393
Views
4
CrossRef citations to date
0
Altmetric
Review

Determination of thallium in biological and environmental samples

, , &

References

  • Appenroth, K. J. What Are "Heavy Metals" in Plant Sciences? Acta Physiol. Plant. 2010, 32, 615–619. doi:10.1007/s11738-009-0455-4.
  • Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 1–14. doi:10.1155/2019/6730305.
  • Ali, H.; Khan, E. What Are Heavy Metals? Long-Standing Controversy over the Scientific Use of the Term "Heavy Metals’-Proposal of a Comprehensive Definition. Toxicol. Environ. Chem. 2018, 100, 6–19. doi:10.1080/02772248.2017.1413652.
  • Fu, Z.; Xi, S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. doi:10.1080/15376516.2019.1701594.
  • Duruibe, J. O.; Ogwuegbu, M. O. C.; Egwurugwu, J. N. Heavy Metal Pollution and Human Biotoxic Effects. Int. J. Math., Phys. Eng. Sci. 2007, 2, 112–118.
  • Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A Review of Soil Heavy Metal Pollution from Industrial and Agricultural Regions in China: Pollution and Risk Assessment. Sci. Total Environ. 2018, 642, 690–700. doi:10.1016/j.scitotenv.2018.06.068.
  • McIntyre, A. R. The Toxicities of Mercury and Its Compounds. T T J. New Drugs 1971, 11, 397–401. 10.1177/009127007101100601
  • Bernhoft, R. A. Cadmium Toxicity and Treatment. Sci. World J. 2013, 2013, 1–7. doi:10.1155/2013/394652.
  • Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C. J.; Valko, M. Arsenic: Toxicity, Oxidative Stress and Human Disease. J. Appl. Toxicol. 2011, 31, 95–107. doi:10.1002/jat.1649.
  • Kumar, A.; Kumar, A.; M.m.s, C.-P.; Chaturvedi, A. K.; Shabnam, A. A.; Subrahmanyam, G.; Mondal, R.; Gupta, D. K.; Malyan, S. K.; Kumar, S. S.; et al. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. IJERPH. 2020, 17, 2179–2215. doi:10.3390/ijerph17072179.
  • Kinuthia, G. K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of Heavy Metals in Wastewater and Soil Samples from Open Drainage Channels in Nairobi, Kenya: Community Health Implication. Sci. Rep. 2020, 10, 8434. doi:10.1038/s41598-020-65359-5.
  • Liu, J.; Wei, X.; Zhou, Y.; Tsang, D. C. W.; Bao, Z. A.; Yin, M.; Lippold, H.; Yuan, W.; Wang, J.; Feng, Y.; Chen, D. Thallium Contamination, Health Risk Assessment and Source Apportionment in Common Vegetables. Sci. Total Environ. 2020, 703, 135547. doi:10.1016/j.scitotenv.2019.135547.
  • Khan, F. U.; Rahman, A. U.; Jan, A.; Riaz, M. Toxic and Trace Metals (Pb, Cd, Zn, Cu, Mn, Ni, Co and Cr) in Dust, Dustfall/Soil. J. Chem. Soc. Pak. 2004, 26, 453–456.
  • Rahman, Z.; Singh, V. P. The Relative Impact of Toxic Heavy Metals (THMs) (Arsenic (as), Cadmium (Cd), Chromium (Cr)(VI), Mercury (Hg), and Lead (Pb)) on the Total Environment: An Overview. Environ. Monit. Assess. 2019, 191, 419–440. doi:10.1007/s10661-019-7528-7.
  • de Caritat, P.; Reimann, C. Publicly Available Datasets on Thallium (Tl) in the Environment-a Comment on "Presence of Thallium in the Environment: Sources of Contaminations, Distribution and Monitoring Methods" by Bozena Karbowska. Environ. Monit. Assess. 2017, 189, 232–243. doi:10.1007/s10661-017-5945-z.
  • Peter, A. L. J.; Viraraghavan, T. Thallium: A Review of Public Health and Environmental Concerns. Environ. Int. 2005, 31, 493–501. doi:10.1016/j.envint.2004.09.003.
  • Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M. S.; Catalano, A. Thallium Use, Toxicity, and Detoxification Therapy: An Overview. Appl. Appl. Sci.-Basel 2021, 11, 8322. doi:10.3390/app11188322.
  • Kazantzis, G. Thallium in the Environment and Health Effects. Environ. Geochem. Health 2000, 22, 275–280. doi:10.1023/a:1006791514080.
  • Liu, J.; Yin, M.; Zhang, W.; Tsang, D. C. W.; Wei, X.; Zhou, Y.; Xiao, T.; Wang, J.; Dong, X.; Sun, Y.; et al. Response of Microbial Communities and Interactions to Thallium in Contaminated Sediments near a Pyrite Mining Area. Environ. Pollut. 2019, 248, 916–928. doi:10.1016/j.envpol.2019.02.089.
  • Zendelovska, D.; Stafilov, T. Extraction Separation and Electrothermal Atomic Absorption Spectrometric Determination of Thallium in Some Sulfide Minerals. Anal. Sci. 2001, 17, 425–428. doi:10.2116/analsci.17.425.
  • Raber, T.; Roth, P. The Lengenbach Quarry in Switzerland: Classic Locality for Rare Thallium Sulfosalts. Minerals 2018, 8, 409–426. doi:10.3390/min8090409.
  • Zhao, F.; Gu, S. Secondary Sulfate Minerals from Thallium Mineralized Areas: Their Formation and Environmental Significance. Minerals 2021, 11, 855. doi:10.3390/min11080855.
  • Yang, C. X.; Chen, Y. H.; Peng, P.; Li, C.; Chang, X. Y.; Xie, C. S. Distribution of Natural and Anthropogenic Thallium in the Soils in an Industrial Pyrite Slag Disposing Area. Sci. Total Environ. 2005, 341, 159–172. doi:10.1016/j.scitotenv.2004.09.024.
  • Karbowska, B.; Zembrzuski, W. Fractionation and Mobility of Thallium in Volcanic Ashes after Eruption of Eyjafjallajokull (2010) in Iceland. Bull. Environ. Contam. Toxicol. 2016, 97, 37–43. doi:10.1007/s00128-016-1831-6.
  • Ralph, L.; Twiss, M. R. Comparative Toxicity of Thallium(I), Thallium(III), and Cadmium(II) to the Unicellular Alga Chlorella Isolated from Lake Erie. Bull. Environ. Contam. Toxicol. 2002, 68, 261–268. 10.1007/s001280247
  • Zembrzuska, J.; Karbowska, B. Identification of Complexes Involving Thallium(I) and Thallium(III) with EDTA and DTPA Ligands by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 1785–1792. doi:10.1002/rcm.7962.
  • Karbowska, B. Presence of Thallium in the Environment: Sources of Contaminations, Distribution and Monitoring Methods. Environ. Monit. Assess. 2016, 188, 640–659. doi:10.1007/s10661-016-5647-y.
  • Cheam, V. Thallium Contamination of Water in Canada. Water Qual. Res. J. Can. 2001, 36, 851–877. doi:10.2166/wqrj.2001.046.
  • Datta, A.; Fiala, J.; Becla, P.; Motakef, S. Stable Room-Temperature Thallium Bromide Semiconductor Radiation Detectors. APL Mater. 2017, 5, 106109. doi:10.1063/1.5001181.
  • Dantas, N. S.; de Almeida, J. S.; Ahuja, R.; Persson, C.; da Silva, A. F. Novel Semiconducting Materials for Optoelectronic Applications: Al1-xTlxN Alloys. Appl. Phys. Lett. 2008, 92, 121914. doi:10.1063/1.2901146.
  • Liu, J.; Luo, X.; Sun, Y.; Tsang, D. C. W.; Qi, J.; Zhang, W.; Li, N.; Yin, M.; Wang, J.; Lippold, H.; et al. Thallium Pollution in China and Removal Technologies for Waters: A Review. Environ. Int. 2019, 126, 771–790. doi:10.1016/j.envint.2019.01.076.
  • Meng, L. J.; Ramsden, D.; Chirkin, V. M.; Potapov, V. N.; Ivanov, O. P.; Ignatov, S. M. The Design and Performance of a Large-Volume Spherical CsI(Tl) Scintillation Counter for Gamma-Ray Spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. 2002, 485, 468–476. doi:10.1016/s0168-9002(01)02107-6.
  • Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Girard, T. A.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; et al. Study of Parylene-Coated NaI(Tl) at Low Temperatures for Bolometric Applications. Astropart. Phys. 2013, 47, 31–37. doi:10.1016/j.astropartphys.2013.06.001.
  • Mantsevich, S. N. Thallium Bromide Iodide Crystal Acoustic Anisotropy Examination. Ultrasonics 2017, 75, 91–97. doi:10.1016/j.ultras.2016.11.019.
  • Zavaliy, L. B.; Petrikov, S. S.; Simonova, A. Y.; Potskhveriya, M. M.; Zaker, F.; Ostapenko, Y. N.; Ilyashenko, K. K.; Dikaya, T. I.; Shakhova, O. B.; Evseev, A. K.; et al. Diagnosis and Treatment of Persons with Acute Thallium Poisoning. Toxicol. Rep. 2021, 8, 277–281. doi:10.1016/j.toxrep.2021.01.013.
  • Jose Rodriguez-Mercado, J.; Agustin Altamirano-Lozano, M. Genetic Toxicology of Thallium: A Review. Drug Chem. Toxicol. 2013, 36, 369–383. doi:10.3109/01480545.2012.710633.
  • Lukaszewski, Z.; Jakubowska, M.; Zembrzuski, W.; Karbowska, B.; Pasieczna, A. Flow-Injection Differential-Pulse Anodic Stripping Voltammetry as a Tool for Thallium Monitoring in the Environment. Electroanalysis 2010, 22, 1963–1966. doi:10.1002/elan.201000151.
  • Das, A. K.; Chakraborty, R.; Cervera, M. L.; De la Guardia, M. Determination of Thallium in Biological Samples. Anal. Bioanal. Chem. 2006, 385, 665–670. doi:10.1007/s00216-006-0411-8.
  • Das, A. K.; Dutta, M.; Cervera, M. L.; de la Guardia, M. Determination of Thallium in Water Samples. Microchem. J. 2007, 86, 2–8. doi:10.1016/j.microc.2006.07.003.
  • Michalski, R.; Szopa, S.; Jabłońska, M.; Łyko, A. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium. Sci. World J. 2012, 2012, 1–17. doi:10.1100/2012/902464.
  • Jablonska-Czapla, M. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique. Int. J. Anal. Chem. 2015, 2015, 171478. doi:10.1155/2015/171478.
  • Rezabeyk, S.; Manoochehri, M. Speciation Analysis of Tl(I) and Tl(III) after Magnetic Solid Phase Extraction Using a Magnetite Nanoparticle Composite Modified with Aminodibenzo-18-Crown-6 Functionalized MIL-101(Cr). Microchim. Acta 2018, 185, 365–373. doi:10.1007/s00604-018-2881-8.
  • Fayazi, M.; Ghanei-Motlagh, M.; Taher, M. A.; Ghanei-Motlagh, R.; Salavati, M. R. Synthesis and Application of a Novel Nanostructured Ion-Imprinted Polymer for the Preconcentration and Determination of Thallium(I) ions in Water Samples. J. Hazard. Mater. 2016, 309, 27–36. doi:10.1016/j.jhazmat.2016.02.002.
  • Darroudi, A.; Arbab Zavar, M. H.; Chamsaz, M.; Zohuri, G.; Ashraf, N. Ion-Imprinted Polymer Mini-Column for on-Line Preconcentration of Thallium(Iii) and Its Determination by Flame Atomic Absorption Spectrometry. Anal. Methods 2012, 4, 3798–3805. doi:10.1039/c2ay25765c
  • Nyaba, L.; Dubazana, B.; Mpupa, A.; Nomngongo, P. N. Development of Ultrasound-Assisted Dispersive Solid-Phase Microextraction Based on Mesoporous Carbon Coated with Silica@Iron Oxide Nanocomposite for Preconcentration of Te and Tl in Natural Water Systems. Open Chem. 2020, 18, 412–425. doi:10.1515/chem-2020-0039.
  • Lopez-Garcia, I.; Munoz-Sandoval, M. J.; Hernandez-Cordoba, M. Dispersive Micro-Solid Phase Extraction with a Magnetic Nanocomposite Followed by Electrothermal Atomic Absorption Measurement for the Speciation of Thallium. Talanta 2021, 228, 122206. doi:10.1016/j.talanta.2021.122206.
  • Zhang, C.; Xing, H.; Yang, L.; Fei, P.; Liu, H. Development Trend and Prospect of Solid Phase Extraction Technology. Chin. J. Chem. Eng. 2022, 42, 245–255. doi:10.1016/j.cjche.2021.05.031.
  • Rajabi, M.; Abolhosseini, M.; Hosseini-Bandegharaei, A.; Hemmati, M.; Ghassab, N. Magnetic Dispersive Micro-Solid Phase Extraction Merged with Microsampling Flame Atomic Absorption Spectrometry Using (Zn-Al LDH)-(PTh/DBSNa)-Fe3O4 Nanosorbent for Effective Trace Determination of Nickel(II) and Cadmium(II) in Food Samples. Microchem. J. 2020, 159, 105450. doi:10.1016/j.microc.2020.105450.
  • Rocio-Bautista, P.; Pino, V.; Ayala, J. H.; Pasan, J.; Ruiz-Perez, C.; Afonso, A. M. A Magnetic-Based Dispersive Micro-Solid-Phase Extraction Method Using the Metal-Organic Framework HKUST-1 and Ultra-High-Performance Liquid Chromatography with Fluorescence Detection for Determining Polycyclic Aromatic Hydrocarbons in Waters and Fruit Tea Infusions. J. Chromatogr. A 2016, 1436, 42–50. doi:10.1016/j.chroma.2016.01.067.
  • Dil, E. A.; Asfaram, A.; Sadeghfar, F. Magnetic Dispersive Micro-Solid Phase Extraction with the CuO/ZnO@Fe3O4-CNTs Nanocomposite Sorbent for the Rapid Pre-Concentration of Chlorogenic Acid in the Medical Extract of Plants, Food, and Water Samples. Analyst 2019, 144, 2684–2695. doi:10.1039/c8an02484g.
  • Hashemi, B.; Rezania, S. Carbon-Based Sorbents and Their Nanocomposites for the Enrichment of Heavy Metal Ions: A Review. Microchim. Acta 2019, 186, 578–598. doi:10.1007/s00604-019-3668-2.
  • Chisvert, A.; Cardenas, S.; Lucena, R. Dispersive Micro-Solid Phase Extraction. TrAC, Trends Anal. Chem. 2019, 112, 226–233. doi:10.1016/j.trac.2018.12.005.
  • Asgharinezhad, A. A.; Mollazadeh, N.; Ebrahimzadeh, H.; Mirbabaei, F.; Shekari, N. Magnetic Nanoparticles Based Dispersive Micro-Solid-Phase Extraction as a Novel Technique for Coextraction of Acidic and Basic Drugs from Biological Fluids and Waste Water. J. Chromatogr. A 2014, 1338, 1–8. doi:10.1016/j.chroma.2014.02.027.
  • Maltepe, E.; Er, E. O.; Bakirdere, S. Chitosan Magnetic Hydrogel Based Ligandless Magnetic Solid Phase Extraction for the Accurate and Sensitive Determination of Thallium by Slotted-Quartz Tube Flame Atomic Absorption Spectrophotometry with Matrix Matching Calibration Strategy. Microchem. J. 2020, 158, 105231. doi:10.1016/j.microc.2020.105231.
  • Kazantzi, V.; Anthemidis, A. An on-Line Flow-Injection Sorbent Extraction System Coupled with Flame Atomic Absorption Spectrometry for Thallium Determination Using a PTFE Turning-Packed Column. Separations 2019, 6, 22–31. doi:10.3390/separations6020022.
  • Gugushe, A. S.; Mpupa, A.; Nomngongo, P. N. Ultrasound-Assisted Magnetic Solid Phase Extraction of Lead and Thallium in Complex Environmental Samples Using Magnetic Multi-Walled Carbon Nanotubes/Zeolite Nanocomposite. Microchem. J. 2019, 149, 103960. doi:10.1016/j.microc.2019.05.060.
  • Biata, N. R.; Dimpe, K. M.; Ramontja, J.; Mketo, N.; Nomngongo, P. N. Determination of Thallium in Water Samples Using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) after Ultrasonic Assisted-Dispersive Solid Phase Microextraction. Microchem. J. 2018, 137, 214–222. doi:10.1016/j.microc.2017.10.020.
