Amyloid Using Surface-Enhanced Raman Scattering. J. Nanosci. Nanotechnol. 2011, 11, 768–772.
  • Demeritte, T.; Viraka Nellore, B. P.; Kanchanapally, R.; Sinha, S. S.; Pramanik, A.; Chavva, S. R.; Ray, P. C. Hybrid graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer’s Disease Biomarkers. ACS Appl Mater Interfaces 2015, 7, 13693–13700.
  • Yang, S. J.; Lee, J. U.; Jeon, M. J.; Sim, S. J. Highly sensitive Surface-Enhanced Raman Scattering-Based Immunosensor Incorporating Half Antibody-Fragment for Quantitative Detection of Alzheimer’s Disease Biomarker in Blood. Anal. Chim. Acta. 2022, 1195, 339445. doi:10.1016/j.aca.2022.339445
  • Zhan, Y.; Fei, R.; Lu, Y.; Wan, Y.; Wu, X.; Dong, J.; Meng, D.; Ge, Q.; Zhao, X. Ultrasensitive detection of Multiple Alzheimer’s Disease Biomarkers by SERS-LFA. Analyst 2022, 147, 4124–4131.
  • Das, A.; Kim, K.; Park, S.-G.; Choi, N.; Choo, J. SERS-Based Serodiagnosis of Acute Febrile Diseases Using Plasmonic Nanopopcorn Microarray Platforms. Biosens. Bioelectron. 2021, 192, 113525. doi:10.1016/j.bios.2021.113525
  • Song, Y.; Sun, J.; Li, C.; Lin, L.; Gao, F.; Yang, M.; Sun, B.; Wang, Y. Long-Term Monitoring of Blood Biomarkers Related to Intrauterine Growth Restriction Using AgNPs SERS Tags-Based Lateral Flow Assay. Talanta 2022, 241, 123128.
  • Muhammad, P.; Hanif, S.; Yan, J.; Rehman, F. U.; Wang, J.; Khan, M.; Chung, R.; Lee, A.; Zheng, M.; Wang, Y. SERS-Based Nanostrategy for Rapid Anemia Diagnosis. Nanoscale 2020, 12, 1948–1957.
  • Nasir, S.; Majeed, M. I.; Nawaz, H.; Rashid, N.; Ali, S.; Farooq, S.; Kashif, M.; Rafiq, S.; Bano, S.; Ashraf, M. N. Surface enhanced Raman Spectroscopy of RNA Samples Extracted from Blood of Hepatitis C Patients for Quantification of Viral Loads. Photodiagn. Photodyn. Ther. 2021, 33, 102152.
  • Bratchenko, L. A.; Al-Sammarraie, S. Z.; Tupikova, E. N.; Konovalova, D. Y.; Lebedev, P. A.; Zakharov, V. P.; Bratchenko, I. A. Analyzing the Serum of Hemodialysis patients with end-Stage Chronic Kidney Disease by Means of the Combination of SERS and Machine Learning. Biomed. Opt. Express. 2022, 13, 4926–4938. doi:10.1364/BOE.455549
  • Wilson, E. B. The Cell in Development and Inheritance. Macmillan: Columbia University, 1900.
  • Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A. C.; Wilson, M. R.; Knox, C.; Bjorndahl, T. C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The Human Urine Metabolome. PLoS One 2013, 8, e73076. doi:10.1371/journal.pone.0073076
  • Chamuah, N.; Saikia, A.; Joseph, A. M.; Nath, P. Blu-Ray DVD as SERS Substrate for Reliable Detection of Albumin, Creatinine and Urea in Urine. Sens. Actuat. B- Chem. 2019, 285, 108–115.
  • Markina, N. E.; Goryacheva, I. Y.; Markin, A. V. Sample pretreatment and SERS-Based Detection of Ceftriaxone in Urine. Anal. Bioanal. Chem. 2018, 410, 2221–2227. doi:10.1007/s00216-018-0888-y
  • Markina, N. E.; Zakharevich, A. M.; Markin, A. V. Determination of Methotrexate in Spiked Human Urine Using SERS-Active Sorbent. Anal. Bioanal. Chem. 2020, 412, 7757–7766. doi:10.1007/s00216-020-02932-x
  • Sun, D.; Liu, X.; Xu, S.; Tian, Y.; Xu, W.; Tao, Y. Quantitative Determination of Urine Glucose: Combination of Laminar Flow in Microfluidic Chip with SERS Probe Technique. Chem. Res. Chinese Univ. 2018, 34, 899–904.
