494
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent advances in graphite furnace atomic absorption spectrometry: a review of fundamentals and applications

References

  • Butcher, D. J. Innovations and Developments in Graphite Furnace Atomic Absorption Spectrometry (GFAAS). Appl. Spectrosc. Rev. 2023, 58, 65–82. DOI: 10.1080/05704928.2021.1919896. 10.1080/05704928.2021.1919896
  • Belz, B.; Becker-Ross, H.; Florek, S.; Heitmann, U. High-Resolution Continuum Source GFAAS; Wiley-VCH: Weinheim, 2005.
  • Pasias, IN.; Rousis, N. I.; Psoma, A. K.; Thomaidis, N. S. Simultaneous or Sequential Multi-Element Graphite Furnace Atomic Absorption Spectrometry Techniques: Advances within the Last 20 Years. At. Spectrosc. 2021, 42, 310–327.
  • Rodriguez-Saldana, V.; Basu, N. The Performance of Dried Blood Spots for the Assessment of Lead Exposure: A Narrative Review with a Systematic Search. Microchem. J. 2022, 172, 106930. DOI: 10.1016/j.microc.2021.106930. 10.1016/j.microc.2021.106930
  • Halko, R.; Tucek, J.; Chovancova, K.; Andruch, V. Some Green Approaches in Atomic Spectrometry. The Last 10 Years. Appl. Spectrosc. Rev. in press.
  • Acar, O. The Use of Chemical Modifiers in Electrothermal Atomic Absorption Spectrometry. Appl. Spectrosc. Rev. in press.
  • Shah, N. S.; Soylak, M. Advanced Methodologies for Trace Elements in Edible Oil Samples: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1572–1582. DOI: 10.1080/10408347.2021.1895710.
  • Arellano-Sánchez, M. G.; Devouge-Boyer, C.; Hubert-Roux, M.; Afonso, C.; Mignot, M. Chromium Determination in Leather and Other Matrices: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1537–1556. DOI: 10.1080/10408347.2021.1890545.
  • Planeta, K.; Kubala-Kukus, A.; Drozdz, A.; Matusiak, K.; Setkowicz, Z.; Chwiej, J. The Assessment of the Usability of Selected Instrumental Techniques for the Elemental Analysis of Biomedical Samples. Sci. Rep. 2021, 11, 3704. DOI: 10.1038/s41598-021-82179-3.
  • Chukwuemeka, I. S.; Njoku, V. O.; Arinze, C.; Chizoruo, I. F.; Blessing, E. N. A Review: Effects of Air, Water and Land Dumpsite on Human Health and Analytical Methods for Determination of Pollutants. AMEC J. 2021, 4, 80–106. DOI: 10.24200/amecj.v4.i03.147. 10.24200/amecj.v4.i03.147
  • Hussein, A. R.; Gburi, M. S.; Muslim, N. M.; Azooz, E. A. A Greenness Evaluation and Environmental Aspects of Solidified Floating Organic Drop Microextraction for Metals: A Review. Trends Environ. Anal. Chem. 2023, 37, e00194. DOI: 10.1016/j.teac.2022.e00194. 10.1016/j.teac.2022.e00194
  • Song, X.; Huang, X. Recent Developments in Microextraction Techniques for Detection and Speciation of Heavy Metals. Adv. Sample Preparat. 2022, 2, 100019. DOI: 10.1016/j.sampre.2022.100019. 10.1016/j.sampre.2022.100019
  • Andruch, V.; Halko, R.; Tucek, J.; Płotka-Wasylka, J. Application of Deep Eutectic Solvents in Atomic Absorption Spectrometry. Trend. Anal. Chem. 2022, 147, 116510. DOI: 10.1016/j.trac.2021.116510. 10.1016/j.trac.2021.116510
  • Yang, X.; Yan, C.; Sun, Y.; Liu, Y.; Yang, S.; Deng, Q.; Tan, Z.; Wen, X. Application of Deep Eutectic Solvents in the Pre-Processing of Atomic Spectrometry Analysis. Trend. Anal. Chem. 2022, 149, 116555. DOI: 10.1016/j.trac.2022.116555. 10.1016/j.trac.2022.116555
  • Mandal, S.; Lahiri, S. A Review on Extraction, Preconcentration and Speciation of Metal Ions by Sustainable Cloud Point Extraction. Microchem. J. 2022, 175, 107150. DOI: 10.1016/j.microc.2021.107150. 10.1016/j.microc.2021.107150
  • Amico, D.; Tassone, A.; Pirrone, N.; Sprovieri, F.; Naccarato, A. Recent Applications and Novel Strategies for Mercury Determination in Environmental Samples Using Microextraction-Based Approaches: A Review. J. Hazard. Mater. 2022, 433, 128823. DOI: 10.1016/j.jhazmat.2022.128823.
  • Morales-Benítez, I.; Montoro-Leal, P.; García-Mesa, J. C.; Verdeja-Galan, J.; Vereda Alonso, E. I. Magnetic Graphene Oxide as a Valuable Material for the Speciation of Trace Elements. Trend. Anal. Chem. 2022, 157, 116777. DOI: 10.1016/j.trac.2022.116777. 10.1016/j.trac.2022.116777
  • Rosado, T.; Barroso, M.; Vieira, D. N.; Gallardo, E. Trends in Microextraction Approaches for Handling Human Hair extracts - A Review. Anal. Chim. Acta 2021, 1185, 338792. DOI: 10.1016/j.aca.2021.338792.