  • Biaduń, E.; Sadowska, M.; Ospina-Alvarez, N.; Krasnodębska-Ostręga, B. Direct Speciation Analysis of Thallium Based on Solid Phase Extraction and Specific Retention of a Tl(III) Complex on Alumina Coated with Sodium Dodecyl Sulfate. Microchim. Acta 2016, 183, 177–183. doi:10.1007/s00604-015-1624-3.
  • Nourbala-Tafti, E.; Romero, V.; Lavilla, I.; Dadfarnia, S.; Bendicho, C. In Situ Ultrasound-Assisted Preparation of Fe3O4@MnO2 Core-Shell Nanoparticles Integrated with Ion co-Precipitation for Multielemental Analysis by Total Reflection X-Ray Fluorescence. Spectrochim. Acta, Part B 2017, 131, 40–47. doi:10.1016/j.sab.2017.03.005.
  • Chen, S.; Lu, D.; Zhu, S. Combination of Solid Phase Extraction with Dispersive Liquid-Liquid Microextraction for Speciation of Thallium in Water Samples by Electrothermal Vaporization ICP-MS. At. Spectrosc. 2018, 39, 22–28. doi:10.46770/as.2018.01.003.
  • Ojeda, C. B.; Rojas, F. S. Separation and Preconcentration by Cloud Point Extraction Procedures for Determination of Ions: Recent Trends and Applications. Microchim. Acta 2012, 177, 1–21. doi:10.1007/s00604-011-0717-x.
  • Hernandez-Martinez, A. M.; Padron-Sanz, C.; Torres Padron, M. E.; Sosa Ferrera, Z.; Santana Rodriguez, J. J. Determination of Heavy Metals in Marine Sediments Using MAME-GFAAS. J. Anal. At. Spectrom. 2015, 30, 435–442. doi:10.1039/c4ja00342j.
  • Yildiz, D.; Demir, M. Flame Atomic Absorption Determination of Copper in Environmental Water with Cloud Point Extraction Using Isonitrosoacetophenone 2-Aminobenzoylhydrazone. J. Anal. Chem. 2019, 74, 437–443. doi:10.1134/s1061934819050022.
  • Madej, K. Microwave-Assisted and Cloud-Point Extraction in Determination of Drugs and Other Bioactive Compounds. TrAC, Trends Anal. Chem. 2009, 28, 436–446. doi:10.1016/j.trac.2009.02.002.
  • Hagarova, I.; Urik, M. New Approaches to the Cloud Point Extraction: Utilizable for Separation and Preconcentration of Trace Metals. CAC. 2016, 12, 87–93. doi:10.2174/1573411011666150601204931.
  • Nouh, E. S. A. A Developed Cloud Point Extraction Method for Tl(III) Determination by Flame Atomic Absorption Spectrometry. Int. J. Environ. Anal. Chem. 2022, 102, 2819–2829. doi:10.1080/03067319.2020.1759571.
  • Krishna, D. S.; Meeravali, N. N.; Kumar, S. J. A New Sequential and Simultaneous Speciation Analysis of Thallium in Coal Effluents by Graphite Furnace Atomic Absorption Spectrometry after a Novel Ligandless Mixed Micelle Cloud Point Extraction. Int. J. Environ. Anal. Chem. 2020, 100, 1079–1093. doi:10.1080/03067319.2019.1648643.
  • Meeravali, N. N.; Madhavi, K.; Kumar, S. J. Microwave Assisted Aqua Regia Extraction of Thallium from Sediment and Coal Fly Ash Samples and Interference Free Determination by Continuum Source ETAAS after Cloud Point Extraction. Talanta 2013, 104, 180–186. doi:10.1016/j.talanta.2012.11.002.
  • Biata, N. R.; Mashile, G. P.; Ramontja, J.; Mketo, N.; Nomngongo, P. N. Application of Ultrasound-Assisted Cloud Point Extraction for Preconcentration of Antimony, Tin and Thallium in Food and Water Samples Prior to ICP-OES Determination. J. Food Compos. Anal. 2019, 76, 14–21. doi:10.1016/j.jfca.2018.11.004.
  • Mortada, W. I.; Kenawy, I. M.; Hassanien, M. M. A Cloud Point Extraction Procedure for Gallium, Indium and Thallium Determination in Liquid Crystal Display and Sediment Samples. Anal. Methods 2015, 7, 2114–2120. doi:10.1039/c4ay02926g.
  • Zgola-Grzeskowiak, A.; Grzeskowiak, T. Dispersive Liquid-Liquid Microextraction. TrAC, Trends Anal. Chem. 2011, 30, 1382–1399. doi:10.1016/j.trac.2011.04.014.
  • Saraji, M.; Ghambari, H. Comparison of Three Different Dispersive Liquid-Liquid Microextraction Modes Performed on Their Most Usual Configurations for the Extraction of Phenolic, Neutral Aromatic, and Amino Compounds from Waters. J. Sep. Sci. 2018, 41, 3275–3284. doi:10.1002/jssc.201800133.
  • Bosch Ojeda, C.; Sanchez Rojas, F. Separation and Preconcentration by Dispersive Liquid-Liquid Microextraction Procedure: A Review. Chroma. 2009, 69, 1149–1159. doi:10.1365/s10337-009-1104-1.
  • Sharifi, V.; Abbasi, A.; Nosrati, A. Application of Hollow Fiber Liquid Phase Microextraction and Dispersive Liquid-Liquid Microextraction Techniques in Analytical Toxicology. J. Food Drug Anal.. 2016, 24, 264–276. doi:10.1016/j.jfda.2015.10.004.
  • Anthemidis, A. N.; Ioannou, K.-I. G. Sequential Injection Ionic Liquid Dispersive Liquid-Liquid Microextraction for Thallium Preconcentration and Determination with Flame Atomic Absorption Spectrometry. Anal. Bioanal. Chem. 2012, 404, 685–691. doi:10.1007/s00216-011-5700-1.
  • Escudero, L. B.; Wuilloud, R. G.; Olsina, R. A. Sensitive Determination of Thallium Species in Drinking and Natural Water by Ionic Liquid-Assisted Ion-Pairing Liquid-Liquid Microextraction and Inductively Coupled Plasma Mass Spectrometry. J. Hazard. Mater. 2013, 244-245, 380–386. doi:10.1016/j.jhazmat.2012.11.057.
  • Mohammadi, S. Z.; Sheibani, A.; Abdollahi, F.; Shahsavani, E. Speciation of Tl(III) and Tl(I) in Hair Samples by Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet Prior to Flame Atomic Absorption Spectrometry Determination. Arab. J. Chem. 2016, 9, S1510–S1515. doi:10.1016/j.arabjc.2012.03.008.
  • Escudero, L. B.; Berton, P.; Martinis, E. M.; Olsina, R. A.; Wuilloud, R. G. Dispersive Liquid-Liquid Microextraction and Preconcentration of Thallium Species in Water Samples by Two Ionic Liquids Applied as Ion-Pairing Reagent and Extractant Phase. Talanta 2012, 88, 277–283. doi:10.1016/j.talanta.2011.09.068.
  • Javedani-Asleh, F.; Eftekhari, M.; Chamsaz, M. Determination of Total Thallium in Water and Spinach Samples by Ligandless Microextraction Using Ion Pair-Based Dispersive Liquid-Liquid Microextraction Followed by Electrothermal Atomic Absorption Spectrometry. Spectrosc. Lett. 2016, 49, 420–425. doi:10.1080/00387010.2016.1186099.
  • Ivanenko, N. B.; Solovyev, N. D.; Ivanenko, A. A.; Ganeev, A. A. Application of Zeeman Graphite Furnace Atomic Absorption Spectrometry with High-Frequency Modulation Polarization for the Direct Determination of Aluminum, Beryllium, Cadmium, Chromium, Mercury, Manganese, Nickel, Lead, and Thallium in Human Blood. Arch. Environ. Contam. Toxicol. 2012, 63, 299–308. doi:10.1007/s00244-012-9784-1.
  • Campanella, B.; Casiot, C.; Onor, M.; Perotti, M.; Petrini, R.; Bramanti, E. Thallium Release from Acid Mine Drainages: Speciation in River and Tap Water from Valdicastello Mining District (Northwest Tuscany). Talanta 2017, 171, 255–261. doi:10.1016/j.talanta.2017.05.009.
