8,325
Views
4
CrossRef citations to date
0
Altmetric
Applied Research / Recherche appliquée

An Overview of Surface-Based Precipitation Observations at Environment and Climate Change Canada

ORCID Icon, , , , , , & show all
Pages 71-95 | Received 09 Nov 2016, Accepted 09 Dec 2017, Published online: 27 Mar 2018

References

  • AES. (1971). CMS rain gauge type B (non-recording) (1st ed.). Instrument manual 43.
  • AES. (1981). Tipping bucket rain gauge system, TM 04-01-03. Toronto: Environment Canada. Retrieved from ftp://132.156.10.144/ad/EMS/Anita/MSCreports/msc/TM04-01-03%28E%29%20tbrg.pdf
  • AgWeather. (2017). AgWeather Quebec. Retrieved from http://www.agrometeo.org/index.php
  • Burrows, W. R., & Kochtubajda, B. (2010). A decade of cloud-to-ground lightning in Canada: 1999–2008. Part 1: Flash density and occurrence. Atmosphere-Ocean, 48, 177–194. doi: 10.3137/AO1118.2010
  • Chen, Y. C., Wei, C., & Yeh, H. C. (2008). Rainfall network design using kriging and entropy. Hydrological Processes, 22, 330–346.
  • Cheng, V. Y., Arhonditsis, G. B., Sills, D. M., Auld, H., Shephard, M. W., Gough, W. A., & Klaassen, J. (2013). Probability of tornado occurrence across Canada. Journal of Climate, 26(23), 9415–9428. doi: 10.1175/JCLI-D-13-00093.1
  • Colli, M., Lanza, L. G., Rasmussen, R., & Thériault, J. M. (2016a). The collection efficiency of shielded and unshielded precipitation gauges. Part I: CFD airflow modeling. Journal of Hydrometeorology, 17(1), 231–243. doi: 10.1175/JHM-D-15-0010.1
  • Colli, M., Lanza, L. G., Rasmussen, R., & Thériault, J. M. (2016b). The collection efficiency of shielded and unshielded precipitation gauges. Part II: Modeling particle trajectories. Journal of Hydrometeorology, 17(1), 245–255. doi: 10.1175/JHM-D-15-0011.1
  • Colli, M., Rasmussen, R., Thériault, J. M., Lanza, L. G., Baker, C. B., & Kochendorfer, J. (2015). An improved trajectory model to evaluate the collection performance of snow gauges. Journal of Applied Meteorology and Climatology, 54(8), 1826–1836. doi: 10.1175/JAMC-D-15-0035.1
  • Dai, H., & Ye, M. (2015). Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation. Journal of Hydrology, 528, 286–300. doi: 10.1016/j.jhydrol.2015.06.034
  • Devine, K. A., & Mekis, E. (2008). Field accuracy of Canadian rain measurements. Atmosphere-Ocean, 46(2), 213–227. doi: 10.3137/ao.460202
  • Duchon, C. E. (2008). Using vibrating-wire technology for precipitation measurements. In S. Michaelides (Ed.), Precipitation: Advances in measurement, estimation and prediction. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-77655-0_2
  • Duchon, C. E., & Biddle, C. J. (2010). Undercatch of tipping-bucket gauges in high rain rate events. Advances in Geosciences, 25, 11–15. doi: 10.5194/adgeo-25-11-2010
  • Durocher, Y. (2011). Deriving snowfall observations from the snow depth sensor for the Canadian Reference Climate Stations network (RCS). Environment Canada Internal document, Contract # KM044-10-1350. Downsview: Environment Canada.
  • Environment Canada. (1996). Climate network rationalization (Internal Report). National Weather Services Directorate. Downsview: Environment Canada.
  • Environment Canada. (2015). MANOBS (Manual of Surface Weather Observations). (7th ed.) ISBN: 978-1-100-25445-6, Downsview: Environment Canada.