  • Gumus, Z. P.; Soylak, M. Metal Organic Frameworks as Nanomaterials for Analysis of Toxic Metals in Food and Environmental Applications. Trend. Anal. Chem. 2021, 143, 116417. DOI: 10.1016/j.trac.2021.116417. 10.1016/j.trac.2021.116417
  • Chen, X.; Hu, K.; Zhou, J.; Yuan, X.; Zhang, M.; Huang, K.; Pan, Y. Critical Evaluation of the Application of Filterassisted Separation in Analytical Atomic Spectrometry. Appl. Spectrosc. Rev. in press.
  • Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of Phosphorus Compounds in Plant Tissues: From Colourimetry to Advanced Instrumental Analytical Chemistry. Plant Methods. 2022, 18, 22. DOI: 10.1186/s13007-022-00854-6.
  • Yang, J.; Sun, L.; Shen, X.; Dai, M.; Ali, I.; Peng, C.; Naz, I. An Overview of the Methods for Analyzing the Chemical Forms of Metals in Plants. Int. J. Phytoremediation. 2022, 24, 1418–1430. DOI: 10.1080/15226514.2022.2033687.
  • Ruiz, F.; Benzo, Z.; Garaboto, A.; Salas, J.; Brito, J. L. XPS Characterization of Vanadium Carbide Species Formed during Atomization Process in Electrothermal Atomic Absorption Spectroscopy. J. Anal. At. Spectrom. 2022, 37, 668–676. DOI: 10.1039/D1JA00323B. 10.1039/D1JA00323B
  • Liu, H.; Cui, H.; Wang, Y.; Jiang, Z.; Lei, L.; Wei, S. Accurate Determination of Trace Cadmium in Soil Samples by Graphite Furnace Atomic Absorption Spectrometry Using Metal-Organic Frameworks as Matrix Modifiers. Appl. Spectrosc. 2023, 77, 131–139. DOI: 10.1177/00037028221141709. 10.1177/00037028221141709
  • Nakadi, F. V.; Garcia-Poyo, M. C.; Pecheyran, C.; Resano, M. Time-Absorbance Profile Ratio Background Correction: Introducing TAP to Correct for Spectral Overlap in High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2021, 36, 2370–2382. DOI: 10.1039/D1JA00233C. 10.1039/D1JA00233C
  • Wei, X.; Yang, M.; Jiang, Z.; Liu, J.; Zhang, X.; Chen, M.; Wang, J. A Modular Single-Cell Pipette Microfluidic Chip Coupling to ETAAS and ICP-MS for Single Cell Analysis. Chin. Chem. Lett. 2022, 33, 1373–1376. DOI: 10.1016/j.cclet.2021.08.024. 10.1016/j.cclet.2021.08.024
  • Chen, S.; Liu, Y.; Wang, C.; Yan, J.; Lu, D. Speciation of as(III) and as(V) in Food by Magnetic Dispersive Microsolid Phase Extraction with Dispersive Liquid–Liquid Microextraction with Graphite Furnace Atomic Absorption Spectrometry (GFAAS) Detection. Anal. Lett. 2022, 55, 269–280. DOI: 10.1080/00032719.2021.1925290. 10.1080/00032719.2021.1925290
  • Ashouri, V.; Adib, K.; Fariman, G. A.; Ganjali, M. R.; Rahimi-Nasrabadi, M. Determination of Arsenic Species Using Functionalized Ionic Liquid by in Situ Dispersive Liquid-Liquid Microextraction Followed by Atomic Absorption Spectrometry. Food Chem. 2021, 349, 129115. DOI: 10.1016/j.foodchem.2021.129115.
  • Yang, Y.; He, M.; Chen, B.; Hu, B. The Amino-Functionalized Magnetic Graphene Oxide Combined with Graphite Furnace Atomic Absorption Spectrometry for Determination of Trace Inorganic Arsenic Species in Water Samples. Talanta 2021, 232, 122425. DOI: 10.1016/j.talanta.2021.122425.
  • Zhai, H.-M.; Ji, B.; Tian, S.-S.; Fang, F.; Zhao, S.; Wu, Z.-Y. Cr Speciation Analysis Based on Electrokinetic Sample Pretreatment with a Paper Based Analytical Device. Talanta 2021, 234, 122656. DOI: 10.1016/j.talanta.2021.122656.
  • Saheb, V.; Shamspur, T. Rapid Analysis of Chromium (III, VI) in Water and Wastewater Samples Based on Task-Specific Ionic Liquid by the Ultra-Assisted Dispersive Ionic Liquid-Liquid Microextraction. AMEC J. 2022, 5, 75–85. DOI: 10.24200/amecj.v5.i01.170. 10.24200/amecj.v5.i01.170
  • Shishov, A.; Terno, P.; Bulatov, A. Deep Eutectic Solvent Decomposition-Based Microextraction for Chromium Determination in Aqueous Environments by Atomic Absorption Spectrometry with Electrothermal Atomization. Analyst 2021, 146, 5081–5088. DOI: 10.1039/d1an00924a.
  • Gruszka, J.; Martyna, A.; Godlewska-Żyłkiewicz, B. Chemometric Approach to Discrimination and Determination of Binary Mixtures of Silver Ions and Nanoparticles in Consumer Products by Graphite Furnace Atomic Absorption Spectrometry. Talanta 2021, 230, 122319. DOI: 10.1016/j.talanta.2021.122319.
  • Sherman, S.; Chen, W.; Blewett, T. A.; Smith, S.; Middleton, E.; Garman, E.; Schlekat, C.; McGeer, J. C. Complexation Reduces Nickel Toxicity to Purple Sea Urchin Embryos (Strongylocentrotus Purpuratus), a Test of Biotic Ligand Principles in Seawater. Ecotoxicol. Environ. Saf. 2021, 216, 112156. DOI: 10.1016/j.ecoenv.2021.112156.
