Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 42, 2016 - Issue 6
669
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation

, , &
Pages 690-705 | Received 26 Jan 2016, Accepted 08 Jun 2016, Published online: 10 Sep 2016

REFERENCES

  • Abedi, M., Norouzi, G. H., and Bahroudi, A. 2012. “Support vector machine for multi-classification of mineral prospecting areas.” Computers & Geosciences, Vol. 46: pp. 272–283.
  • Agarwal, R., Ranjan, P., and Chipman, H. 2014. “A new Bayesian ensemble of trees approach for land cover classification of satellite imagery.” Canadian Journal of Remote Sensing, Vol. 39(No. 6): pp. 507–520.
  • Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., and Notarnicola, C. 2015. “Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data.” Remote Sensing, Vol. 7: pp. 16398–16421.
  • Andersen, H.-E., Stunk, J., Temesgen, H., Atwood, D., and Winterberger, K. 2011. “Using multi-level remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska.” Canadian Journal of Remote Sensing, Vol. 37(No. 6): pp. 596–611.
  • Asrar, G. 1989. “Theory and applications of optical remote sensing.” New York, NY: J. Wiley & Sons.
  • Asrar, G., Fuchs, M., Kanemasu, E. T., and Hatfield, J. L. 1984. “Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat.” Agronomy Journal, Vol. 76(No. 2): pp. 300–306.
  • Baret, F., and Guyot, G. 1991. “Potentials and limits of vegetation indices for LAI and APAR assessment.” Remote Sensing of Environment, Vol. 35(No. 23): pp. 161–173.
  • Bayoudh, M., Roux, E., Richard, G., and Nock, R. 2015. Structural knowledge learning from maps for supervised land cover/use classification: application to the monitoring of land cover/use maps in French Guiana. Computers & Geosciences, Vol. 76: pp. 31–40.
  • Breidenbach, J., Næsset, E., and Gobakken, T. 2012. “Improving k-nearest neighbor predictions in forest inventories by combining high and low density airborne laser scanning data. Remote Sensing of Environment, Vol. 117: pp. 358–365.
  • Breiman, L. 2001. “Random forests.” Machine Learning, Vol. 45(No. 1): pp. 5–32.
  • Brutsaert, W. 1975. “On a derivable formula for long-wave radiation from clear skies.” Water Resources Research, Vol. 11(No. 5): pp. 742–744.
  • Bunker, D. E., DeClerck, F., Bradford, J. C., Colwell, R. K., and Perfecto, I. 2005. “Species loss and aboveground carbon storage in a tropical forest.” Science, Vol. 310: pp. 1029–1031.
  • Camps-Valls, G., and Bruzzone, L. 2005. “Kernel-based methods for hyperspectral image classification.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 43: pp. 1351–1362.
  • Castillo-Santiago, M.A, Ghilardi, A., Oyama, K., Hermadez-Stefanoni, J. L., Torres, I., Flamenco-Sandoval, A., Fernández, A., and Jean-Francois, M. 2013. “Estimating the spatial distribution of woody biomass suitable for charcoal making from remote sensing and geostatistics in central Mexico.” Energy for Sustainable Development, Vol. 17(No. 2): pp. 177–188.
  • Corral-Rivas, J., Vargas, B., Wehenkel, C., Aguirre, O., Álvarez, J. G., and Rojo, A. 2009. Guía para el Establecimiento de Sitios de Inventario Periódico Forestal y de Suelos del Estado de Durango. Durango, Mexico: Universidad Juárez del Estado de Durango.
  • Cortes, C., and Vapnik, V. 1995. “Support-vector networks.” Machine Learning, Vol. 20(No. 3): pp. 273–297.
  • Cover, T., and Hart, P. 1967. “Nearest neighbor pattern classification.” IEEE Transactions on Information Theory, Vol. 13(No. 1): pp. 21–27.
  • Cracknell, J. M., and Reading, M. A. 2014. “Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information.” Computers & Geosciences, Vol. 63: pp. 22–33.
  • Deschamps, B., McNairn, H., Shang, J., and Jiao, X. 2012. “Towards operational radar-only crop type classification: comparison of a traditional decision tree with a random forest classifier.” Canadian Journal of Remote Sensing, Vol. 38(No. 1): pp. 60–68.
  • Dube, T., and Mutanga, O. 2015. “Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in Mgeni catchment, South Africa.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 101: pp. 36–46.
  • Eckert, S. 2012. “Improved forest biomass and carbon estimations using texture measures from worldview-2 satellite data.” Remote Sensing, Vol. 4(No. 4): pp. 810–829.
  • ERDAS Inc. 2014. Erdas Imagine, accessed October 6, 2014, http://www.hexagongeospatial.com/products/ERDAS-IMAGINE/details.aspx.