  • Environment and Climate Change Canada. (2016). Surface weather observation XML (SW-OB-XML): Client user guide. Retrieved from http://dd.weatheroffice.gc.ca/observations/doc/SWOB-ML_Product_User_Guide_v7.1_e.pdf
  • Fischer, A. P. (2011). The measurement factors in estimating snowfall derived from snow cover surfaces using acoustic snow depth sensors. Journal of Applied Meteorology and Climatology, 50(3), 681–699. doi: 10.1175/2010JAMC2408.1
  • Fortin, V., Roy, G., Donaldson, N., & Mahidjiba, A. (2015). Assimilation of radar quantitative precipitation estimations in the Canadian precipitation analysis (CaPA). Journal of Hydrology, 531, 296–307. doi: 10.1016/j.jhydrol.2015.08.003
  • Goodison, B. E., Ferguson, H. L., & McKay, G. A. (1981). Comparison of point snowfall measurement techniques. In D. M. Gray, & M. D. Male (Eds.), Handbook of snow (pp. 200–210). Tarrytown, New York: Pergamon.
  • Goodison, B. E., Louie, P. Y. T., & Yang, D. (1998). WMO solid precipitation measurement intercomparison–Final Report (Instruments and Observing Methods Report No.67 WMO/TD-No. 872). Geneva: World Meteorological Organization.
  • Hydrological Services. (1994). Instruction manual tipping bucket raingauge model TB3 (Available from Hydrological Services PTY Ltd, PO Box 332, Liverpool, Australia).
  • Joe, P., & Lapczak, S. (2002). Evolution of the Canadian operational radar network. In Proceedings of ERAD (pp. 370–382). EMS, Delft: Copernicus GmbH.
  • Karimi-Hosseini, A., Bozorg Haddad, O., & Mariño, M. A. (2011). Site selection of raingauges using entropy methodologies. Water Management, 164(7), 321–333.
  • Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., … Yang, D. (2017). Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE. Hydrology and Earth System Sciences, 21(7), 3525–3542. doi: 10.5194/hess-21-3525-2017
  • Kochendorfer, J., Rasmussen, R., Wolff, M., Baker, B., Hall, M. E., Meyers, T., … Leeper, R. (2017). The quantification and correction of wind-induced precipitation measurement errors. Hydrology and Earth System Sciences, 21(4), 1973–1989. doi: 10.5194/hess-21-1973-2017
  • Lamb, H. H. (2009). Temperature correction algorithm for Geonor weighing gauge with three transducers. In Proceedings of eighth symposium on the urban environment. Phoenix, AZ: American Meteorological Society. Retrieved from https://ams.confex.com/ams/pdfpapers/148618.pdf
  • Landry, C., Deschenes, J.-F., Huang, L., Isaac, G., Nguyen, L. C., Talbot, D., & Talbot, J.-P. (2012). INCS: Integrated Nowcasting System. 3rd WMO international symposium on nowcasting and very-short range forecasting (Rio de Janeiro, Brazil, 6-10 August). Retrieved from http://www.labhidro.iag.usp.br/wsn12/papers/for13.pdf
  • Mahfouf, J. F., Brasnett, B., & Gagnon, S. (2007). A Canadian Precipitation Analysis (CaPA) project: Description and preliminary results. Atmosphere-Ocean, 45(1), 1–17. doi: 10.3137/ao.v450101
  • Mekis, E. (2005). Adjustments for trace measurements in Canada. In Proceedings, 15th Conference on Applied Climatology (pp. 20–24). Savannah: American Meteorological Soc. Retrieved from https://ams.confex.com/ams/pdfpapers/92155.pdf
  • Mekis, E., & Brown, R. (2010). Derivation of an adjustment factor map for the estimation of the water equivalent of snowfall from ruler measurements in Canada. Atmosphere-Ocean, 48(4), 284–293. doi: 10.3137/AO1104.2010
  • Mekis, E., & Hogg, W. D. (1999). Rehabilitation and analysis of Canadian daily precipitation time series. Atmosphere-Ocean, 37(1), 53–85. doi: 10.1080/07055900.1999.9649621
  • Mekis, E., & Vincent, L. A. (2011). An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean, 49(2), 163–177. doi: 10.1080/07055900.2011.583910
  • Metcalfe, J. R., Routledge, B., & Devine, K. (1997). Rainfall measurement in Canada: Changing observational methods and archive adjustment procedures. Journal of Climate, 10(1), 92–101. doi: 10.1175/1520-0442(1997)010<0092:RMICCO>2.0.CO;2
  • Milbrandt, J. (2014). Technical note for the High Resolution Deterministic Prediction System 4.0.0 (Tech. Report). Downsview: Environment Canada.