  • Michalski, R.; Szopa, S. Variability in Inorganic as, Sb and Tl Species Concentrations in Waters and Bottom Sediments of the Klodnica River (Poland). J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 946–955. doi:10.1080/10934529.2017.1324707.
  • Chu, Y.-L.; Wang, R.-Y.; Jiang, S.-J. Speciation Analysis of Thallium by Reversed-Phase Liquid Chromatography - Inductively Coupled Plasma Mass Spectrometry. J. Chin Chem. Soc. 2012, 59, 219–225. doi:10.1002/jccs.201100389.
  • Chen, W.-T.; Jiang, S.-J.; Sahayam, A. C. Speciation Analysis of Thallium in Tobaccos Using Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry. Microchem. J. 2018, 141, 104–109. doi:10.1016/j.microc.2018.05.014.
  • Escudero, L. B.; García, C. B.; da Silva, S. M.; Barón, J. H. An Eco-Friendly Cellular Phase Microextraction Technique Based on the Use of Green Microalgal Cells for Trace Thallium Species Determination in Natural Water Samples. Anal. Methods 2015, 7, 7480–7487. doi:10.1039/c5ay01667c.
  • Beni, A.; Nagy, D.; Kapitany, S.; Posta, J. Separation/Preconcentration of Chromium Species with Continuous Liquid-Liquid Extraction Device and Its Determination by AAS. Microchem. J. 2019, 150, 104077. doi:10.1016/j.microc.2019.104077.
  • Li, S.; Wei, T.; Ren, G.; Chai, F.; Wu, H.; Qu, F. Gold Nanoparticles Based Colorimetric Probe for Cr(III) and Cr(VI) Detection. Colloids Surf., A 2017, 535, 215–224. doi:10.1016/j.colsurfa.2017.09.028.
  • Klotz, K.; Weistenhofer, W.; Drexler, H. Determination of Cadmium in Biological Samples. Met. Ions Life Sci. 2013, 11, 85–98. doi:10.1007/978-94-007-5179-8_4.
  • Gao, Y.; Shi, Z.; Long, Z.; Wu, P.; Zheng, C.; Hou, X. Determination and Speciation of Mercury in Environmental and Biological Samples by Analytical Atomic Spectrometry. Microchem. J. 2012, 103, 1–14. doi:10.1016/j.microc.2012.02.001.
  • Lemos, V. A.; de Carvalho, A. L. Determination of Cadmium and Lead in Human Biological Samples by Spectrometric Techniques: A Review. Environ. Monit. Assess. 2010, 171, 255–265. doi:10.1007/s10661-009-1276-z.
  • Malara, P.; Kwapulinski, J. Determination of Chromium in Human Premolar Teeth by Flame Atomic Absorption Spectrometry. Chem. Anal. (Warsaw) 2005, 50, 481–486.
  • Pyrzynska, K. Chemical Modification of Graphite Surfaces for the Determination of Chromium by Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta, Part B 1995, 50, 1595–1598. doi:10.1016/0584-8547(95)01406-3.
  • Khodarahmi, M.; Eftekhari, M.; Gheibi, M.; Chamsaz, M. Preconcentration of Trace Levels of Cadmium (D Dagger D Dagger) Ion Using Descurainia Sophia Seeds as a Green Adsorbent for Solid Phase Extraction Followed by Its Determination by Flame Atomic Absorption Spectrometry. Food Measure. 2018, 12, 1485–1492. doi:10.1007/s11694-018-9763-y.
  • Wu, P.; Li, C.; Chen, J.; Zheng, C.; Hou, X. Determination of Cadmium in Biological Samples: An Update from 2006 to 2011. Appl. Spectrosc. Rev. 2012, 47, 327–370. doi:10.1080/05704928.2012.665401.
  • Suvarapu, L. N.; Baek, S.-O. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques. J. Anal. Methods Chem. 2015, 2015, 1–18. doi:10.1155/2015/372459.
  • Tinas, H.; Ozbek, N.; Akman, S. Determination of Lead in Flour Samples Directly by Solid Sampling High Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta, Part B 2018, 140, 73–75. doi:10.1016/j.sab.2017.12.002.
  • Shams, A.; Ashraf, N.; Arbab-Zavar, M. H.; Masrournia, M. Ultra-Trace Determination of Thallium by Electrochemical Hydride Generation Using Efficient Tungsten Electrodes Followed by in Situ Trapping on a Graphite Tube and Detection by Electrothermal Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2017, 32, 2173–2181. doi:10.1039/c7ja00145b.
  • Picon, D.; Carrero, P.; Valero, M.; de Pena, Y. P.; Gutierrez, L. Improvement in Thallium Hydride Generation Using Iodide and Rhodamine B. Talanta 2015, 136, 136–144. doi:10.1016/j.talanta.2014.12.038.
  • Borges, A. R.; Francois, L. L.; Becker, E. M.; Vale, M. G. R.; Welz, B. Method Development for the Determination of Chromium and Thallium in Fertilizer Samples Using Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Microchem. J. 2015, 119, 169–175. doi:10.1016/j.microc.2014.11.007.
  • Krawczyk-Coda, M. Sequential Determination of Gallium, Indium, and Thallium in Environmental Samples after Preconcentration on Halloysite Nanotubes Using Ultrasound-Assisted Dispersive Micro Solid-Phase Extraction. New J. Chem. 2018, 42, 15444–15452. doi:10.1039/c8nj03555e.
  • Jaafarzadeh Haghighi Fard, N.; Zare Javid, A.; Ravanbakhsh, M.; Ramezani, Z.; Ahmadi, M.; Angali, K. A.; Ardeshirzadeh, S. Determination of Nickel and Thallium Concentration in Cynoglossus Arel Fish in Musa Estuary, Persian Gulf, Iran. Environ. Sci. Pollut. Res. Int. 2017, 24, 2936–2945. doi:10.1007/s11356-016-8055-5.
  • Asadpour, S.; Chamsaz, M.; Entezari, M. H.; Haron, M. J.; Ghows, N. On-Line Preconcentration of Ultra-Trace Thallium(I) in Water Samples with Titanium Dioxide Nanoparticles and Determination by Graphite Furnace Atomic Absorption Spectrometry. Arab. J. Chem. 2016, 9, S1833–S1839. doi:10.1016/j.arabjc.2012.05.003.
  • Liu, L.; Zheng, H.; Xu, B.; Xiao, L.; Chigan, Y.; Zhangluo, Y. In-Situ Pre-Concentration through Repeated Sampling and Pyrolysis for Ultrasensitive Determination of Thallium in Drinking Water by Electrothermal Atomic Absorption Spectrometry. Talanta 2018, 179, 86–91. doi:10.1016/j.talanta.2017.10.003.
  • Oliveira, H. R.; Mesko, M. F.; Vale, M. G. R.; Silveira, C. A. P.; Picoloto, R. S.; Becker, E. M. Development of Methods for the Determination of Cadmium and Thallium in Oil Shale by-Products with Graphite Furnace Atomic Absorption Spectrometry Using Direct Analysis. Microchem. J. 2014, 116, 55–61. doi:10.1016/j.microc.2014.04.006.
  • Afshar, E. A.; Taher, M. A.; Fazelirad, H. Ultra-Trace Determination of Thallium(I) using a Nanocomposite Consisting of Magnetite, Halloysite Nanotubes and Dibenzo-18-Crown-6 for Preconcentration Prior to Its Quantitation by ET-AAS. Microchim. Acta 2017, 184, 791–797. doi:10.1007/s00604-016-2040-z.
  • Firouzabadi, Z. D.; Shabani, A. M. H.; Dadfarnia, S.; Ehrampoush, M. H. Preconcentration and Speciation of Thallium by Ferrofluid Based Dispersive Solid Phase Extraction and Flame Atomic Absorption Spectrometry. Microchem. J. 2017, 130, 428–435. doi:10.1016/j.microc.2016.10.025.
  • Ari, B.; Bakirdere, S.; Ataman, O. Y. Development of Sensitive Analytical Methods for the Determination of Thallium at Trace Levels by Slotted Quartz Tube Flame Atomic Absorption Spectrometry. Spectrochim. Acta, Part B 2020, 171, 105937. doi:10.1016/j.sab.2020.105937.
