Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 50, 2024 - Issue 1
528
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison of Deep and Machine Learning Approaches for Quebec Tree Species Classification Using a Combination of Multispectral and LiDAR Data

Comparaison des approches d’apprentissage profond et d’apprentissage automatique pour la classification des espèces d’arbres du Québec à l’aide d’une combinaison de données multispectrales et LiDAR

, , , &
Article: 2359433 | Received 21 Feb 2024, Accepted 18 May 2024, Published online: 11 Jun 2024

References

  • Arndt, J., and Lunga, D. 2021. “Large-scale classification of urban structural units from remote sensing imagery.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14: pp. 1–24. doi:10.1109/JSTARS.2021.3052961.
  • Ballanti, L., Blesius, L., Hines, E., and Kruse, B. 2016. “Tree species classification using hyperspectral imagery: A comparison of two classifiers.” Remote Sensing, Vol. 8 (No. 6): pp. 445. doi:10.3390/rs8060445.
  • Beland, M., Parker, G., Sparrow, B., Harding, D., Chasmer, L., Phinn, S., Antonarakis, A., and Strahler, A. 2019. “On promoting the use of lidar systems in forest ecosystem research.” Forest Ecology and Management, Vol. 450: pp. 117484. doi:10.1016/j.foreco.2019.117484.
  • Bolyn, C., Lejeune, P., Michez, A., and Latte, N. 2022. “Mapping tree species proportions from satellite imagery using spectral–spatial deep learning.” Remote Sensing of Environment, Vol. 280: pp. 113205. doi:10.1016/j.rse.2022.113205.
  • Breiman, L. 2001. “Random forests.” Machine Learning, Vol. 45 (No. 1): pp. 5–32. doi:10.1023/A:1010933404324.
  • Canadian Forest Service. 2022. “The state of Canada’s forests: Annual report 2022.” last modified date March 21, 2023, https://natural-resources.canada.ca/our-natural-resources/forests/state-canadas-forests-report/16496/.
  • Clark, M.L., Roberts, D.A., Ewel, J.J., and Clark, D.B. 2011. “Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors.” Remote Sensing of Environment, Vol. 115 (No. 11): pp. 2931–2942. doi:10.1016/j.rse.2010.08.029.
  • Cortes, C., and Vapnik, V. 1995. “Support-vector networks.” Machine Learning, Vol. 20 (No. 3): pp. 273–297. doi:10.1023/A:1022627411411.
  • Dalponte, M., Bruzzone, L., and Gianelle, D. 2012. “Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data.” Remote Sensing of Environment, Vol. 123: pp. 258–270. doi:10.1016/j.rse.2012.03.013.
  • Dalponte, M., Orka, H.O., Gobakken, T., Gianelle, D., and Naesset, E. 2013. “Tree species classification in boreal forests with hyperspectral data.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 51 (No. 5): pp. 2632–2645. doi:10.1109/TGRS.2012.2216272.
  • Dimitrovski, I., Kitanovski, I., Kocev, D., and Simidjievski, N. 2023. “Current trends in deep learning for earth observation: An open-source benchmark arena for image classification.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 197: pp. 18–35. doi:10.1016/j.isprsjprs.2023.01.014.
  • Fassnacht, F.E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L.T., Straub, C., and Ghosh, A. 2016. “Review of studies on tree species classification from remotely sensed data.” Remote Sensing of Environment, Vol. 186: pp. 64–87. doi:10.1016/j.rse.2016.08.013.
  • Fassnacht, F.E., White, J.C., Wulder, M.A., and Næsset, E. 2023. “Remote sensing in forestry: current challenges, considerations and directions.” Forestry: An International Journal of Forest Research, Vol. 97 (No. 1): pp. 11–37. doi:10.1093/forestry/cpad024.
  • Feng, W., Long, Y., Wang, S., and Quan, Y. 2023. “A review of addressing class noise problems of remote sensing classification.” Journal of Systems Engineering and Electronics, Vol. 34 (No. 1): pp. 36–46. doi:10.23919/JSEE.2023.000034.
  • Ferreira, M.P., Wagner, F.H., Aragão, L.E.O.C., Shimabukuro, Y.E., and de Souza Filho, C.R. 2019. “Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 149: pp. 119–131. doi:10.1016/j.isprsjprs.2019.01.019.