  • Yan, J.; Zhang, C.; Wang, C.; Lu, D.; Chen, S. Syringe Membrane Micro-Solid-Phase Extraction (SPE) with Flexible Titanium(IV) Oxide@Silica Nanofiber Membrane for the Speciation of Te(IV) and Te(VI) with Graphite Furnace Atomic Absorption Spectrometry (GFAAS). Anal. Lett. 2023, 56, 69–83. DOI: 10.1080/00032719.2022.2087228. 10.1080/00032719.2022.2087228
  • Chen, S.; Liu, Y.; Wang, C.; Yan, J.; Lu, D. Magnetic Dispersive Micro-Solid Phase Extraction Coupled with Dispersive Liquid-Liquid Microextraction Followed by Graphite Furnace Atomic Absorption Spectrometry for Quantification of Se(IV) and Se(VI) in Food Samples. Food Addit. Contaminant. A. 2021, 38, 1539–1550. DOI: 10.1080/19440049.2021.1927202. 10.1080/19440049.2021.1927202
  • Chen, S.; Liu, J.; Yan, J.; Wang, C.; Lu, D. In-Syringe Solid Phase Extraction and in-Syringe Vortex-Assisted Solidified Floating Organic Drop Microextraction of Sb(III) and Sb(V) in Rice Wines with Determination by Graphite Furnace Atomic Absorption Spectrometry. Food Addit. Contaminant. A 2022, 39, 499–507. DOI: 10.1080/19440049.2021.2021301. 10.1080/19440049.2021.2021301
  • Chen, S.; Yan, J.; Wang, C.; Zhang, C.; Lu, D. Determination of Tl(III) and Tl(I) in Food Samples with Two-Step Direct Immersion Single-Drop Microextraction Followed by Graphite Furnace Atomic Absorption Spectrometry. J. Food Compos. Anal. 2023, 117, 104967. DOI: 10.1016/j.jfca.2022.104967. 10.1016/j.jfca.2022.104967
  • Yan, J.; Zhang, C.; Wang, C.; Lu, D.; Chen, S. Solidified Floating Organic Drop Microextraction in Tandem with Syringe Membrane Micro-Solid Phase Extraction for Sequential Detection of Thallium (III) and Thallium (I) by Graphite Furnace Atomic Absorption Spectrometry. Arabian J. Chem. 2022, 15, 104335. DOI: 10.1016/j.arabjc.2022.104335. 10.1016/j.arabjc.2022.104335
  • Yan, J.; Zhang, C.; Wang, C.; Lu, D.; Chen, S. Direct Immersion Dual-Drop Microextraction for Simultaneous Separation and Enrichment of Cr(III) and Cr(IV) in Food Samples Prior to Graphite Furnace Atomic Absorption Spectrometry Detection. Food Chem. 2023, 406, 134276. DOI: 10.1016/j.foodchem.2022.134276.
  • Yan, J.; Zhang, C.; Wang, C.; Lu, D.; Chen, S. A Novel Separation and Preconcentration Methodology Based on Direct Immersion Dual-Drop Microextraction for Speciation of Inorganic Chromium in Environmental Water Samples. Talanta 2023, 255, 123902. DOI: 10.1016/j.talanta.2022.123902.
  • Yan, J.; Zhang, C.; Wang, C.; Lu, D.; Chen, S. Speciation of Inorganic Vanadium by Direct Immersion Dual-Drop Microextraction Coupled with Graphite Furnace Atomic Absorption Spectrometry Detection. Microchem. J. 2022, 182, 107927. DOI: 10.1016/j.microc.2022.107927. 10.1016/j.microc.2022.107927
  • Vicente-Martínez, Y.; Muñoz-Sandoval, M. J.; Hernandez-Cordoba, M.; Lopez-Garcia, I. Determination of Hg(II) and Methylmercury by Electrothermal Atomic Absorption Spectrometry after Dispersive Solid-Phase Microextraction with a Graphene Oxide Magnetic Material. Molecules 2022, 28, 14. DOI: 10.3390/molecules28010014. 10.3390/molecules28010014
  • Gomez-Nieto, B.; Gismera, M. J.; Sevilla, M. T.; R Procopio, J. Direct Solid Sampling of Biological Species for the Rapid Determination of Selenium by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Anal. Chim. Acta. 2022, 1202, 339637.
  • Garcia-Poyo, M. C.; Pecheyran, C.; Rello, L.; Garcia-Gonzalez, E.; Alonso Rodriguez, S.; Nakadi, F. V.; Aramendia, M.; Resano, M. Determination of Cu in Blood via Direct Analysis of Dried Blood Spots Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2021, 36, 1666–1677. DOI: 10.1039/D1JA00155H. 10.1039/D1JA00155H
  • Santiago, J. V. B.; Barud, H. d S.; Ribeiro, C. A.; Dias, D. S.; Ferreira, E. C.; Neto, J. A. G. Evaluation of Thermoplastic Filaments to Construct a Disposable 3D Printed Platform for Atomic Absorption Spectrometry. J. Therm. Anal. Calorim. 2022, 147, 7749–7759. DOI: 10.1007/s10973-021-11093-7. 10.1007/s10973-021-11093-7
  • Maziero, M.; Viana, C. Determination of Metallic Elements in Foods for Enteral Nutrition of Chronic Renal Patients by Atomic Absorption Spectrometry after Extraction Induced by Emulsion Breaking. Spectrosc. Lett. 2022, 55, 534–545. DOI: 10.1080/00387010.2022.2119253. 10.1080/00387010.2022.2119253
  • Xiao, Y.; He, Y.; Ji, C.; Hua, M. Z.; Liu, W.; Yang, S.; Chen, D.; Zheng, W.; Lu, X. Development of an Automated Solid Phase Extraction Instrument for Determination of Lead in High-Salt Foods. Food Chem. 2023, 404, 134680.