  • Nadiki, H. H.; Taher, M. A.; Ashkenani, H. Ionic Liquid Ultrasound Assisted Dispersive Liquid-Liquid/Micro-Volume Back Extraction Procedure for Preconcentration and Determination of Ultra Trace Amounts of Thallium in Water and Biological Samples. Int. J. Environ. Anal. Chem. 2013, 93, 623–636. doi:10.1080/03067319.2011.649743.
  • Nazari, S.; Mehri, A.; Hassannia, A. S. Fe3O4-Modified Graphene Oxide as a Sorbent for Sequential Magnetic Solid Phase Extraction and Dispersive Liquid Phase Microextraction of Thallium. Microchim. Acta 2017, 184, 3239–3246. doi:10.1007/s00604-017-2340-y.
  • Hassanien, M. M.; Mortada, W. I.; Kenawy, I. M.; El-Daly, H. Solid Phase Extraction and Preconcentration of Trace Gallium, Indium, and Thallium Using New Modified Amino Silica. Appl. Spectrosc. 2017, 71, 288–299. doi:10.1177/0003702816654166.
  • Kumar, K. R.; Madhavi, K.; Shyamala, P.; Meeravali, N. N.; Kumar, S. J. A Novel Synergetic Salt- and Acid-Induced Ligandless Mixed Micelle Cloud Point Extraction of Ultratrace Levels of Cd, Hg, Bi, and Tl from Petrochemical Effluents Followed by ETAAS Determination. At. Spectrosc. 2018, 39, 118–125. doi:10.46770/as.2018.03.005.
  • Fazelirad, H.; Taher, M. A. Ligandless, Ion Pair-Based and Ultrasound Assisted Emulsification Solidified Floating Organic Drop Microextraction for Simultaneous Preconcentration of Ultra-Trace Amounts of Gold and Thallium and Determination by GFAAS. Talanta 2013, 103, 375–383. doi:10.1016/j.talanta.2012.10.082.
  • Greda, K.; Gorska, M.; Welna, M.; Jamroz, P.; Pohl, P. In-Situ Generation of Ag, Cd, Hg, in, Pb, Tl and Zn Volatile Species by Flowing Liquid Anode Atmospheric Pressure Glow Discharge Operated in Gaseous Jet mode - Evaluation of Excitation Processes and Analytical Performance. Talanta 2019, 199, 107–115. doi:10.1016/j.talanta.2019.02.058.
  • Shekhar, R.; Madhavi, K.; Meeravali, N. N.; Kumar, S. J. Determination of Thallium at Trace Levels by Electrolyte Cathode Discharge Atomic Emission Spectrometry with Improved Sensitivity. Anal. Methods 2014, 6, 732–740. doi:10.1039/c3ay40390d.
  • Zu, W.; Wang, Y.; Yang, X.; Liu, C. A Portable Solution Cathode Glow Discharge-Atomic Emission Spectrometer for the Rapid Determination of Thallium in Water Samples. Talanta 2017, 173, 88–93. doi:10.1016/j.talanta.2017.05.073.
  • Abdallah Alnuwaiser, M. An Analytical Survey of Trace Heavy Elements in Insecticides. Int. J. Anal. Chem. 2019, 2019, 8150793. doi:10.1155/2019/8150793.
  • Shimamura, T.; Iijima, S.; Hirayama, M.; Iwashita, M.; Akiyama, S.; Takaku, Y.; Yumoto, S. The Concentrations of Major and Trace Elements in Rat Kidney: Aging Effects and Mutual Relationships. J. Trace Elem. Med. Biol. 2013, 27, 12–20. doi:10.1016/j.jtemb.2012.05.005.
  • Tschaen Schunk, P. F.; Kalil, I. C.; Pimentel-Schmitt, E. F.; Lenz, D.; de Andrade, T. U.; Ribeiro, J. S.; Endringer, D. C. ICP-OES and Micronucleus Test to Evaluate Heavy Metal Contamination in Commercially Available Brazilian Herbal Teas. Biol. Trace Elem. Res. 2016, 172, 258–265. doi:10.1007/s12011-015-0566-2.
  • Dolar-Szczasny, J., Święch, A., Flieger, J., Tatarczak-Michalewska, M., Niedzielski, P., Proch, J., Majerek, P.; Kawka, J., Mackiewicz, J. Levels of Trace Elements in the Aqueous Humor of Cataract Patients Measured by the Inductively Coupled Plasma Optical Emission Spectrometry. Molecules 2019, 24, 4127–4142. doi:10.3390/molecules24224127.
  • Ng, C. K. Y.; Lam, J. C. W.; Zhang, X. H.; Gu, H. X.; Li, T. H.; Ye, M. B.; Xia, Z. R.; Zhang, F. Y.; Duan, J. X.; Wang, W. X.; et al. Levels of Trace Elements, Methylmercury and Polybrominated Diphenyl Ethers in Foraging Green Turtles in the South China Region and Their Conservation Implications. Environ. Pollut. 2018, 234, 735–742. doi:10.1016/j.envpol.2017.11.100.
  • Sereshti, H.; Heravi, Y. E.; Samadi, S. Optimized Ultrasound-Assisted Emulsification Microextraction for Simultaneous Trace Multielement Determination of Heavy Metals in Real Water Samples by ICP-OES. Talanta 2012, 97, 235–241. doi:10.1016/j.talanta.2012.04.024.
  • Yuan, M.; Peng, X.; Ge, F.; Li, Q.; Wang, K.; Yu, D.-G.; Wang, Z. Simplified Design for Solution Anode Glow Discharge Atomic Emission Spectrometry Device for Highly Sensitive Detection of Ag, Bi, Cd, Hg, Pb, Tl, and Zn. Microchem. J. 2020, 155, 104785. doi:10.1016/j.microc.2020.104785.
  • Pinheiro, F. C.; Barros, A. I.; Nobrega, J. A. Microwave-Assisted Sample Preparation of Medicines for Determination of Elemental Impurities in Compliance with United States Pharmacopeia: How Simple Can It Be? Anal. Chim. Acta. 2019, 1065, 1–11. doi:10.1016/j.aca.2019.03.016.
  • Hayashi, H.; Furuzawa, S.; Tanaka, T.; Hiraide, M. Low-Pressure Helium Inductively Coupled Plasma Mass Spectrometry: Sample Aerosol Introduction through a Capillary Interface from a Vibrating Mesh Nebulizer. J. Anal. At. Spectrom. 2004, 19, 773–774. doi:10.1039/b310935f.
  • Kunze, J.; Koelling, S.; Reich, M.; Wimmer, M. A. ICP-MS Determination of Titanium and Zirconium in Human Serum Using an Ultrasonic Nebulizer with Desolvator Membrane. At. Spectrosc 1998, 19, 164–167.
  • Druzian, G. T.; Pereira, L. S. F.; Mello, P. A.; Mesko, M. F.; Duarte, F. A.; Flores, E. M. M. Rare Earth Element Determination in Heavy Crude Oil by USN-ICP-MS after Digestion Using a Microwave-Assisted Single Reaction Chamber. J. Anal. At. Spectrom. 2016, 31, 1185–1191. doi:10.1039/c6ja00050a.
  • Pereira, J. S. F.; Pereira, L. S. F.; Mello, P. A.; Guimaraes, R. C. L.; Guarnieri, R. A.; Fonseca, T. C. O.; Flores, E. M. M. Microwave-Induced Combustion of Crude Oil for Further Rare Earth Elements Determination by USN-ICP-MS. Anal. Chim. Acta 2014, 844, 8–14. doi:10.1016/j.aca.2014.07.043.
  • Ely, J. C.; Neal, C. R.; Kulpa, C. F.; Schneegurt, M. A.; Seidler, J. A.; Jain, J. C. Implications of Platinum-Group Element Accumulation along US Roads from Catalytic-Converter Attrition. Environ. Sci. Technol. 2001, 35, 3816–3822. doi:10.1021/es001989s.
  • Karlsson, U.; Duker, A.; Karlsson, S. Separation and Quantification of Tl(I) and Tl(III) in Fresh Water Samples. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2006, 41, 1155–1167. doi:10.1080/10934520600655747.
  • Krasnodębska-Ostręga, B.; Sadowska, M.; Piotrowska, K.; Wojda, M. Thallium (III) Determination in the Baltic Seawater Samples by ICP MS after Preconcentration on SGX C18 Modified with DDTC. Talanta 2013, 112, 73–79. doi:10.1016/j.talanta.2013.03.059.