  • Franklin, J., and Miller, J. A. 2010. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge: Cambridge University Press.
  • Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S., and Wolff, E. 2018. “Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application.” GIScience & Remote Sensing, Vol. 55 (No. 2): pp. 221–242. doi:10.1080/15481603.2017.1408892.
  • Ghanbari, H., Mahdianpari, M., Homayouni, S., and Mohammadimanesh, F. 2021. “A meta-analysis of convolutional neural networks for remote sensing applications.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14: pp. 3602–3613. doi:10.1109/JSTARS.2021.3065569.
  • Ghosh, A., Fassnacht, F.E., Joshi, P.K., and Koch, B. 2014. “A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales.” International Journal of Applied Earth Observation and Geoinformation, Vol. 26 (No. 1): pp. 49–63. doi:10.1016/j.jag.2013.05.017.
  • Guo, X., Li, H., Jing, L., and Wang, P. 2022. “Individual tree species classification based on convolutional neural networks and multitemporal high-resolution remote sensing images.” Sensors (Basel, Switzerland), Vol. 22 (No. 9): pp. 3157. doi:10.3390/s22093157.
  • Heinzel, J., and Koch, B. 2011. “Exploring full-waveform LiDAR parameters for tree species classification.” International Journal of Applied Earth Observation and Geoinformation, Vol. 13 (No. 1): pp. 152–160. doi:10.1016/j.jag.2010.09.010.
  • Hościło, A., and Lewandowska, A. 2019. “Mapping forest type and tree species on a regional scale using multi-temporal Sentinel-2 data.” Remote Sensing, Vol. 11 (No. 8): pp. 929. doi:10.3390/rs11080929.
  • Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. 2017. “Densely connected convolutional networks.” In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, July, pp. 2261–2269. IEEE Computer Society. doi:10.1109/CVPR.2017.243.
  • Illarionova, S., Trekin, A., Ignatiev, V., and Oseledets, I. 2021. “Neural-based hierarchical approach for detailed dominant forest species classification by multispectral satellite imagery.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14: pp. 1810–1820. doi:10.1109/JSTARS.2020.3048372.
  • Jamali, A., and Mahdianpari, M. 2022. “Swin Transformer and deep convolutional neural networks for coastal wetland classification using Sentinel-1, Sentinel-2, and LiDAR data.” Remote Sensing, Vol. 14 (No. 2): pp. 359. doi:10.3390/rs14020359.
  • Kattenborn, T., Schiefer, F., Frey, J., Feilhauer, H., Mahecha, M.D., and Dormann, C.F. 2022. “Spatially autocorrelated training and validation samples inflate performance assessment of convolutional neural networks.” ISPRS Open Journal of Photogrammetry and Remote Sensing, Vol. 5: pp. 100018. doi:10.1016/j.ophoto.2022.100018.
  • Kendall, A., and Gal, Y. 2017. “What uncertainties do we need in Bayesian deep learning for computer vision?” CoRR, Vol. abs/1703.04977.
  • Korpela, I., Mehtätalo, L., Markelin, L., Seppänen, A., and Kangas, A. 2014. “Tree species identification in aerial image data using directional reflectance signatures.” Silva Fennica, Vol. 48 (No. 3): pp. 1087. doi:10.14214/sf.1087.
  • La Rosa, L.E.C., Sothe, C., Feitosa, R.Q., Maria de Almeida, C., Schimalski, M.B., and Oliveira, D.A.B. 2021. “Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 179: pp. 35–49. doi:10.1016/j.isprsjprs.2021.07.001.
  • Lechner, A.M., Foody, G.M., and Boyd, D.S. 2020. “Applications in remote sensing to forest ecology and management.” One Earth, Vol. 2 (No. 5): pp. 405–412. doi:10.1016/j.oneear.2020.05.001.
  • Li, H., Hu, B., Li, Q., and Jing, L. 2021. “Cnn-based individual tree species classification using high-resolution satellite imagery and airborne lidar data.” Forests, Vol. 12 (No. 12): pp. 1697. doi:10.3390/f12121697.
  • Lin, T.Y., Goyal, P., Girshick, R., He, K., and Dollar, P. 2017. “Focal loss for dense object detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 42 (No. 2): pp. 318–327. doi:10.48550/arxiv.1708.02002.