  • Milewska, E. J., & Vincent, L. A. (2016). Preserving continuity of long-term daily maximum and minimum temperature observations with automation of reference climate stations using overlapping data and meteorological conditions. Atmosphere-Ocean, 54(1), 32–47. doi: 10.1080/07055900.2015.1135784
  • NavCan. (2016a). Navigation Canada automated weather observation system components. Retrieved from http://www.navcanatm.ca/en/navcanmet/awos.aspx
  • NavCan. (2016b). Navigation Canada human weather observation system components. Retrieved from http://www.navcanatm.ca/en/navcanmet/hwos.aspx
  • Nazaripour, H., & Daneshvar, M. R. M. (2017). Rain gauge network evaluation and optimal design using spatial correlation approach in arid and semi-arid regions of Iran. Theoretical and Applied Climatology, 129(3-4), 1255–1261. doi: 10.1007/s00704-016-1853-3
  • Ndiritu, J. (2013). Using data-derived perturbations to incorporate uncertainty in generating stochastic areal rainfall from point rainfall. Hydrological Sciences Journal, 58(8), 1704–1717. doi: 10.1080/02626667.2013.840726
  • Nitu, R., & Wong, K. (2010). CIMO survey on national summaries of methods and instruments for solid precipitation measurement at automatic weather stations (WMO/TD-No. 1544). Geneva: World Meteorological Organization (WMO).
  • OSE MSC Engineering Bulletin. (2015a). Automated weather stations (AWS), surface weather network Pluvio1 Gauge: Operational recommendations (Technical Report). Downsview: Environment Canada.
  • OSE MSC Engineering Bulletin. (2015b). Surface weather network: Precipitation gauge charge recommendations for use in automated weather stations (AWS), precipitation gauge charge summary, July 15, 2015 (Technical Report). Downsview: Environment Canada.
  • OTT. (2015). Technical description: Rain gauge Pluvio with pulse output. 70.010.001.T.E. 02-1003. Retrieved from http://www.fondriest.com/pdf/ott_pluvio_manual.pdf
  • Peterson, T., Daan, H., & Jones, P. (1997). Initial selection of a GCOS surface network. Bulletin of the American Meteorological Society, 78(10), 2145–2152. doi: 10.1175/1520-0477(1997)078<2145:ISOAGS>2.0.CO;2
  • Putthividhya, A., & Tanaka, K. (2012). Optimal rain gauge network design and spatial precipitation mapping based on geostatistical analysis from co-located elevation and humidity data. International Journal of Environmental Science and Development, 3(2), 124–129. doi: 10.7763/IJESD.2012.V3.201
  • Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., … Smith, C. (2012). How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bulletin of the American Meteorological Society, 93(6), 811–829. doi: 10.1175/BAMS-D-11-00052.1
  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. doi: 10.1016/0377-2217(90)90057-I
  • Seo, D. J., Siddique, R., & Ahnert, P. (2014). Objective reduction of rain gauge network via geostatistical analysis of uncertainty in radar-gauge precipitation estimation. Journal of Hydrologic Engineering, 20(4), 04014050 1–13. doi: 10.1061/(ASCE)HE.1943-5584.0000969
  • Sevruk, B., & Klemm, S. (1989). Types of standard precipitation gauges. In Proceedings of international workshop on precipitation measurement (Vol. 227236, pp. 227–236). St. Moritz: WMO/IAHS/ETH.