  • Jia, Y.; Xiao, T.; Sun, J.; Yang, F.; Baveye, P. C. Microcolumn-Based Speciation Analysis of Thallium in Soil and Green Cabbage. Sci. Total Environ. 2018, 630, 146–153. doi:10.1016/j.scitotenv.2018.02.147.
  • Xu, T.; Hu, J.; Chen, H. Transition Metal Ion Co(II)-Assisted Photochemical Vapor Generation of Thallium for Its Sensitive Determination by Inductively Coupled Plasma Mass Spectrometry. Microchem. J. 2019, 149, 103972. doi:10.1016/j.microc.2019.103972.
  • Böning, P.; Schnetger, B. Rapid and Accurate Determination of Thallium in Seawater Using SF-ICP-MS. Talanta 2011, 85, 1695–1697. doi:10.1016/j.talanta.2011.06.031.
  • Szopa, S.; Michalski, R. Simultaneous Determination of Inorganic Forms of Arsenic, Antimony, and Thallium by HPLC-ICP-MS. LC GC Eur. 2014, 27, 525–532.
  • Tanvir, E. M.; Whitfield, K. M.; Ng, J. C.; Shaw, P. N. Development and Validation of an ICP-MS Method and Its Application to Determine Multiple Trace Elements in Small Volumes of Whole Blood and Plasma. J. Anal. Toxicol. 2021, 44, 1036–1046. doi:10.1093/jat/bkaa033.
  • Moyano, F.; Verni, E.; Tamashiro, H.; Digenaro, S.; Martinez, L. D.; Gil, R. A. Single-Step Procedure for Trace Element Determination in Synovial Fluid by Dynamic Reaction Cell-Inductively Coupled Plasma Mass Spectrometry. Microchem. J. 2014, 112, 17–24. doi:10.1016/j.microc.2013.09.015.
  • Xiao, Q.; Rasool, A.; Xiao, T.; Baveye, P. C. A Modified Method of Separating Tl(I) and Tl(III) in Aqueous Samples Using Solid Phase Extraction. Chem. Cent. J. 2018, 12, 132–139. doi:10.1186/s13065-018-0502-6.
  • Astolfi, M. L.; Marconi, E.; Protano, C.; Vitali, M.; Schiavi, E.; Mastromarino, P.; Canepari, S. Optimization and Validation of a Fast Digestion Method for the Determination of Major and Trace Elements in Breast Milk by ICP-MS. Anal. Chim. Acta 2018, 1040, 49–62. doi:10.1016/j.aca.2018.07.037.
  • Kilic, S.; Kilic, M. Determination of Trace Elements and Human Health Risk Assessment in Bottled Spring Water: Method Validation. At. Spectrosc. 2019, 40, 161–166. doi:10.46770/as.2019.05.002.
  • Kilic, S. Survey of Trace Elements in Bottled Natural Mineral Waters Using ICP-MS. Environ. Monit. Assess. 2019, 191, 452–459. doi:10.1007/s10661-019-7578-x.
  • Carter, J. A.; Jones, B. T.; Donati, G. L. Trace Element Analysis, Model-Based Clustering and Flushing to Prevent Drinking Water Contamination in Public Schools. J. Braz. Chem. Soc. 2018, 30, 462–471. doi:10.21577/0103-5053.20180199.
  • Qian, L.; Zhang, C.; Zuo, F.; Zheng, L.; Li, D.; Zhang, A.; Zhang, D. Effects of Fertilizers and Pesticides on the Mineral Elements Used for the Geographical Origin Traceability of Rice. J. Food Compos. Anal. 2019, 83, 103276. doi:10.1016/j.jfca.2019.103276.
  • Villafane, R.; Hidalgo, M.; Piccoli, A.; Marchevsky, E.; Pellerano, R. Non-Essential Element Concentrations in Brown Grain Rice: Assessment by Advanced Data Mining Techniques. Environ. Sci. Pollut. Res. Int. 2018, 25, 21362–21367. doi:10.1007/s11356-017-9017-2.
  • Saribal, D. ICP-MS Analysis of Trace Element Concentrations in Cow’s Milk Samples from Supermarkets in Istanbul, Turkey. Biol. Trace Elem. Res. 2020, 193, 166–173. doi:10.1007/s12011-019-01708-4.
  • Husakova, L.; Urbanova, I.; Sramkova, J.; Konecna, M.; Bohuslavova, J. Multi-Element Analysis of Milk by ICP-oa-TOF-MS after Precipitation of Calcium and Proteins by Oxalic and Nitric Acid. Talanta 2013, 106, 66–72. doi:10.1016/j.talanta.2012.12.015.
  • Islam, M. A.; Hwang, I. M.; Khan, N.; Song, O. Y.; Jeong, J. Y.; Son, J. H.; Jamila, N.; Kim, K. S. Authentication of Leaves and Petioles ofPiper betleL. Varieties via Elemental Composition and Multivariate Chemometric Analysis. Anal. Lett. 2021, 54, 1794–1808. doi:10.1080/00032719.2020.1825465.
  • Matos, C.; Moutinho, C.; Almeida, C.; Guerra, A.; Balcao, V. Trace Element Compositional Changes in Human Milk during the First Four Months of Lactation. Int. J. Food Sci. Nutr. 2014, 65, 547–551. doi:10.3109/09637486.2014.893281.
  • Jamila, N.; Khan, N.; Hwang, I. M.; Nho, E. Y.; Choi, J. Y.; Atlas, A.; Khan, S. N.; Amin, F.; Javed, F.; Kim, K. S. Application of Phytochemical and Elemental Profiling, Chemometric Multivariate Analyses, and Biological Activities for Characterization and Discrimination of Fruits of Four Garcinia Species. Anal. Lett. 2020, 53, 122–139. doi:10.1080/00032719.2019.1640244.
  • Enamorado, S.; Abril, J. M.; Delgado, A.; Mas, J. L.; Polvillo, O.; Quintero, J. M. Implications for Food Safety of the Uptake by Tomato of 25 Trace-Elements from a Phosphogypsum Amended Soil from SW Spain. J. Hazard. Mater. 2014, 266, 122–131. doi:10.1016/j.jhazmat.2013.12.019.
  • Pearson, A. J.; Ashmore, E. Risk Assessment of Antimony, Barium, Beryllium, Boron, Bromine, Lithium, Nickel, Strontium, Thallium and Uranium Concentrations in the New Zealand Diet. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 451–464. doi:10.1080/19440049.2019.1704445.
  • Sun, B.; Xing, M. Evaluated the Twenty-Six Elements in the Pectoral Muscle of as-Treated Chicken by Inductively Coupled Plasma Mass Spectrometry. Biol. Trace Elem. Res. 2016, 169, 359–364. doi:10.1007/s12011-015-0418-0.
  • Kowalska, G.; Pankiewicz, U.; Kowalski, R.; Mazurek, A. Determination of the Content of Selected Trace Elements in Polish Commercial Fruit Juices and Health Risk Assessment. Open Chem. 2020, 18, 443–452. doi:10.1515/chem-2020-0043.
  • Yin Liang, L.; Tian, Q.; Shao Xian, Z.; Kong Xiang, Y.; Ji Yan, Q. Determination of Trace Elements in Edible Nuts in the Beijing Market by ICP-MS. Biomed. Environ. Sci. 2015, 28, 449–454. doi:10.3967/bes2015.063.
  • Oroian, M.; Sonia, S.; Amariei, A.; Leahu, A.; Gutt, G. Multi-Element Composition of Honey as a Suitable Tool for Its Authenticity. Pol. J. Food Nutr. Sci. 2015, 65, 93–100. doi:10.1515/pjfns-2015-0018.
  • Doker, S. Exploiting Aerosol Dilution for the Determination of Ultra-Trace Elements in Honey by Collision/Reaction Cell Inductively Coupled Plasma Mass Spectrometry (CRC-ICP-MS) without Thermal Digestion. Anal. Methods 2017, 9, 1710–1717. doi:10.1039/c6ay03140d.
  • Falandysz, J.; Zhang, J.; Wiejak, A.; Barałkiewicz, D.; Hanć, A. Metallic Elements and Metalloids in Boletus Luridus, B. magnificus and B. tomentipes Mushrooms from Polymetallic Soils from SW China. Ecotoxicol. Environ. Saf. 2017, 142, 497–502. doi:10.1016/j.ecoenv.2017.04.055.