  • Markina, N. E.; Ustinov, S. N.; Zakharevich, A. M.; Markin, A. V. Copper nanoparticles for SERS-Based Determination of Some Cephalosporin Antibiotics in Spiked Human Urine. Anal. Chim. Acta 2020, 1138, 9–17. doi:10.1016/j.aca.2020.09.016
  • Hidi, I. J.; Jahn, M.; Pletz, M. W.; Weber, K.; Cialla-May, D.; Popp, J. Toward levofloxacin Monitoring in Human Urine Samples by Employing the LoC-SERS Technique. J. Phys. Chem. C 2016, 120, 20613–20623.
  • Wang, T.-L.; Chiang, H. K.; Lu, H.-H.; Peng, F.-Y. Semi-Quantitative Surface Enhanced Raman Scattering Spectroscopic Creatinine Measurement in Human Urine Samples. Opt. Quantum Electron. 2005, 37, 1415–1422.
  • Premasiri, W. R.; Clarke, R. H.; Womble, M. E. Urine analysis by Laser Raman Spectroscopy. Lasers Surg. Med. 2001, 28, 330–334. doi:10.1002/lsm.1058
  • Huang, S.; Wang, L.; Chen, W.; Feng, S.; Lin, J.; Huang, Z.; Chen, G.; Li, B.; Chen, R. Potential of Non-Invasive Esophagus Cancer Detection Based on Urine Surface-Enhanced Raman Spectroscopy. Aser Phys Lett. 2014, 11, 115604.
  • Fürsch, J.; Kammer, K.-M.; Kreft, S. G.; Beck, M.; Stengel, F. Proteome-Wide Structural Probing of Low-Abundant Protein Interactions by Cross-Linking Mass Spectrometry. Anal. Chem. 2020, 92, 4016–4022. doi:10.1021/acs.analchem.9b05559
  • Leordean, C.; Canpean, V.; Astilean, S. Surface-Enhanced Raman Scattering (SERS) Analysis of Urea Trace in Urine, Fingerprint, and Tear Samples. Spectrosc. Lett. 2012, 45, 550–555.
  • Choi, S. Y.; Jeong, H.; Hong, B. H.; Rotermund, F.; Yeom, D.-I. All-Fiber Dissipative Soliton Laser with 10.2 nJ Pulse Energy Using an Evanescent Field Interaction with Graphene Saturable Absorber. Laser Phys. Lett. 2013, 11, 015101.
  • Zhang, H.-Z.; Jin, G.-F.; Shen, H.-B. Epidemiologic differences in Esophageal Cancer between Asian and Western Populations. Chin. J. Cancer. 2012, 31, 281–286. doi:10.5732/cjc.011.10390
  • Yang, T.; Guo, X.; Wu, Y.; Wang, H.; Fu, S.; Wen, Y.; Yang, H. Facile and Label-Free Detection of Lung Cancer Biomarker in Urine by Magnetically Assisted Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2014, 6, 20985–20993.
  • Xiang, Y.; Yang, H.; Guo, X.; Wu, Y.; Ying, Y.; Wen, Y.; Yang, H. Surface enhanced Raman Detection of the Colon Cancer Biomarker Cytidine by Using Magnetized Nanoparticles of the Type Fe3O4/Au/Ag. Microchim. Acta 2018, 185, 1–7.
  • Zou, Y.; Huang, M.; Wang, K.; Song, B.; Wang, Y.; Chen, J.; Liu, X.; Li, X.; Lin, L.; Huang, G. Urine surface-Enhanced Raman Spectroscopy for Non-Invasive Diabetic Detection Based on a Portable Raman Spectrometer. Laser Phys. Lett. 2016, 13, 065604.