  • Shirkhanloo, H.; Faghihi-Zarandi, A.; Mobarake, M. D. Thiol Modified Bimodal Mesoporous Silica Nanoparticles for Removal and Determination Toxic Vanadium from Air and Human Biological Samples in Petrochemical Workers. NanoImpact 2021, 23, 100339. DOI: 10.1016/j.impact.2021.100339.
  • Chaikhan, P.; Udnan, Y.; Ampiah-Bonney, R. J.; Chaiyasith, W. C. Air-Assisted Solvent Terminated Dispersive Liquid-Liquid Microextraction (AA-ST-DLLME) for the Determination of Lead in Water and Beverage Samples by Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2021, 162, 105828. DOI: 10.1016/j.microc.2020.105828. 10.1016/j.microc.2020.105828
  • Barabi, A.; Seidi, S.; Manouchehri, M.; Alizadeh, R. Lead Analysis by μSPE/FF-AAS: A Comparative Study Based on Dimethylglyoxime Functionalized Silica-Coated Magnetic Iron/Graphene Oxides. Anal. Biochem. 2022, 653, 114739. DOI: 10.1016/j.ab.2022.114739
  • Fiorentini, E. F.; Botella, M. B.; Wuilloud, R. G. A Simple Preconcentration Method for Highly Sensitive Determination of Pb in Bee Products by Magnetic Ionic Liquid Dispersive Liquid-Liquid Microextraction and Electrothermal Atomic Absorption Spectrometry. J. Food Compos. Anal. 2021, 95, 103661. DOI: 10.1016/j.jfca.2020.103661.10.1016/j.jfca.2020.103661
  • Thuy, T. T. T.; Phong, H. T.; Van Trong, N.; Van Dat, D. Preconcentration of Lead in Water Samples Using Combined Cloud Point-Solid Phase Extraction Based on TiO2/Mn3O4/Fe3O4 Nanocomposite. Vietnam J. Chem. 2022, 60, 451–458.
  • Sanmartin, R.; Romero, V.; Lavilla, I.; Bendicho, C. Ultrasound-Assisted Dispersive Micro-Solid Phase Extraction of Pb(II) in Water Samples with in Situ Synthesis of Magnetic Fe3O4-PbS Nanocomposites Followed by Electrothermal Atomic Absorption Spectrometry Determination. Spectrochim Acta B Atomic Spectrosc. 2022, 188, 106349. DOI: 10.1016/j.sab.2021.106349. 10.1016/j.sab.2021.106349
  • Mirzaee, M. T.; Seidi, S.; Alizadeh, R. Pipette-Tip SPE Based on Graphene/ZnCr LDH for Pb(II) Analysis in Hair Samples Followed by GFAAS. Anal. Biochem. 2021, 612, 113949. DOI: 10.1016/j.ab.2020.113949.
  • Yu, X.; Zhu, C.; Wang, H.; Wu, Y. Waste Toner-Derived Micro-Materials as Low-Cost Magnetic Solid-Phase Extraction Adsorbent for the Analysis of Trace Pb in Environmental and Biological Samples. Anal. Bioanal. Chem. 2022, 414, 2409–2418. DOI: 10.1007/s00216-022-03879-x. 10.1007/s00216-022-03879-x
  • Ding, X.; Teng, X.; She, Z.; Li, Y.; Liu, Y.; Zhuang, Y.; Wang, C. Preparation of Chitosan-Coated Polystyrene Microspheres for the Analysis of Trace Pb(II) Ions in Salt by GF-AAS Assisted with Solid-Phase Extraction. RSC Adv. 2022, 12, 32526–32533. DOI: 10.1039/D2RA04968F. 10.1039/D2RA04968F
  • Garcia-Mesa, J. C.; Montoro-Leal, P.; Maireles-Rivas, S.; Lopez Guerrero, M. M.; Vereda Alonso, E. Sensitive Determination of Mercury by Magnetic Dispersive Solid-Phase Extraction Combined with Flow-Injection-Cold Vapour-Graphite Furnace Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2021, 36, 892–899. DOI: 10.1039/D0JA00516A. 10.1039/D0JA00516A
  • Akhtar, A.; Kazi, T. G.; Afridi, H. I.; Musharraf, S. G.; Arain, M. B.; Baig, J. A. Determination of Mercury in Artificial Saliva Extract of Chewing Tobacco by Dispersive Liquid-Liquid Micro-Extraction Using Electrothermal Atomic Absorption Spectrometry (ETAAS). Anal. Lett. 2022, 55, 2185–2198. DOI: 10.1080/00032719.2022.2049808. 10.1080/00032719.2022.2049808
  • Minaberry, Y. S.; Costa, C.; Diz, V.; Tudino, M. An Ion Imprinted Magnetic Organosilica Nanocomposite for the Selective Determination of Traces of Cd(II) in a Minicolumn Flow-through Preconcentration System Coupled with Graphite Furnace Atomic Absorption Spectroscopy. Anal. Methods 2022, 14, 2920–2928. DOI: 10.1039/D2AY00804A. 10.1039/D2AY00804A
  • Naghizadeh, M.; Taher, M. A.; Tamaddon, A.-M. Application of CoFe2O4@SiO2@Chitosan Nanoparticles for Cadmium (II) Preconcentration in Totally Different Samples and Its Determination through ETAAS. Silicon 2021, 13, 3795–3806. DOI: 10.1007/s12633-020-00663-3. 10.1007/s12633-020-00663-3
  • AlKinani, A.; Eftekhari, M.; Gheibi, M. Ligandless Dispersive Solid Phase Extraction of Cobalt Ion Using Magnetic Graphene Oxide as an Adsorbent Followed by Its Determination with Electrothermal Atomic Absorption Spectrometry. Int. J. Environ. Anal. Chem. 2021, 101, 17–34. DOI: 10.1080/03067319.2019.1659254. 10.1080/03067319.2019.1659254
  • Han, Q.; Liu, Y.; Huo, Y.; Li, D.; Yang, X. Determination of Ultra-Trace Cobalt in Water Samples Using Dispersive Liquid-Liquid Microextraction Followed by Graphite Furnace Atomic Absorption Spectrometry. Molecules 2022, 27, 2694. DOI: 10.3390/molecules27092694. 10.3390/molecules27092694
  • Khayyat-Sarkar, Z.; Hashemi, S. H.; Jamali Keikha, A.; Kaykhaii, M. Application of Polyethylene Glycol-Coated Iron Oxide Nanoparticles for Magnetic Solid Phase Extraction of Copper from Seawater Samples and Its Determination by Graphite Furnace Atomic Absorption Spectrometry Using Response Surface Methodology for Optimization of Extraction. Spectrosc. Lett. 2021, 54, 254–265.