  • FAO. 2001. Global Forest Resources Assessment 2000, Main Report. FAO Forestry Paper 140. Rome: FAO.
  • FAO. 2006. Global Forest Resources Assessment 2005. FAO Forestry Paper 147. Rome: FAO.
  • Fassnacht, F. E., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, V., and Koch, B. 2014. “Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass.” Remote Sensing of Environment, Vol. 154: pp. 102–114.
  • Frazier, R. J., Coops, C. N., Wulder, A. M., and Kennedy, R. 2014. “Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 92: pp. 137–146.
  • García, S., Fernández, A., Luengo, J., and Herrera, F. 2010. “Advanced non-parametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power.” Information Sciences, Vol. 180(No. 10): pp. 2044–2064.
  • García-Gutiérrez, J., González-Ferreiro, E., Riquelme-Santos, J. C., Miranda, D., Dieguez-Aranda, U., and Navarro-Cerrillo, R. M. 2014. “Evolutionary feature selection to estimate forest stand variables using LiDAR.” International Journal of Applied Earth Observation and Geoinformation, Vol. 26: pp. 119–131.
  • García-Gutiérrez, J., Martinez-Alvarez, F., Troncoso, A., and Riquelme, J. C. 2015. “A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables.” Neurocomputing, Vol. 167: pp. 24–31.
  • GCOS. 2010. Global Climate Observing System. Essential Climate Variables, accessed April 13, 2016, http://www.wmo.int/pages/prog/gcos/index.php?name=Essential ClimateVariables.
  • Geosystems. 2013. Atcor for Erdas Imagine. Switzerland: Geosystems GmbH.
  • Ghosh, A., Fassnacht, F. E., Joshi, P. K., and Koch, B. 2014. “A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales.” International Journal of Applied Earth Observation and Geoinformation, Vol. 26: pp. 49–63.
  • Gleason, C.J., and Im, J.2012Forest biomass estimation from airborne LIDAR data using machine learning approachesRemote Sensing of Environment12580--91
  • Günlü, A., Ercanli, A., Baskent, I., and Cakir, G. 2014. “Estimating aboveground biomass using Landsat TM imagery: a case study of Anatolian Crimean pine forests in Turkey.” Annals of Forest Research, Vol. 57: pp. 289–298.
  • Guo, Y., Tian, X., Li, Z., Ling, F., Chen, E., Yan, M., Li, C., 2014. Comparison of estimating forest above-ground biomass over montane area by two non-parametric nonparametric methods. In Proceedings of 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 741–744. IEEE.
  • Hall, M. 1999. Correlation-Based Feature Selection for Machine Learning. PhD thesis, University of Waikato, Hamilton, New Zealand.
  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. 2009. The WEKA data mining software: An update. SIGKDD Explorations, Vol. 11(No. 1): pp. 10–18.
  • Haralick, R. M., Shanmugam, K., and Dinstein, I. 1973. “Textural features for image classification.” IEEE Transactions on Systems, Man and Cybernetics, Vol. 3(No. 6): pp. 610–621.
  • Hartig, F., Dyke, J., Hickler, T., Higgins, S. I., O’Hara, R. B., Scheiter, S., and Huth, A. 2012. “Connecting dynamic vegetation models to data - an inverse perspective.” Journal of Biogeography, Vol. 39(No. 12): pp. 2240–2252.
  • Huang, C. L., and Wang, C. J. 2006. “A GA-based feature selection and parameters optimization for support vector machines.” Expert Systems with Applications, Vol. 31(No. 2): pp. 231–240.
  • Huete, A. R. 1988. “A soil-adjusted vegetation index (SAVI).” Remote Sensing of Environment, Vol. 25(No. 3): pp. 295–309.
  • Hughes, G. F. 1968. “On the mean accuracy of statistical pattern recognizers.” IEEE Transactions on Information Theory, Vol. 14(No. 1): pp. 55–63.
  • INEGI - Instituto Nacional de Estadística Geográfica e Informática. 2012. Uso del suelo y vegetación escala 1: 250 000 serie v, información vectorial. México.
  • INEGI - Instituto Nacional de Estadística Geográfica e Informática. 2014. Continuo de elevaciones mexicano 3.0 (CEM 3.0). México.
  • Jachowski, N.R.A., Quak, M.S.Y., Friess, D. A., Duangnamon, D., Webb, E. L., and Ziegler, A. D. 2013. “Mangrove biomass estimation in Southwest Thailand using machine learning.” Applied Geography, Vol. 45: pp. 311–321.
  • Jung, J., Kim, S., Hong, S., Kim, K., Kim, E., Im, J., and Heo. J. 2013. “Effects of national forest inventory plot location error on forest carbon stock estimation using k-nearest neighbor algorithm.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 81: pp. 82–92.