  • Yang, H.; Zhao, C.; Li, R.; Shen, C.; Cai, X.; Sun, L.; Luo, C.; Yin, Y. Noninvasive and Prospective Diagnosis of Coronary Heart Disease with Urine Using Surface-Enhanced Raman Spectroscopy. Analyst 2018, 143, 2235–2242. doi:10.1039/c7an02022h
  • Alula, M. T.; Yang, J. Photochemical decoration of Magnetic Composites with Silver Nanostructures for Determination of Creatinine in Urine by Surface-Enhanced Raman Spectroscopy. Talanta 2014, 130, 55–62. doi:10.1016/j.talanta.2014.06.047
  • Goodall, B. L.; Robinson, A. M.; Brosseau, C. L. Electrochemical-Surface Enhanced Raman Spectroscopy (E-SERS) of Uric Acid: A Potential Rapid Diagnostic Method for Early Preeclampsia Detection. Phys. Chem. Chem. Phys. 2013, 15, 1382–1388.
  • Kemp, K.; Griffiths, J.; Campbell, S.; Lovell, K. An exploration of the Follow-Up Up Needs of Patients with Inflammatory Bowel Disease. J. Crohn’s Colitis 2013, 7, e386–e395.
  • Wang, H.; Malvadkar, N.; Koytek, S.; Bylander, J.; Reeves, W. B.; Demirel, M. C. Quantitative analysis of Creatinine in Urine by Metalized Nanostructured Parylene. J. Biomed. Opt. 2010, 15, 027004. doi:10.1117/1.3369002
  • Buhimschi, C. S.; Norwitz, E. R.; Funai, E.; Richman, S.; Guller, S.; Lockwood, C. J.; Buhimschi, I. A. Urinary angiogenic Factors Cluster Hypertensive Disorders and Identify Women with Severe Preeclampsia. Am. J. Obstet. Gynecol. 2005, 192, 734–741. doi:10.1016/j.ajog.2004.12.052
  • Carty, D. M.; Delles, C.; Dominiczak, A. F. Novel biomarkers for Predicting Preeclampsia. Trends Cardiovasc. Med. 2008, 18, 186–194. doi:10.1016/j.tcm.2008.07.002
  • Zhao, L.; Blackburn, J.; Brosseau, C. L. Quantitative detection of Uric Acid by Electrochemical-Surface Enhanced Raman Spectroscopy Using a Multilayered Au/Ag Substrate. Ana. Chem. 2015, 87, 441–447.
  • Fraile, J.; Puig, J.; Torres, R. J.; de Miguel, E.; Martínez, P.; Vázquez, J. Uric acid Metabolism in Patients with Primary Gout and the Metabolic Syndrome. Nucleosides Nucleotides Nucleic Acids 2010, 29, 330–334.
  • Culleton, B. F.; Larson, M. G.; Kannel, W. B.; Levy, D. Serum uric Acid and Risk for Cardiovascular Disease and Death: The Framingham Heart Study. Ann. Intern. Med. 1999, 131, 7–13. doi:10.7326/0003-4819-131-1-199907060-00003
  • Kodati, V. R.; Tu, A. T.; Turumin, J. L. Raman spectroscopic Identification of Uric-Acid-Type Kidney Stone. Appl. Spectrosc. 1990, 44, 1134–1136.
  • Hayden, M. R.; Tyagi, S. C. Uric acid: A New Look at an Old Risk Marker for Cardiovascular Disease, Metabolic Syndrome, and Type 2 Diabetes Mellitus: The Urate Redox Shuttle. Nutr. Metabol. 2004, 1, 1–15.
  • Inscore, F.; Shende, C.; Sengupta, A.; Huang, H.; Farquharson, S. Detection of Drugs of Abuse in Saliva by Surface-Enhanced Raman Spectroscopy (SERS). Appl. Spectrosc. 2011, 65, 1004–1008.
  • Fălămaș, A.; Rotaru, H.; Hedeșiu, M. Surface-Enhanced Raman Spectroscopy (SERS) Investigations of Saliva for Oral Cancer Diagnosis. Lasers Med. Sci. 2020, 35, 1393–1401.
  • Mohammadi, M.; Antoine, D.; Vitt, M.; Dickie, J. M.; Jyoti, S. S.; Wall, J. G.; Johnson, P. A.; Wawrousek, K. E. A fast, Ultrasensitive SERS Immunoassay to Detect SARS-CoV-2 in Saliva. Ana. Chim. A 2022, 1229, 340290.
  • Žukovskaja, O.; Jahn, I. J.; Weber, K.; Cialla-May, D.; Popp, J. Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique. Sensors 2017, 17, 1704.