  • Liu, M., Yu, T., Gu, X., Sun, Z., Yang, J., Zhang, Z., Mi, X., Cao, W., and Li, J. 2020. “The impact of spatial resolution on the classification of vegetation types in highly fragmented planting areas based on unmanned aerial vehicle hyperspectral images.” Remote Sensing, Vol. 12 (No. 1): pp. 146. doi:10.3390/rs12010146.
  • Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. 2021. “Swin Transformer: Hierarchical vision transformer using shifted windows.” CoRR, Vol. abs/2103.14030. doi:10.48550/arXiv.2103.14030.
  • Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., and Johnson, B.A. 2019. “Deep learning in remote sensing applications: A meta-analysis and review.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 152: pp. 166–177. doi:10.1016/j.isprsjprs.2019.04.015.
  • Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. 2018. “ShuffleNet V2: Practical guidelines for efficient CNN architecture design.” CoRR, Vol. abs/1807.11164.
  • Marrs, J., and Ni-Meister, W. 2019. “Machine learning techniques for tree species classification using co-registered LiDAR and hyperspectral data.” Remote Sensing, Vol. 11 (No. 7): pp. 819. doi:10.3390/rs11070819.
  • Matsuki, T., Yokoya, N., and Iwasaki, A. 2015. “Hyperspectral tree species classification of japanese complex mixed forest with the aid of lidar data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8 (No. 5): pp. 2177–2187. doi:10.1109/JSTARS.2015.2417859.
  • Mäyrä, J., Keski-Saari, S., Kivinen, S., Tanhuanpää, T., Hurskainen, P., Kullberg, P., Poikolainen, L., et al. 2021. “Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks.” Remote Sensing of Environment, Vol. 256: pp. 112322. doi:10.1016/j.rse.2021.112322.
  • Michałowska, M., and Rapiński, J. 2021. “A review of tree species classification based on airborne LiDAR data and applied classifiers.” Remote Sensing, Vol. 13 (No. 3): pp. 353. doi:10.3390/rs13030353.
  • MINISTÈRE DES RESSOURCES NATURELLES ET DES FORÊTS. 2017. “Carte écoforestière à jour.” Last modified February 19, 2024, https://www.donneesquebec.ca/recherche/dataset/carte-ecoforestiere-avec-perturbations/.
  • Natesan, S., Armenakis, C., and Vepakomma, U. 2020. “Individual tree species identification using dense convolutional network (Densenet) on multitemporal RGB images from UAV.” Journal of Unmanned Vehicle Systems, Vol. 8 (No. 4): pp. 310–333. doi:10.1139/juvs-2020-0014.
  • Naushad, R., Kaur, T., and Ghaderpour, E. 2021. “Deep transfer learning for land use and land cover classification: A comparative study.” Sensors (Basel, Switzerland), Vol. 21 (No. 23): pp. 8083. doi:10.3390/s21238083.
  • Nezami, S., Khoramshahi, E., Nevalainen, O., Pölönen, I., and Honkavaara, E. 2020. “Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks.” Remote Sensing, Vol. 12 (No. 7): pp. 1070. doi:10.3390/rs12071070.
  • Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., and Wulder, M.A. 2014. “Good practices for estimating area and assessing accuracy of land change.” Remote Sensing of Environment, Vol. 148: pp. 42–57. doi:10.1016/j.rse.2014.02.015.
  • O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., Riordan, D., and Walsh, J. 2020. “Deep learning vs. traditional computer vision.” In Advances in Computer Vision, edited by Kohei Arai and Supriya Kapoor, pp. 128–144. Cham: Springer International Publishing.
  • Paoletti, M.E., Haut, J.M., Plaza, J., and Plaza, A. 2019. “Deep learning classifiers for hyperspectral imaging: A review.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 158: pp. 279–317. doi:10.1016/j.isprsjprs.2019.09.006.
  • Pereira Martins-Neto, R., Garcia Tommaselli, A.M., Nobuhiro Imai, N., Honkavaara, E., Miltiadou, M., Saito Moriya, E.A., and David, H.C. 2023. “Tree Species Classification in a Complex Brazilian Tropical Forest Using Hyperspectral and LiDAR Data.” Forests, Vol. 14 (No. 5): pp. 945. doi:10.3390/f14050945.
  • Pu, R. 2021. “Mapping tree species using advanced remote sensing technologies: A state-of-the-art review and perspective.” Journal of Remote Sensing, Vol. 2021: pp. 1–26. doi:10.34133/2021/9812624.