  • Mędyk, M.; Chudzińska, M.; Barałkiewicz, D.; Falandysz, J. Specific Accumulation of Cadmium and Other Trace Elements in Sarcodon Imbricatus Using ICP-MS with a Chemometric Approach. J. Environ. Sci. Health. B 2017, 52, 361–366. doi:10.1080/03601234.2017.1283145.
  • Miedico, O.; Pompa, C.; Tancredi, C.; Cera, A.; Pellegrino, E.; Tarallo, M.; Chiaravalle, A. E. Characterisation and Chemometric Evaluation of 21 Trace Elements in Three Edible Seaweed Species Imported from South-East Asia. J. Food Compos. Anal. 2017, 64, 188–197. doi:10.1016/j.jfca.2017.09.004.
  • Park, Y. M.; Choi, J. Y.; Nho, E. Y.; Lee, C. M.; Hwang, I. M.; Khan, N.; Jamila, N.; Kim, K. S. Determination of Macro and Trace Elements in Canned Marine Products by Inductively Coupled Plasmaoptical Emission Spectrometry (ICP-OES) and ICPmass Spectrometry (ICP-MS). Anal. Lett. 2019, 52, 1018–1030. doi:10.1080/00032719.2018.1510938.
  • Yang, Y.; Liu, Z.; Chen, F.; Wu, S.; Zhang, L.; Kang, M.; Li, J. Assessment of Trace Element Contamination in Sediment Cores from the Pearl River and Estuary, South China: Geochemical and Multivariate Analysis Approaches. Environ. Monit. Assess. 2014, 186, 8089–8107. doi:10.1007/s10661-014-3989-x.
  • Jablonska-Czapla, M.; Grygoyc, K. Spatial and Temporal Variability of Metal(Loid)s Concentration as Well as Simultaneous Determination of Five Arsenic and Antimony Species Using HPLC-ICP-MS Technique in the Study of Water and Bottom Sediments of the Shallow, Lowland, Dam Reservoir in Poland. Environ. Sci. Pollut. Res. 2020, 27, 12358–12375. doi:10.1007/s11356-020-07758-9.
  • Alsubaie, A.; Jaafar, M.; Al-Dabbous, A. N.; Alomairy, S.; Altowairqi, Y.; Daar, E.; Alkhorayef, M.; Alsulaiti, L.; Almugren, K. S.; Ward, N. I.; Bradley, D. A. A Comparison of Elemental Presence in UK and Kuwait Road Dust. Radiat. Phys. Chem. 2019, 155, 341–347. doi:10.1016/j.radphyschem.2018.08.020.
  • Drago, G.; Perrino, C.; Canepari, S.; Ruggieri, S.; L'Abbate, L.; Longo, V.; Colombo, P.; Frasca, D.; Balzan, M.; Cuttitta, G.; et al. Relationship between Domestic Smoking and Metals and Rare Earth Elements Concentration in Indoor PM2.5. Environ. Res. 2018, 165, 71–80. doi:10.1016/j.envres.2018.03.026.
  • Varhan Oral, E.; Tokul-Ölmez, Ö.; Yener, İ.; Firat, M.; Tunay, Z.; Terzioğlu, P.; Aydin, F.; Öztürk, M.; Ertaş, A. Trace Elemental Analysis of Allium Species by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) with Multivariate Chemometrics. Anal. Lett 2019, 52, 320–336. doi:10.1080/00032719.2018.1460376.
  • Biddau, R.; Cidu, R. Metals and Metalloids in Wild Asparagus at Uncontaminated and Mining-Contaminated Sites. J. Environ. Qual. 2017, 46, 320–329. doi:10.2134/jeq2016.09.0354.
  • Patočka, J.; Bendakovská, L.; Krejčová, A.; Černohorský, T.; Resano, M.; Bělina, P. Thallium in Spruce Needles: A Comparison of the Analytical Capabilities of Spectrochemical Methods. Anal. Methods 2017, 9, 705–715. doi:10.1039/c6ay02760a.
  • Curkovic, M.; Sipos, L.; Puntaric, D.; Dodig-Curkovic, K.; Pivac, N.; Kralik, K. Detection of Thallium and Uranium in Well Water and Biological Specimens of an Eastern Croatian Population. Arh. Hig. Rada Toksikol. 2013, 64, 385–394. doi:10.2478/10004-1254-64-2013-2300.
  • Ivanenko, N. B.; Ivanenko, A. A.; Solovyev, N. D.; Zeimal, A. E.; Navolotskii, D. V.; Drobyshev, E. J. Biomonitoring of 20 Trace Elements in Blood and Urine of Occupationally Exposed Workers by Sector Field Inductively Coupled Plasma Mass Spectrometry. Talanta 2013, 116, 764–769. doi:10.1016/j.talanta.2013.07.079.
  • Gaman, L.; Delia, C. E.; Luzardo, O. P.; Zumbado, M.; Badea, M.; Stoian, I.; Gilca, M.; Boada, L. D.; Alberto Henriquez-Hernandez, L. Serum Concentration of Toxic Metals and Rare Earth Elements in Children and Adolescent. Int. J. Environ. Health Res. 2020, 30, 696–712. doi:10.1080/09603123.2019.1626353.
  • Fort, M.; Cosin-Tomas, M.; Grimalt, J. O.; Querol, X.; Casas, M.; Sunyer, J. Assessment of Exposure to Trace Metals in a Cohort of Pregnant Women from an Urban Center by Urine Analysis in the First and Third Trimesters of Pregnancy. Environ. Sci. Pollut. Res. Int. 2014, 21, 9234–9241. doi:10.1007/s11356-014-2827-6.
  • Placido, J.; Bustamante-Lopez, S.; Meissner, K. E.; Kelly, D. E.; Kelly, S. L. Microalgae Biochar-Derived Carbon Dots and Their Application in Heavy Metal Sensing in Aqueous Systems. Sci. Total Environ. 2019, 656, 531–539. doi:10.1016/j.scitotenv.2018.11.393.
  • Wang, L.; Shi, Y. Determination of Heavy Metal Ions in Seawater by Water-Soluble Quantum Dot Fluorescence Probe. J. Coast. Res. 2019, 98, 146–150. doi:10.2112/si98-036.1.
  • Bai, L.; Tou, L. J.; Gao, Q.; Bose, P.; Zhao, Y. Remarkable Colorimetric Sensing of Heavy Metal Ions Based on Thiol-Rich Nanoframes. Chem. Commun. (Camb.) 2016, 52, 13691–13694. doi:10.1039/c6cc08007c.
  • Liu, D.-L.; Li, Y.; Sun, R.; Xu, J.-Y.; Chen, Y.; Sun, C.-Y. Colorimetric Detection of Organophosphorus Pesticides Based on the Broad-Spectrum Aptamer. J. Nanosci. Nanotechnol. 2020, 20, 2114–2121. doi:10.1166/jnn.2020.17358.
  • Zhang, C.; Jin, J.; Liu, K.; Ma, X.; Zhang, X. Carbon Dots-Peroxyoxalate Micelle as a Highly Luminous Chemiluminescence System under Physiological Conditions. Chin. Chem. Lett. 2021, 32, 3931–3935. doi:10.1016/j.cclet.2021.05.050.
  • Jiajia, Y.; Xiaoya, F.; Jiacheng, Y.; Xinfeng, Z. Rare Earth Complexes Chemiluminescence Catalyzed by Gold Nanoparticles for Fast Sensing of Tb3+ and Eu3+. Chin. Chem. Lett. 2023, 34, 108155. doi:10.1016/j.cclet.2023.108155.
  • Lin, S.; Wang, W.; Hu, C.; Yang, G.; Ko, C.-N.; Ren, K.; Leung, C.-H.; Ma, D.-L. The Application of a G-Quadruplex Based Assay with an Iridium(III) Complex to Arsenic Ion Detection and Its Utilization in a Microfluidic Chip. J. Mater. Chem. B 2017, 5, 479–484. doi:10.1039/c6tb02656g.
  • Siddiki, M. S. R.; Shimoaoki, S.; Ueda, S.; Maeda, I. Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium. Sensors (Basel) 2012, 12, 14041–14052. doi:10.3390/s121014041.