  • Qiu, S.; Xu, Y.; Huang, L.; Zheng, W.; Huang, C.; Huang, S.; Lin, J.; Lin, D.; Feng, S.; Chen, R.; Pan, J. Non-Invasive Detection of Nasopharyngeal Carcinoma Using Saliva Surface-Enhanced Raman Spectroscopy. Oncol. Lett. 2016, 11, 884–890.
  • Zhang, M.; Li, X.; Pan, J.; Zhang, Y.; Zhang, L.; Wang, C.; Yan, X.; Liu, X.; Lu, G. Ultrasensitive detection of SARS-CoV-2 Spike Protein in Untreated Saliva Using SERS-Based Biosensor. Biosens. Bioelectron. 2021, 190, 113421.
  • Buchan, E.; Hardy, M.; PdC, G.; Kelleher, L.; Chu, H. O. M.; Oppenheimer, P. G. Emerging Raman Spectroscopy and Saliva-Based Diagnostics: From Challenges to Applications. Appl. Spectrosc. Rev. 2022. doi:10.1080/05704928.2022.2130351
  • Yang, H.; Xiang, Y.; Guo, X.; Wu, Y.; Wen, Y.; Yang, H. Diazo-Reaction-Based SERS Substrates for Detection of Nitrite in Saliva. Sens. Actuators B-Chem. 2018, 271, 118–121.
  • Zamora-Mendoza, B.; Espinosa-Tanguma, R.; Ramírez-Elías, M.; Cabrera-Alonso, R.; MonteRo-Moran, G.; Portales-Pérez, D.; Rosales-Romo, J.; Gonzalez, J.; Gonzalez, C. Surface-Enhanced Raman Spectroscopy: A Non Invasive Alternative Procedure for Early Detection in Childhood Asthma Biomarkers in Saliva. Photodiagn. Photodyn. Ther. 2019, 27, 85–91.
  • Yuen, C.; Zheng, W.; Huang, Z. Improving surface-Enhanced Raman Scattering Effect Using Gold-Coated Hierarchical Polystyrene Bead Substrates Modified with Postgrowth Microwave Treatment. J. Biomed. Opt. 2008, 13, 064040. doi:10.1117/1.3050447
  • Yuen, C.; Zheng, W.; Huang, Z. Optimization of Extinction Efficiency of Gold‐Coated Polystyrene Bead Substrates Improves Surface‐Enhanced Raman Scattering Effects by Post‐Growth Microwave Heating Treatment. J. Raman Spectrosc. 2010, 41, 374–380.
  • Li, X.; Yang, T.; Lin, J. Spectral analysis of Human Saliva for Detection of Lung Cancer Using Surface-Enhanced Raman Spectroscopy. J. Biomed. Opt. 2012, 17, 037003.
  • Kah, J. C. Y.; Kho, K. W.; Lee, C. G. L.; Richard, C. J.; Shen, Z. X.; Soo, K. C.; Olivo, M. C. Early diagnosis of Oral Cancer Based on the Surface Plasmon Resonance of Gold Nanoparticles. Int. J. Nanomed. 2007, 2, 785.
  • Liu, J.; Duan, Y. Saliva: A Potential Media for Disease Diagnostics and Monitoring. Oral Oncol. 2012, 48, 569–577. doi:10.1016/j.oraloncology.2012.01.021
  • Bonne, N. J.; Wong, D. T. Salivary biomarker Development Using Genomic, Proteomic and Metabolomic Approaches. Genome Med. 2012, 4, 1–12.
  • Tang, L.-L.; Chen, W.-Q.; Xue, W.-Q.; He, Y.-Q.; Zheng, R.-S.; Zeng, Y.-X.; Jia, W.-H. Global trends in Incidence and Mortality of Nasopharyngeal Carcinoma. Cancer Lett. 2016, 374, 22–30. doi:10.1016/j.canlet.2016.01.040
  • Lin, X.; Lin, D.; Ge, X.; Qiu, S.; Feng, S.; Chen, R. Noninvasive detection of Nasopharyngeal Carcinoma Based on Saliva Proteins Using Surface-Enhanced Raman Spectroscopy. J. Biomed. Opt. 2017, 22, 1–6.
  • Ma, L.; Zhang, Z.; Li, X. Non-Invasive Disease Diagnosis Using Surface Enhanced Raman Spectroscopy of Urine and Saliva.Appl. Spectrosc. Rev. 2020, 55, 197–219.