  • Kelsey, K. C., and Neff, J. C. 2014. “Estimates of aboveground biomass from texture analysis of Landsat imagery.” Remote Sensing, Vol. 6(No. 7): pp. 6407–6422.
  • Latifi, H., Nothdurft, A., and Koch, B. 2010. “Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/lidar-derived predictors.” Forestry, Vol. 83(No. 4): pp. 395–407.
  • Laurin, V. G., Chen, Q., Lindsell, A. J., Coomes, A. D., Del Frate, F., Guerriero, L., Pirotti, F., and Valentini, R. 2014. “Above ground biomass estimation in an African tropical forest with LiDAR and hyperspectral data.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 89: pp. 49–58.
  • Le Toan, T., and Quegan, S. 2015. BIOMASS Biomass Monitoring Mission for Carbon Assessment. Toulouse, France: CESBIO.
  • López-Serrano, P. M., Corral-Rivas, J. J., Díaz-Varela, R. A., Álvarez-González, J. G., and López-Sánchez, C. A. 2016. “Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using Landsat 5 TM data.” Remote Sensing, Vol. 8: p. 369.
  • López-Serrano, P. M., López-Sánchez, C. A., Díaz-Varela, R. A., Corral-Rivas, J. J., Solís-Moreno, R., Vargas-Larreta, B., Álvarez-González, J. G. 2016. “Estimating biomass of mixed and uneven-aged forests using spectral data and a hybrid model combining regression trees and linear models.” iForest - Biogeosciences and Forestry, Vol. 9: pp. 226–234.
  • López-Serrano, P. M., López-Sánchez, C. A., Solís-Moreno, R., Corral-Rivas, J. J. 2016. “Geospatial estimation of above ground forest biomass in the Sierra Madre Occidental in the state of Durango, Mexico.” Forests, Vol. 7: 70.
  • Lu, D. 2006. “The potential and challenge of remote sensing-based biomass estimation.” International Journal of Remote Sensing, Vol. 27: pp. 1297–1328.
  • Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., and Moran, E. 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, Vol. 9(No. 1): pp 63–105.
  • Lu, D., Mausel, P., Brondízio, E., and Moran, E. 2004. “Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin.” Forest Ecology and Management, Vol. 198: pp. 149–167.
  • Lu, D., Qi, C., Guangxing, W., Moran, E., Batistella, M., Maozhen Z., Vaglio, L. G., and Saah, D. 2012. “Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates.” International Journal of Forestry Research, Vol. 2012: pp. 1–16.
  • Luengo, J., García, S., and Herrera, F. 2009. “A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests.” Expert Systems with Applications, Vol. 36(No. 4): pp. 7798–7808.
  • Malhi, Y., Meir, P., and Brown, S. 2002. “Forests, carbon and global climate.” Philosophical Transactions of the Royal Society A, Vol. 360: pp. 1567–1591.
  • Malhi, Y., and Phillips, O. L. 2004. “Tropical forests and global atmospheric change: a synthesis.” Philosophical Transactions of the Royal Society, Vol. 359: pp. 549–555.
  • Mateos, G. J., García, G., and Riquelme, J.C.S. 2012. “On the evolutionary optimization of k-NN by label-dependent feature weighting.” Pattern Recognition Letters, Vol. 33(No. 16): pp. 2232–2238.
  • McNab, W. H. 1989. “Terrain shape index: quantifying effect of minor landforms on tree height.” Forest Science, Vol. 35: pp. 91–104.
  • McRoberts, R. E. 2012. “Estimating forest attribute parameters for small areas using nearest neighbors techniques.” Forest Ecology and Management, Vol. 272: pp. 3–12.
  • Molinaro, A. M., Simon, R., and Pfeer, R. M., 2005. “Prediction error estimation: a comparison of resampling methods.” Bioinformatics, Vol. 21(No. 15): pp. 3301–3307.
  • Moore, I. D., and Nieber, J. L. 1989. “Landscape assessment of soil erosion and non-point source pollution.” Journal of the Minnesota Academy of Science, Vol. 55: pp. 18–24.
  • Mutanga, O., Adam, E., and Cho, M. A., 2012. “High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm.” International Journal of Applied Earth Observation and Geoinformation, Vol. 18: pp. 399–406.
  • Mutanga, O., and Skidmore, A. K. 2004. “Narrow band vegetation indices overcome the saturation problem in biomass estimation.” International Journal of Remote Sensing, Vol. 25: pp. 3999–4014.
  • Næsset, E., Gobakken, T., Bollandsås, O. M., Gregoire, T. G., Nelson, R., and Ståhl. G. 2013. “Comparison of precision of biomass estimates in regional field sample surveys and airborne LiDAR-assisted surveys in Hedmark County, Norway.” Remote Sensing of Environment, Vol. 130: pp. 108–120.