  • Ali, J.; Tuzen, M.; Feng, X.; Kazi, T. G. Determination of Trace Levels of Selenium in Natural Water, Agriculture Soil and Food Samples by Vortex Assisted Liquid-Liquid Microextraction Method: Multivariate Techniques. Food Chem. 2021, 344, 128706. DOI: 10.1016/j.foodchem.2020.128706.
  • Leal, G. C.; Rovasi, F.; Maziero, M.; do Nascimento, P. C.; de Carvalho, L. M.; Viana, C. Emulsion Breaking-Induced Extraction of Cd and Pb from Oily Dietary Supplements Followed by Graphite Furnace Atomic Absorption Spectrometry Detection. J. Food Compos. Anal. 2022, 112, 104651. DOI: 10.1016/j.jfca.2022.104651. 10.1016/j.jfca.2022.104651
  • Behbahani, M.; Rabiee, G.; Bagheri, S.; Amini, M. M. Ultrasonic-Assisted d-µ-SPE Based on Amine-Functionalized KCC-1 for Trace Detection of Lead and Cadmium Ion by GFAAS. Microchem. J. 2022, 183, 107951. DOI: 10.1016/j.microc.2022.107951. 10.1016/j.microc.2022.107951
  • Li, Q.; Zhuo, Y.; You, S.; Zhang, Y.; Zhao, B.; Xu, L. Rapid Preparation of Melamine Based Magnetic Covalent Triazine Polymers for Highly Efficient Extraction of Copper(II), Chromium(III) and Lead(II) Ions from Environmental and Biological Samples. Microchem. J. 2022, 181, 107698. DOI: 10.1016/j.microc.2022.107698. 10.1016/j.microc.2022.107698
  • Ahmadi-Jouibari, T.; Noori, N.; Fattahi, N. Assessment of Toxic Metal Ions in Tea Samples Using New Microextraction Technique Based on the Solidified Deep Eutectic Solvent Followed by GFAAS. Toxin Rev. 2021, 40, 1084–1093. DOI: 10.1080/15569543.2019.1633543. 10.1080/15569543.2019.1633543
  • Lari, A.; Esmaeili, N.; Ghafari, H. Ionic Liquid Functionalized on Multiwall Carbon Nanotubes for Nickel and Lead Determination in Human Serum and Urine Samples by Micro Solid-Phase Extraction. AMEC J. 2021, 4, 72–85. DOI: 10.24200/amecj.v4.i02.144. 10.24200/amecj.v4.i02.144
  • Khodadadi, S.; Konoz, E.; Niazi, A.; Ezabadi, A. Preconcentration of Heavy Metal Ions on Magnetic Multi-Walled Carbon Nanotubes Using Magnetic Solid-Phase Extraction and Determination in Vegetable Samples by Electrothermal Atomic Absorption Spectrometry: Box-Behnken Design. Chem. Pap. 2022, 76, 6735–6751. DOI: 10.1007/s11696-022-02330-w. 10.1007/s11696-022-02330-w
  • Krawczyk-Coda, M. Determination of Silver in Environmental Samples by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry after Preconcentration on Bentonite. J. Anal. Chem. 2022, 77, 1155–1161. DOI: 10.1134/S1061934822090076. 10.1134/S1061934822090076
  • Wang, Z.; Xu, Z.; Cheng, H.; Zou, Y.; Guo, J.; Liu, Y.; Yang, J.; Zong, K.; Xiong, L.; Hu, Z. Precambrian Metamorphic Crustal Basement Cannot Provide Much Gold to Form Giant Gold Deposits in the Jiaodong Peninsula, China. Precambrian Res. 2021, 354, 106045. DOI: 10.1016/j.precamres.2020.106045. 10.1016/j.precamres.2020.106045
  • Trzonkowska, L.; Leśniewska, B.; Godlewska-Żyłkiewicz, B. Development of Solid Phase Extraction Method Based on Ion Imprinted Polymer for Determination of Cr(III) Ions by ETAAS in Waters. Water 2022, 14, 529. DOI: 10.3390/w14040529. 10.3390/w14040529
  • Meeravali, N. N.; Madhavi, K.; Sahayam, A. C. Determination of Thallium in Vegetative Plant Leaves near Industrial Areas by High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry after Salt Induced Cloud Point Extraction. Spectrochim. Acta B 2023, 200, 106613. DOI: 10.1016/j.sab.2022.106613. 10.1016/j.sab.2022.106613