  • Connolly, J. M.; Davies, K.; Kazakeviciute, A.; Wheatley, A. M.; Dockery, P.; Keogh, I.; Olivo, M. Non-Invasive and Label-Free Detection of Oral Squamous Cell Carcinoma Using Saliva Surface-Enhanced Raman Spectroscopy and Multivariate Analysis. Nanomedicine 2016, 12, 1593–1601. doi:10.1016/j.nano.2016.02.021
  • Feng, S.; Huang, S.; Lin, D.; Chen, G.; Xu, Y.; Li, Y.; Huang, Z.; Pan, J.; Chen, R.; Zeng, H. Surface-Enhanced Raman Spectroscopy of Saliva Proteins for the Noninvasive Differentiation of Benign and Malignant Breast Tumors. Int. J. Nanomed. 2015, 10, 537–547.
  • Li, X.-Z.; Yang, T.-Y.; Ding, J.-H. Surface enhanced Raman Spectroscopy (SERS) of Saliva for the Diagnosis of Lung Cancer. Spectrosc. Spectral Anal. 2012, 32, 391–393.
  • Bergholt, M. S.; Zheng, W.; Lin, K.; Ho, K. Y.; Teh, M.; Yeoh, K. G.; So, J. B. Y.; Huang, Z. Raman endoscopy for in Vivo Differentiation between Benign and Malignant Ulcers in the Stomach. Analyst 2010, 135, 3162–3168. doi:10.1039/c0an00336k
  • Feng, F.; Tian, Y.; Xu, G.; Liu, Z.; Liu, S.; Zheng, G.; Guo, M.; Lian, X.; Fan, D.; Zhang, H. Diagnostic and Prognostic Value of CEA, CA19–9, AFP and CA125 for Early Gastric Cancer. BMC Cancer 2017, 17, 1–6.
  • Li, X.; Wang, X.; Guo, X. Analysis on Raman Spectrum Data of Serum from Stomach Cancer and Atrophic Gastritisn. Lasers Med. Sci. 2010, 19, 521–524.
  • Kawabata, T.; Kikuchi, H.; Okazaki, S.; Yamamoto, M.; Hiramatsu, Y.; Yang, J.; Baba, M.; Ohta, M.; Kamiya, K.; Tanaka, T.; Konno, H. Near-Infrared Multichannel Raman Spectroscopy with a 1064 nm Excitation Wavelength for Ex Vivo Diagnosis of Gastric Cancer. J. Surg. Res. 2011, 169, e137–e143.
  • Medipally, D. K.; Maguire, A.; Bryant, J.; Armstrong, J.; Dunne, M.; Finn, M.; Lyng, F. M.; Meade, A. D. Development of a High Throughput (HT) Raman Spectroscopy Method for Rapid Screening of Liquid Blood Plasma from Prostate Cancer Patients. Analyst 2017, 142, 1216–1226.
  • Verdin, A.; Malherbe, C.; Müller, W. H.; Bertrand, V.; Eppe, G. Multiplex micro-SERS Imaging of Cancer-Related Markers in Cells and Tissues Using Poly (Allylamine)-Coated Au@ Ag Nanoprobes. Anal. Bioanal. Chem. 2020, 412, 7739–7755.
  • Liang, O.; Wang, P.; Xia, M.; Augello, C.; Yang, F.; Niu, G.; Liu, H.; Xie, Y.-H. Label-Free Distinction between p53+/+ and p53-/-Colon Cancer Cells Using a Graphene Based SERS Platform. Biosens. Bioelectron. 2018, 118, 108–114. doi:10.1016/j.bios.2018.07.038
  • Ceja-Fdez, A.; Carriles, R.; González-Yebra, A. L.; Vivero-Escoto, J.; de la Rosa, E.; López-Luke, T. Imaging and SERS Study of the Au Nanoparticles Interaction with HPV and Carcinogenic Cervical Tissues. Molecules 2021, 26, 3758.
  • Velicka, M.; Pucetaite, M.; Urboniene, V.; Ceponkus, J.; Jankevicius, F.; Sablinskas, V. Detection of Cancerous Kidney Tissue by Means of SERS Spectroscopy of Extracellular Fluid. J. Raman Spectrosc. 2017, 48, 1744–1754.