  • NASA2011Landsat 7 Science Data Users Handbook accessed August 16, 2016, http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf
  • Packalén, P., Temesgen, H., and Maltamo, M. 2012. “Variable selection strategies for nearest neighbor imputation methods used in remote sensing based forest inventory.” Canadian Journal of Remote Sensing, Vol. 38(No. 6): pp. 557–569.
  • Pflugmacher, D., Cohen, W. B., Kennedy, R. E., and Yang, Z. 2014. “Using Landsat-derived disturbance and recovery history and LiDAR to map forest biomass dynamics.” Remote Sensing of Environment, Vol. 151: pp. 124–137.
  • Pretzsch, H., Biber, P., Ïurský, J., von Gadow, K., Hasenauer, H., Kändler G., Kenk, G., et al. 2002. “Recommendations for standardized documentation and further development of forest growth simulators.” Forstwissenschaftliches Centralblatt, Vol. 121(No. 3): pp. 138–151.
  • Qi, J., Chehbouni, A., Huete, A. R., and Kerr, Y. H. 1994. “A modified soil adjusted vegetation index.” Remote Sensing of Environment, Vol. 48(No. 2): pp. 119–126.
  • R Core Team. 2014. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Roberts, D. W., and Cooper, S. V. 1989. “Concepts and techniques of vegetation mapping.” In Land Classifications Based on Vegetation: Applications for Resource Management, USDA Forest Service GTR INT-257, edited by D. Ferguson, P. Morgan, and F.D. Johnson, pp. 90--96. Ogden, UT: USDA Forest Service.
  • Rouse, J. W., Haas, R. H., Schiell, J. A., Deferino, D. W., and Harlan, J. C. 1974. Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC Type III, Greenbelt, MD: NASA.
  • Samadzadegan, F., Hasani, H., and Schenk, T. 2012. “Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using ant colony optimization.” Canadian Journal of Remote Sensing, Vol. 38(No. 2): pp. 139–156.
  • Shataee, S. 2013. “Forest attributes estimation using aerial laser scanner and TM Data.” Forest Systems, Vol. 22(No. 3): 484–496.
  • Tian, X., Li, Z., Su, Z., Chen, E., Van der Tol, C., Li, X., Guo, Y., Li L., and Ling, F. 2014. “Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data.” International Journal of Remote Sensing, Vol. 35(No. 21): pp. 7339–7362.
  • Tian, X., Su, Z., Chen, E., Li, Z., van der Tol, C., Guo, J., and He, Q. 2012. “Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area.” International Journal of Applied Earth Observation and Geoinformation, Vol. 14(No. 1): pp. 160–168.
  • Vargas-Larreta, B. 2013. Estimación del potencial de los bosques de Durango para la mitigación del cambio climático. Modelización de la biomasa forestal. Proyecto: FOMIX-DGO-2011-C01-165681. ITES, EL Salto (México).
  • Wang, L., Zhou, X., Zhu, X., Dong, X., and Guo, W. 2016. “Estimation of biomass in wheat using random forest regression algorithm and remote sensing data.” The Crop Journal (in press).
  • Wehenkel, C., Corral-Rivas, J. J., Hernández-Díaz, J. C., von Gadow, K. 2011. “Estimating balanced structure areas in multi-species forests on the Sierra Madre Occidental, Mexico.” Annals of Forest Science, Vol. 68: pp. 385–394.
  • Wilson, J. P., and Gallant, J. C. 2000. “Digital terrain analysis.” In Terrain Analysis: Principles and Applications. New York, NY: John Wiley & Sons.
  • Wu, C., Shen, H., Wang, K., Shen, A., Deng, J., and Gan, M. 2016. “Landsat imagery-based above ground biomass estimation and change investigation related to human activities.” Sustainability, Vol. 8(No. 2): 159.
  • Xie, X., Liu, W. T., and Tang, B. 2008. “Space-based estimation of moisture transport in marine atmosphere using support vector regression.” Remote Sensing of Environment, Vol. 112(No. 4): pp. 1846–1855.
  • Yang, Y., Monserud, R. A., and Huang, S. 2004. “An evaluation of diagnostic tests and their roles in validating forest biometrics models.” Canadian Journal of Forest Research, Vol. 34: pp. 619–629.
  • Zhang, Y., Liang, S., and Sun, G. 2014. “Forest biomass mapping of northeastern China using GLAS and MODIS data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7: pp. 140–152.
  • Zhao, K., Popescu, S., Meng, X., Pang, Y, and Agca, M. 2011. “Characterizing forest canopy structure with LiDAR composite metrics and machine learning.” Remote Sensing of Environment, Vol. 115(No. 8): pp. 1978–1996.
  • Zhu, X., and Liu, D. 2015. “Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 102: pp. 222–231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.