  • Qin, H., Zhou, W., Yao, Y., and Wang, W. 2022. “Individual tree segmentation and tree species classification in ­subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data.” Remote Sensing of Environment, Vol. 280: pp. 113143. doi:10.1016/j.rse.2022.113143.
  • Queinnec, M., Coops, N.C., White, J.C., Griess, V.C., Schwartz, N.B., and McCartney, G. 2023. “Mapping dominant boreal tree species groups by combining area-based and individual tree crown LiDAR metrics with Sentinel-2 data.” Canadian Journal of Remote Sensing, Vol. 49 (No. 1): pp. 2130742. doi:10.1080/07038992.2022.2130742.
  • Shen, X., and Cao, L. 2017. “Tree-species classification in subtropical forests using airborne hyperspectral and LiDAR data.” Remote Sensing, Vol. 9 (No. 11): pp. 1180. doi:10.3390/rs9111180.
  • Shi, Y., Wang, T., Skidmore, A.K., and Heurich, M. 2018. “Important LiDAR metrics for discriminating forest tree species in Central Europe.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 137: pp. 163–174. doi:10.1016/j.isprsjprs.2018.02.002.
  • Shi, Y., Wang, T., Skidmore, A.K., Holzwarth, S., Heiden, U., and Heurich, M. 2021. “Mapping individual silver fir trees using hyperspectral and LiDAR data in a Central European mixed forest.” International Journal of Applied Earth Observation and Geoinformation, Vol. 98: pp. 102311. doi:10.1016/j.jag.2021.102311.
  • Smith, L.N. 2018. “A disciplined approach to neural network hyper-parameters: Part 1 - learning rate, batch size, momentum, and weight decay.” CoRR, Vol. abs/1803.09820. doi:10.48550/arXiv.1803.09820.
  • Tampu, I.E., Eklund, A., and Haj-Hosseini, N. 2022. “Inflation of test accuracy due to data leakage in deep learning-based classification of OCT images.” Scientific Data, Vol. 9 (No. 1): pp. 580. doi:10.1038/s41597-022-01618-6.
  • van der Maaten, L., and Hinton, G. 2008. “Visualizing data using t-SNE.” Journal of Machine Learning Research, Vol. 9 (No. 86): pp. 2579–2605.
  • Vangi, E., D’Amico, G., Francini, S., Giannetti, F., Lasserre, B., Marchetti, M., and Chirici, G. 2021. “The new hyperspectral satellite PRISMA: Imagery for forest types discrimination.” Sensors (Basel, Switzerland), Vol. 21 (No. 4): pp. 1182. doi:10.3390/s21041182.
  • Varin, M., Chalghaf, B., and Joanisse, G. 2020. “Object-based approach using very high spatial resolution 16-band worldview-3 and LiDAR data for tree species classification in a broadleaf forest in Quebec, Canada.” Remote Sensing, Vol. 12 (No. 18): pp. 3092. doi:10.3390/rs12183092.
  • Viinikka, A., Hurskainen, P., Keski-Saari, S., Kivinen, S., Tanhuanpää, T., Mäyrä, J., Poikolainen, L., Vihervaara, P., and Kumpula, T. 2020. “Detecting European Aspen (Populus tremula L.) in boreal forests using airborne hyperspectral and airborne laser scanning data.” Remote Sensing, Vol. 12 (No. 16): pp. 2610. doi:10.3390/rs12162610.
  • Welle, T., Aschenbrenner, L., Kuonath, K., Kirmaier, S., and Franke, J. 2022. “Mapping dominant tree species of German forests.” Remote Sensing, Vol. 14 (No. 14): pp. 3330. doi:10.3390/rs14143330.
  • Zagajewski, B., Kluczek, M., Raczko, E., Njegovec, A., Dabija, A., and Kycko, M. 2021. “Comparison of random forest, support vector machines, and neural networks for post-disaster forest species mapping of the Krkonoše/Karkonosze transboundary biosphere reserve.” Remote Sensing, Vol. 13 (No. 13): pp. 2581. doi:10.3390/rs13132581.
  • Zhang, B., Zhao, L., and Zhang, X. 2020. “Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images.” Remote Sensing of Environment, Vol. 247: pp. 111938. doi:10.1016/j.rse.2020.111938.