  • Zhang, K.; Hao, C.; Huo, Y.; Man, B.; Zhang, C.; Yang, C.; Liu, M.; Chen, C. Label-Free Diagnosis of Lung Cancer with Tissue-Slice Surface-Enhanced Raman Spectroscopy and Statistical Analysis. Lasers Med. Sci. 2019, 34, 1849–1855.
  • Mert, S.; Sancak, S.; Aydın, H.; Fersahoğlu, A. T.; Somay, A.; Özkan, F.; Çulha, M. Development of a SERS Based Cancer Diagnosis Approach Employing Cryosectioned Thyroid Tissue Samples on PDMS. Nanomedicine 2022, 44, 102577. doi:10.1016/j.nano.2022.102577
  • Shen, L.; Du, Y.; Wei, N.; Li, Q.; Li, S.; Sun, T.; Xu, S.; Wang, H.; Man, X.; Han, B. SERS studies on Normal Epithelial and Cancer Cells Derived from Clinical Breast Cancer Specimens. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 237, 118364.
  • Noonan, J.; Asiala, S. M.; Grassia, G.; MacRitchie, N.; Gracie, K.; Carson, J.; Moores, M.; Girolami, M.; Bradshaw, A. C.; Guzik, T. J.; et al. In vivo Multiplex Molecular Imaging of Vascular Inflammation Using Surface-Enhanced Raman Spectroscopy. Theranostics 2018, 8, 6195–6209. doi:10.7150/thno.28665
  • Harmsen, S.; Huang, R.; Wall, M. A.; Karabeber, H.; Samii, J. M.; Spaliviero, M.; White, J. R.; Monette, S.; O’Connor, R.; Pitter, K. L. Surface-Enhanced Resonance Raman Scattering Nanostars for High-Precision Cancer Imaging. Sci. Tranal. Med. 2015, 7, 271ra277.
  • Qiu, Y.; Zhang, Y.; Li, M.; Chen, G.; Fan, C.; Cui, K.; Wan, J.-B.; Han, A.; Ye, J.; Xiao, Z. Intraoperative detection and Eradication of Residual Microtumors with Gap-Enhanced Raman Tags. ACS Nano 2018, 12, 7974–7985.
  • Zhang, Y.; Gu, Y.; He, J.; Thackray, B. D.; Ye, J. Ultrabright Gap-Enhanced Raman Tags for High-Speed Bioimaging. Nat. Commun. 2019, 10, 1–12.
  • Qi, J.; Li, J.; Liu, R.; Li, Q.; Zhang, H.; Lam, J. W.; Kwok, R. T.; Liu, D.; Ding, D.; Tang, B. Z. Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. Chemistry 2019, 5, 2657–2677.
  • Wei, M.; Shi, L.; Shen, Y.; Zhao, Z.; Guzman, A.; Kaufman, L. J.; Wei, L.; Min, W. Volumetric chemical Imaging by Clearing-Enhanced Stimulated Raman Scattering Microscopy. Proc. Natl. Acad. Sci. USA 2019, 116, 6608–6617. doi:10.1073/pnas.1813044116
  • Zeng, Y.; Ren, J.-Q.; Shen, A.-G.; Hu, J.-M. Splicing Nanoparticles-Based “Click” SERS Could Aid Multiplex Liquid Biopsy and Accurate Cellular Imaging. J. Am. Chem. Soc. 2018, 140, 10649–10652. doi:10.1021/jacs.8b04892
  • Wei, L.; Chen, Z.; Shi, L.; Long, R.; Anzalone, A. V.; Zhang, L.; Hu, F.; Yuste, R.; Cornish, V. W.; Min, W. Super-Multiplex Vibrational Imaging. Nature 2017, 544, 465–470.
  • Yan, S.; Cui, S.; Ke, K.; Zhao, B.; Liu, X.; Yue, S.; Wang, P. Hyperspectral stimulated Raman Scattering Microscopy Unravels Aberrant Accumulation of Saturated Fat in Human Liver Cancer. Ana. Chem. 2018, 90, 6362–6366.
  • Wang, Y.; Zong, S.; Li, N.; Wang, Z.; Chen, B.; Cui, Y. SERS-Based Dynamic Monitoring of Minimal Residual Disease Markers with High Sensitivity for Clinical Applications. Nanoscale 2019, 11, 2460–2467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.