  • Shaghaghian, M. R., & Abedini, M. J. (2013). Rain gauge network design using coupled geostatistical and multivariate techniques. Scientia Iranica, 20(2), 259–269.
  • Strangeways, I. (2007). Precipitation: Theory, measurement and distribution. New York: Cambridge University Press.
  • Thériault, J. M., Rasmussen, R., Ikeda, K., & Landolt, S. (2012). Dependence of snow gauge collection efficiency on snowflake characteristics. Journal of Applied Meteorology and Climatology, 51(4), 745–762. doi: 10.1175/JAMC-D-11-0116.1
  • Thériault, J. M., Rasmussen, R., Petro, E., Trépanier, J. Y., Colli, M., & Lanza, L. G. (2015). Impact of wind direction, wind speed, and particle characteristics on the collection efficiency of the double fence intercomparison reference. Journal of Applied Meteorology and Climatology, 54(9), 1918–1930. doi: 10.1175/JAMC-D-15-0034.1
  • Vivekanandan, N., & Jagtap, R. S. (2012). Evaluation and selection of rain gauge network using entropy. Journal of the Institution of Engineers (India): Series A, 93(4), 223–232. doi: 10.1007/s40030-013-0032-0
  • WMO. (1966). Climatic change (Technical Note No. 79, Report of a Working Group of the Commission for Climatology. World Meteorological Organization, WMO - No. 195. TP. 100). Geneva.
  • WMO. (1986). Guidelines on the selection of Reference Climatological Stations (RCSs) from the existing climatological station network (World Meteorological Organization, World Climate Programme series, WCP-116, WMO/TD-No. 130). Geneva.
  • WMO. (1992). International meteorological vocabulary (2nd ed.). WMO No.182. Geneva: World Meteorological Organization.
  • WMO. (2008). Guide to hydrological practices (WMO No. 168). Geneva: World Meteorological Organization.
  • WMO. (2015). WIGOS metadata standard manual, Resolution 26; Attachment to Appendix 2.4, World Meteorological Organization, WMO No.1157, Geneva (pp. 370–448).
  • WMO. (2018a). OSCAR: List of all requirements. Retrieved from http://www.wmo-sat.info/oscar/requirements
  • WMO. (2018b). Welcome to OSCAR. Retrieved from http://www.wmo-sat.info/oscar/
  • WMO. (2018c). Rolling review of requirements. Retrieved from http://www.wmo.int/pages/prog/www/OSY/GOS-RRR.html
  • WMO. (2018d). WMO Integrated Global Observing System (WIGOS). Retrieved from https://www.wmo.int/pages/prog/www/wigos/index_en.html
  • Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T., & Brækkan, R. (2015). Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: Results of a Norwegian field study. Hydrology and Earth System Sciences, 19(2), 951–967. doi: 10.5194/hess-19-951-2015
  • Wong, K. (2012). Performance of several present weather sensors as precipitation gauges (WMO TECO, pp. 16–18). Retrieved from https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-109_TECO-2012/Session1/P1_30_Wong_Performance_Wx_Sensors_Precip_Gauges.pdf
  • Xu, H., Xu, C. Y., Sælthun, N. R., Xu, Y., Zhou, B., & Chen, H. (2015). Entropy theory based multi-criteria resampling of rain gauge networks for hydrological modelling–A case study of humid area in southern China. Journal of Hydrology, 525(1), 138–151. doi: 10.1016/j.jhydrol.2015.03.034
  • Yang, D. (2014). Double fence intercomparison reference (DFIR) vs. Bush gauge for “true” snowfall measurement. Journal of Hydrology, 509, 94–100. doi: 10.1016/j.jhydrol.2013.08.052