  • Pacer, E. J.; Palmer, C. D.; Parsons, P. J. Determination of Lead in Blood by Graphite Furnace Atomic Absorption Spectrometry with Zeeman Background Correction: Improving a Well-Established Method to Support a Lower Blood Lead Reference Value for Children. Spectrochim. Acta B Atomic Spectrosc. 2022, 190, 106324. DOI: 10.1016/j.sab.2021.106324. 10.1016/j.sab.2021.106324
  • Rakete, S.; Moonga, G.; Wahl, A.-M.; Mambrey, V.; Shoko, D.; Moyo, D.; Muteti-Fana, S.; Tobollik, M.; Steckling-Muschack, N.; Bose-O’Reilly, S. Biomonitoring of Arsenic, Cadmium and Lead in Two Artisanal and Small-Scale Gold Mining Areas in Zimbabwe. Environ. Sci. Pollut. Res. 2022, 29, 4762–4768. DOI: 10.1007/s11356-021-15940-w. 10.1007/s11356-021-15940-w
  • Tudosie, M. S.; Caragea, G.; Popescu, D. M.; Avram, O.; Serban, D.; Smarandache, C. G.; Tudor, C.; Badiu, C. D.; Socea, B.; Sabau, A. D.; et al. Optimization of a GF-AAS Method for Lead Testing in Blood and Urine: A Useful Tool in Acute Abdominal Pain Management in Emergency. Exp. Ther. Med. 2021, 22, 985. DOI: 10.3892/etm.2021.10417. 10.3892/etm.2021.10417
  • Gundacker, C.; Graf-Rohrmeister, K.; Gencik, M.; Hengstschlager, M.; Holoman, K.; Rosa, P.; Kroismayr, R.; Offenthaler, I.; Plichta, V.; Reischer, T.; et al. Gene Variants Determine Placental Transfer of Perfluoroalkyl Substances (PFAS), Mercury (Hg) and Lead (Pb), and Birth Outcome: Findings from the UmMuKi Bratislava-Vienna Study. Front. Genet. 2021, 12, 664946. DOI: 10.3389/fgene.2021.664946. 10.3389/fgene.2021.664946
  • Zeng, X.; Zeng, Z.; Wang, Q.; Liang, W.; Guo, Y.; Huo, X. Alterations of the Gut Microbiota and Metabolomics in Children with e-Waste Lead Exposure. J. Hazard. Mater. 2022, 434, 128842. DOI: 10.1016/j.jhazmat.2022.128842.
  • El Daouk, S.; Pineau, A.; Ziade, M. F.; Ezzeddine, R.; Hijazi, A.; Al Iskandarani, M. Is There Correlation between Aluminum-Based Food Consumption and Plasma Level in Pregnant Women. Biol. Trace Elem. Res. 2022, 200, 4608–4614.
  • Ermolenko, Y.; Gorunova, O. N.; Dunina, V. V.; Petrenko, D. B.; Novikova, N. G.; Alekseeva, A.; Osipova, N.; Kochetkov, K. A.; Morozov, A.; Gelperina, S. Quantitative Analysis of Palladacycle-tagged plga Nanoparticle Biodistribution in Rat Organs by Means of Atomic Absorption Spectrometry and Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2021, 36, 2423–2430. DOI: 10.1039/D1JA00260K. 10.1039/D1JA00260K
  • Zvěřina, O.; Venclíček, O.; Kuta, J.; Coufalík, P.; Hagarová, I.; Brat, K. A Simple Dilute-and-Shoot Procedure for the Determination of Platinum in Human Pleural Effusions Using HR-CS GF-AAS. J. Trace Elem. Med. Biol. 2021, 68, 126869. DOI: 10.1016/j.jtemb.2021.126869.
  • Dudek-Adamska, D.; Lech, T.; Konopka, T.; Kościelniak, P. Nickel Content in Human Internal Organs. Biol. Trace Elem. Res. 2021, 199, 2138–2144.
  • Cadar, O.; Mocan, T.; Roman, C.; Senila, M. Analytical Performance and Validation of a Reliable Method Based on Graphite Furnace Atomic Absorption Spectrometry for the Determination of Gold Nanoparticles in Biological Tissues. Nanomaterials 2021, 11, 3370. DOI: 10.3390/nano11123370. 10.3390/nano11123370
  • Lashari, A.; Afridi, H. I.; Kazi, T. G.; Talpur, F. N.; Baig, J. A. Chromium, Manganese and Zinc Levels in the Biological Samples of Type 1 Diabetic Mellitus Children, Reside in Different Areas of Sindh, Pakistan. J. Chem. Soc. Pak. 2021, 43, 260–270.
  • Santiago, M. G. A.; Faria, V. D.; Cirineu, F. D.; Queiroz da Silva, L. L. d L.; de Almeida, E. C.; Cavallini, N. G.; Souza Vieira, J. C.; Henrique Fernandes, A. A.; Braga, C. P.; Zara, L. F.; et al. Metalloproteomic Approach to Liver Tissue of Rats Exposed to Mercury. Chemosphere 2023, 312, 137222. DOI: 10.1016/j.chemosphere.2022.137222.