  • Xia, N.; Feng, F.; Liu, C.; Li, R.; Xiang, W.; Shi, H.; Gao, L. The Detection of Mercury Ion Using DNA as Sensors Based on Fluorescence Resonance Energy Transfer. Talanta 2019, 192, 500–507. doi:10.1016/j.talanta.2018.08.086.
  • Yang, D.; Liu, X.; Zhou, Y.; Luo, L.; Zhang, J.; Huang, A.; Mao, Q.; Chen, X.; Tang, L. Aptamer-Based Biosensors for Detection of Lead(II) Ion: A Review. Anal. Methods 2017, 9, 1976–1990. doi:10.1039/c7ay00477j.
  • Hoang, M.; Huang, P.-J. J.; Liu, J. G-Quadruplex DNA for Fluorescent and Colorimetric Detection of Thallium(I). ACS Sens. 2016, 1, 137–143. doi:10.1021/acssensors.5b00147.
  • Lu, X.; Zhang, J.; Xie, Y. N.; Zhang, X.; Jiang, X.; Hou, X.; Wu, P. Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots. Anal. Chem. 2018, 90, 2939–2945. doi:10.1021/acs.analchem.7b05365.
  • Huang, L.; Wang, L.; Nie, Z.; Wang, Y. Simultaneous Quantitative Measurements of Tl + and Pb2+ in Drinking Water Based on Nanoplasmonic Probe. Food Chem. 2020, 319, 126543. doi:10.1016/j.foodchem.2020.126543.
  • Lee, Y. J.; Choi, M. G.; Yoo, J. H.; Park, T. J.; Ahn, S.; Chang, S.-K. Dual Signaling of Thallium(III) Ions via Oxidative Cleavage of a Sulfonhydrazide Linkage. J. Photochem. Photobiol., A 2020, 394, 112471. doi:10.1016/j.jphotochem.2020.112471.
  • Puccini, M.; Guazzelli, L.; Tasca, A. L.; Mezzetta, A.; Pomelli, C. S. Development of a Chemosensor for the in Situ Monitoring of Thallium in the Water Network. Water Air Soil Pollut. 2018, 229, 237–248. doi:10.1007/s11270-018-3883-1.
  • Huang, P.-J. J.; Vazin, M.; Liu, J. Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium. Anal. Chem. 2015, 87, 10443–10449. doi:10.1021/acs.analchem.5b02568.
  • Nowicka, A. M.; Krasnodebska-Ostrega, B.; Wrzosek, B.; Jastrzebska, M.; Sadowska, M.; Mackiewicz, M.; Stojek, Z. Detection of Oxidative Damage of Synthetic Oligonucleotides Caused by Thallium(III) Complexes. Electroanalysis 2014, 26, 340–350. doi:10.1002/elan.201300489.
  • Li, T.; Zhang, Y.; Sun, X.; Zhang, Y.; Wang, Y.; Nie, Z. Dual Dye-Labeled G-Quadruplex Aptasensor for Detection of Thallium(I) using Ratiometric Fluorescence Resonance Energy Transfer. Talanta 2021, 233, 122508. doi:10.1016/j.talanta.2021.122508.
  • Zhen, D.; Chengxia, X.; Xianming, L.; Peng, W. Probing the Tl+-Induced Structural Transformation of G-Rich DNA to G-Quadruplex with a Label‐Free Thioflavin T-Based Biosensor. Sens. Actuators, B 2022, 378, 133210. doi:10.1016/j.snb.2022.133210.
  • Qureshi, N.; Ehtisham-Ul-Haque, S.; Abbas, M.; Yameen, M.; Farooq Azhar, M.; Mahmoudi, G.; Nazir, A.; Iqbal, M. Synthesis of Fluorescent di-Dansyl Substituted Ethoxy Compound: A Selective Sensor for Antimony and Thallium Metals Detection. J. Mater. Res. Technol. 2019, 8, 1576–1580. doi:10.1016/j.jmrt.2017.12.007.
  • Ge, S.; Dai, P.; Yu, J.; Zhu, Y.; Huang, J.; Zhang, C.; Ge, L.; Wan, F. Determination of Thallium(III) with Novel Arsenoxylphenylazo Rhodanine after Pre-Concentration and Separation. Int. J. Environ. Anal. Chem. 2010, 90, 1139–1147. doi:10.1080/03067310903026653.
  • Amin, A. S.; El-Sharjawy, A. A.; Kassem, M. A. Determination of Thallium at Ultra-Trace Levels in Water and Biological Samples Using Solid Phase Spectrophotometry. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2013, 110, 262–268. doi:10.1016/j.saa.2013.01.096.
  • Pandey, G. P.; Singh, A. K.; Prasad, S.; Deshmukh, L.; Asthana, A. Development of Surfactant Assisted Kinetic Method for Trace Determination of Thallium in Environmental Samples. Microchem. J. 2015, 118, 150–157. doi:10.1016/j.microc.2014.08.013.
  • Zhang, X.; Fan, X.; Wang, Y.; Lei, F.; Li, L.; Liu, J.; Wu, P. Highly Stable Colorimetric Sensing by Assembly of Gold Nanoparticles with SYBR Green I: From Charge Screening to Charge Neutralization. Anal. Chem. 2020, 92, 1455–1462. doi:10.1021/acs.analchem.9b04660.
  • Huang, L.; Xiang, L.; Zhang, Y.; Wang, Y.; Nie, Z. Simultaneous Quantitative Analysis of K + and Tl + in Serum and Drinking Water Based on UV-Vis Spectra and Chemometrics. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 238, 118392. doi:10.1016/j.saa.2020.118392.
  • Lei, F. J.; Ye, Z. Y.; Dong, Z.; Zhang, X. F.; Wu, P. Thioflavine T-Induced Charge Neutralization Assembly of AuNPs for Colorimetric Sensing of Thallium. Sens. Actuators B Chem. 2022, 370, 132437. doi:10.1016/j.snb.2022.132437.
  • Yoo, J. H.; Lee, Y. J.; Lee, K. M.; Choi, M. G.; Park, T. J.; Chang, S.-K. Determination of Thallium(Iii) Ions by Oxidative Hydrolysis of Rhodamine-Hydroxamate. New J. Chem. 2021, 45, 603–609. doi:10.1039/d0nj05002d.
  • Parakudyil, A. S.; Pillai, A. K.; Mathew, S. B. Sensitive Spectrophotometric Determination of Thallium(I)using Rhodamine B Hydrazide in Micellar Medium. Anal. Methods 2011, 3, 1546–1551. doi:10.1039/c0ay00551g.
  • Ahmed, M. J.; Mia, M. L. A New Simple, Highly Sensitive and Selective Spectrofluorimetric Method for the Speciation of Thallium at Pico-Trace Levels in Various Complex Matrices Using N-(Pyridin-2-yl)-Quinoline-2-Carbothioamide. RSC Adv. 2021, 11, 32312–32328. doi:10.1039/d1ra05388d.
  • Puga Molina, L. D. C.; Viviana Verstraeten, S. Detection of Tl(III) with Luminol at Physiological pH Requires Hydrogen Peroxide as co-Oxidant. J. Lumin. 2013, 137, 191–197. doi:10.1016/j.jlumin.2012.12.039.
  • Fytianos, K. Speciation Analysis of Heavy Metals in Natural Waters: A Review. J. AOAC Int. 2001, 84, 1763–1769. 10.1093/jaoac/84.6.1763
  • Hossain, M. A.; Furumai, H.; Nakajima, F.; Aryal, R. K. Heavy Metals Speciation in Soakaways Sediment and Evaluation of Metal Retention Properties of Surrounding Soil. Water Sci. Technol. 2007, 56, 81–89. doi:10.2166/wst.2007.746.
  • Zhang, L.; Shang, Z.; Guo, K.; Chang, Z.; Liu, H.; Li, D. Speciation Analysis and Speciation Transformation of Heavy Metal Ions in Passivation Process with Thiol-Functionalized Nano-Silica. Chem. Eng. J. 2019, 369, 979–987. doi:10.1016/j.cej.2019.03.077.
  • Michalski, R. Applications of Ion Chromatography for the Determination of Inorganic Cations. Crit. Rev. Anal. Chem. 2009, 39, 230–250. doi:10.1080/10408340903032453.
  • Karaś, K.; Frankowski, M. Analysis of Hazardous Elements in Children Toys: Multi-Elemental Determination by Chromatography and Spectrometry Methods. Molecules 2018, 23, 3017. doi:10.3390/molecules23113017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.