  • Maziero, M.; Adolfo, F. R.; Leal, G. C.; de Carvalho, L. M.; do Nascimento, P. C.; Viana, C. Elemental Analysis of Pharmaceutical Products for Chronic Kidney Disease by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry (HR–CS GFAAS). Anal. Lett. 2022, 55, 109–122. DOI: 10.1080/00032719.2021.1918702. 10.1080/00032719.2021.1918702
  • Vieira, J. C. S.; de Oliveira, G.; Cavallini, N. G.; Braga, C. P.; Adamec, J.; Zara, L. F.; Buzalaf, M. A. R.; de Magalhaes Padilha, P. Investigation of Protein Biomarkers and Oxidative Stress in Pinirampus Pirinampu Exposed to Mercury Species from the Madeira River, Amazon-Brazil. Biol. Trace Elem. Res. 2022, 200, 1872–1882. DOI: 10.1007/s12011-021-02805-z. 10.1007/s12011-021-02805-z
  • da Cunha Bataglioli, I.; de Queiroz, J. V.; Vieira, J. C. S.; Cavalline, N. G.; Braga, C. P.; Buzalaf, M. A. R.; Zara, L. F.; Adamec, J.; de Magalhaes Padilha, P. Mercury Metalloproteomic Profile in Muscle Tissue of Arapaima Gigas from the Brazilian Amazon. Environ. Monit. Assess. 2022, 194, 705. DOI: 10.1007/s10661-022-10357-5. 10.1007/s10661-022-10357-5
  • de Queiroz, J. V.; Cavecci-Mendonca, B.; Vieira, J. C. S.; Martins, R. A.; de Almeida Assuncao, A. S.; Cavallini, N. G.; dos Santos, F. A.; de Magalhaes Padilha, P. Metalloproteomic Strategies for Identifying Proteins as Biomarkers of Mercury Exposure in Serrasalmus Rhombeus from the Amazon Region. Biol. Trace Elem. Res. 2021, 199, 712–720. DOI: 10.1007/s12011-020-02178-9. 10.1007/s12011-020-02178-9
  • Pokorska-Niewiada, K.; Witczak, A.; Protasowicki, M.; Cybulski, J. Estimation of Target Hazard Quotients and Potential Health Risks for Toxic Metals and Other Trace Elements by Consumption of Female Fish Gonads and Testicles. Int J Environ Res Public Health. 2022, 19, 2762. DOI: 10.3390/ijerph19052762. 10.3390/ijerph19052762
  • Molla, N. R.; Gaud, A.; Ram, A.; Vidavalur, S.; Sudhakaran, R. P.; Pitchaikkaran, R. Concentration of Trace Metals and Biochemical Alterations in Various Species of Fishes along the West Coast of India. Ocean Sci. J. 2021, 56, 55–68. DOI: 10.1007/s12601-021-00003-5. 10.1007/s12601-021-00003-5
  • Demirak, A.; Keskin, F.; Silm, M.; Özdemir, N.; Yıldız, D.; Bernotas, P.; Öğlü, B. Bioaccumulation and Health Risk Assessment of Heavy Metals in European Eels Taken from Lakes Koycegiz (Turkey) and Vor˜tsjarv (Estonia). Environ. Sci. Pollut. Res. 2022, 29, 1620–1633. DOI: 10.1007/s11356-021-16822-x. 10.1007/s11356-021-16822-x
  • Bai, X.; Guo, D.; Zheng, Y.; Wang, S.; Liu, S. Comparison of Three Common Pre-Treatment Methods for the Determination of Lead Contents by GFAAS in Chinese Health-Care Wines. Food Addit. Contaminant. A 2021, 38, 630–636. DOI: 10.1080/19440049.2021.1885750. 10.1080/19440049.2021.1885750
  • Koláčková, T.; Sumczynski, D.; Bednařík, V.; Vinter, Š.; Orsavová, J.; Kolofiková, K. Mineral and Trace Element Composition after Digestion and Leaching into Matcha Ice Tea Infusions (Camellia Sinensis L.). J. Food Compos. Anal. 2021, 97, 103792. DOI: 10.1016/j.jfca.2020.103792. 10.1016/j.jfca.2020.103792
  • Volzhenin, A. V.; Petrova, N. I.; Romanova, T. E.; Saprykin, A. I. Direct Determination of Cadmium, Lead, and Zinc in Mussels by Two-Stage Probe Atomization (TPA) Graphite Furnace Atomic Absorption Spectrometry (GFAAS). Anal. Lett. 2021, 54, 2293–2303. DOI: 10.1080/00032719.2020.1856862. 10.1080/00032719.2020.1856862
  • Sevillano-Morales, J. S.; Sevillano-Cano, J.; Camara-Martos, F.; Moreno-Ortega, A.; Amaro-Lopez, M. A.; Arenas-Casas, A.; Moreno-Rojas, R. Risk Assessment of Cd, Cu, and Pb from the Consumption of Hunted Meat: Red-Legged Partridge and Wild Rabbit. Biol. Trace Elem. Res. 2021, 199, 1843–1854. DOI: 10.1007/s12011-020-02290-w. 10.1007/s12011-020-02290-w
  • Wu, Y.; Liu, S.; Xu, Y.; Yu, L.; Yang, Z.; Wang, H.; Guo, Y. Determination of Trace Cd and Pb in Edible Salt and Soy Sauce by ETAAS Using Fluorescent Carbon Nanoparticles (FCNs) as Matrix Modifier. At. Spectrosc. 2021, 42, 160–165. DOI: 10.46770/AS.2020.196. 10.46770/AS.2020.196
  • Moreira, L. S.; Costa, F. S.; de Cássia Lidorio, R.; Toledo, L. W. S.; Oliveira, A.; Gonzalez, M. H.; da Silva, E. G. P.; Amaral, C. D. B. Evaluation of Trace Elements in Marine Biological Tissues by Graphite Furnace Atomic Absorption Spectrometry after Sample Treatment with Formic Acid. Food Anal. Methods 2022, 15, 1687–1694. DOI: 10.1007/s12161-022-02240-3. 10.1007/s12161-022-02240-3
  • Joseph, A.; Iwok, E.; Ekanem, S. Public Health Threats of Heavy Metals Due to the Consumption of Achachatina Marginata (African Giant Land Snail) from a Partially Remediated Site in Ikot Ada Udo, Akwa Ibom State, South-South Nigeria. Environ. Pollut. 2021, 271, 116392.
  • Hossain, M. M.; Hannan, A. S. M. A.; Kamal, M. M.; Hossain, M. A.; Zaman, S. Development and Ratification of a Precise Method (GF-AAS) Used for the Determination of Poisonous Metal Lead (Pb) in Dairy Cow Milk Sample Commonly Available in the Market of Bangladesh. Austin J. Anal. Pharm. Chem. 2022, 9, 1142.
  • Ahmad, I.; Ansari, T. M. An Assessment of Toxic Heavy Metals in Soil and Plants (Allium Cepa and Daucus Carota) by GFAAS. Int. J. Environ. Anal. Chem. 2022, 102, 1029–1048. DOI: 10.1080/03067319.2020.1730341.10.1080/03067319.2020.1730341
  • Chirita, L.; Covaci, E.; Mot, A.; Ponta, M.; Gandea, A.; Frentiu, T. Determination of Selenium in Food and Environmental Samples by Hydride Generation High-Resolution Continuum Source Quartz Furnace Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2021, 36, 267–272. DOI: 10.1039/D0JA00460J. 10.1039/D0JA00460J
  • Zero, S.; Zuzul, S.; Huremovic, J.; Pehnec, G.; Beslic, I.; Rinkovec, J.; Godec, R.; Kittner, N.; Pavlovic, K.; Pozar, N.; et al. New Insight into the Measurements of Particle-Bound Metals in the Urban and Remote Atmospheres of the Sarajevo Canton and Modeled Impacts of Particulate Air Pollution in Bosnia And Herzegovina. Environ. Sci. Technol. 2022, 56, 7052–7062. DOI: 10.1021/acs.est.1c07037. 10.1021/acs.est.1c07037
  • Burylin, M. Y.; Kopeyko, E. S.; Bauer, V. A. Determination of Cu and Mn in Seawater by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Anal. Lett. 2022, 55, 1663–1671. DOI: 10.1080/00032719.2021.2020806. 10.1080/00032719.2021.2020806
  • Reddy, M. A.; Shekhar, R.; Sahayam, A. C.; Jain, P. Graphite Furnace Atomic Absorption Spectrometric Studies for the Quantification of Trace and Ultratrace Impurities in the Semiconductor Grade Organic Chemicals Such as Triethylborate, Tetraethylorthosilicate and Trimethylphosphate. Spectrochim. Acta B At. Spectrosc. 2021, 180, 106184. DOI: 10.1016/j.sab.2021.106184. 10.1016/j.sab.2021.106184
  • Tripkovic, T.; Vasic, R.; Lolic, A.; Baosic, R. Determination of Metals in Artistic Pigments Using the Optimized GFAAS Method and Raman Spectroscopy. Chem. Papers 2022, 76, 3607–3618.
  • Ahmad, I.; Ansari, T. M. Occurrence and Translocation of Heavy Metals in Phosphate Ores and Fertilisers by GFAAS. Int. J. Environ. Anal. Chem. 2022, 102, 196–221. DOI: 10.1080/03067319.2020.1720008. 10.1080/03067319.2020.1720008
  • Qi, Y.; Fan, C.; Quan, X.; Xi, F.; Liu, Z.; Cao, Q.; Wu, Z.; Yue, Q.; Gao, B.; Xu, X.; He, K. In-Situ Recycling Strategy for co-Treatment of Antimony-Rich Sludge Char and Leachate: Pilot-Scale Application in an Engineering Case. Chem. Eng. J. 2022, 446, 137315.
  • Rada-Mendoza, M.; Arciniegas-Herrera, J. L.; Hoyos-Saavedra, O. L.; Castillo, R. D.; Chito-Trujillo, D. Atomic Absorption Spectrometry for the Quantification of Cadmium in Thermoformed and Biodegradable Flexible Films Made from Cassava (Manihot Esculenta Crantz). J. Thermoplast. Compos. Mater. 2021, 34, 657–670. DOI: 10.1177/0892705719850612. 10.1177/0892705719850612
  • Nikulin, A.; Potanina, O.; Alyussef, M.; Vasil’ev, V.; Abramovich, R.; Novikov, O.; Boyko, N.; Khromov, A.; Platonov, E. Development of a Technique for Determining Cadmium, Lead, Arsenic with the ETAAS Method in Medicinal Plant Raw Materials. Farmacia (Bucharest, Romania) 2021, 69, 566–575. DOI: 10.31925/farmacia.2021.3.20. 10.31925/farmacia.2021.3.20
  • Sussa, F. V.; Furlan, M. R.; Victorino, M.; da Silva, P. S. C. Soil-to-Plant Transfer Factor for Stable Elements in Lemon Balm (Melissa Officinalis L.) and Estimates of the Daily Intakes. J. Radioanal. Nucl. Chem. 2022, 331, 3107–3115. DOI: 10.1007/s10967-022-08353-7. 10.1007/s10967-022-08353-7
  • Jurowski, K.; Fołta, M.; Tatar, B.; Krośniak, M. The Level of Cadmium Impurities in Traditional Herbal Medicinal Products with Plantago Lanceolata L., Folium (Ribwort Plantain Leaves) Available in Polish Pharmacies—Comprehensive Toxicological Risk Assessment Including Regulatory Point of View and ICH Q3D Elemental Impurities Guideline. Biol. Trace Elem. Res. 2022, 200, 2963–2969. DOI: 10.1007/s12011-021-02861-5.
  • Hossain, M. M.; Hannan, A. S. M. A.; Kamal, M. M.; Hossain, M. A.; Quraishi, S. B. Appraisal and Validation of a Method Used for Detecting Heavy Metals in Poultry Feed in Bangladesh. Vet. World 2022, 15, 2217–2223.
  • Gende, M.; Schmeling, M. Development of an Analytical Method for Determination of Lead and Cadmium in Biological Materials by GFAAS Using Escherichia coli as Model Substance. PLoS One 2022, 17, e0267775. DOI: 10.1371/journal.pone.0267775. 10.1371/journal.pone.0267775

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.