2,213
Views
6
CrossRef citations to date
0
Altmetric
Review / Synthèse

The Madden-Julian Oscillation

ORCID Icon
Pages 338-359 | Received 16 Apr 2022, Accepted 25 Apr 2022, Published online: 23 May 2022

References

  • Adames, Á. F. (2017). Precipitation budget of the Madden–Julian oscillation. Journal of the Atmospheric Sciences, 74(6), 1799–1817. https://doi.org/10.1175/JAS-D-16-0242.1
  • Adames, Á. F., & Kim, D. (2016). The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. Journal of the Atmospheric Sciences, 73(3), 913–941. https://doi.org/10.1175/JAS-D-15-0170.1
  • Adames, Á. F., & Wallace, J. M. (2015). Three-dimensional structure and evolution of the moisture field in the MJO. Journal of the Atmospheric Sciences, 72(10), 3733–3754. https://doi.org/10.1175/JAS-D-15-0003.1
  • Ahn, M.-S., Kim, D., Kang, D., Lee, J., Sperber, K. R., Glecker, P. J., Jiang, X., Ham, Y.-G., & Kim, H. (2020). MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophysical Research Letters, 47(11), e2020GL087250. https://doi.org/10.1029/2020GL087250
  • Ahn, M.-S., Kim, D., Park, S., & Ham, Y.-G. (2019). Do we need to parameterize mesoscale convective organization to mitigate the MJO-mean state trade-off? Geophysical Research Letters, 46(4), 2293–2301. https://doi.org/10.1029/2018GL080314
  • Ahn, M.-S., Kim, D., Sperber, K. R., Kang, I.-S., Maloney, E., Waliser, D., & Hendon, H. (2017). MJO simulation in CMIP5 climate models MJO skill metrics and process-oriented diagnosis. Climate Dynamics, 1–23. https://doi.org/10.1007/s00382-017-3558-4
  • Arakawa, A., & Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. Journal of the Atmospheric Sciences, 31(3), 674–701. https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
  • Arnold, N. P., Branson, M., Kuang, Z., Randall, D. A., & Tziperman, E. (2015). MJO intensification with warming in the superparamterized CESM. Journal of Climate, 28(7), 2706–2724. https://doi.org/10.1175/jcli-d-14-00494.1
  • Baggett, C. F., Barnes, E. A., Maloney, E. D., & Mundhenk, B. D. (2017). Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophysical Research Letters, 44(14), 7528–7536. https://doi.org/10.1002/2017GL074434
  • Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science, 294(5542), 581. https://doi.org/10.1126/science.1063315
  • Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., & Takahashi, M. (2001). The quasi-biennial oscillation. Reviews of Geophysics, 39(2), 179–229. https://doi.org/10.1029/1999RG000073
  • Barnes, E. A., Samarasinghe, S. M., Ebert-Uphoff, I., & Furtado, J. C. (2019). Tropospheric and stratospheric causal pathways between the MJO and NAO. Journal of Geophysical Research: Atmospheres, 124(16), 9356–9371. https://doi.org/10.1029/2019JD031024
  • Barnston, A. G., & Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review, 115(6), 1083–1126. https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
  • Barrett, B. S., Carrasco, J. F., & Testino, A. P. (2012). Madden–Julian Oscillation (MJO) Modulation of Atmospheric circulation and Chilean winter precipitation. Journal of Climate, 25(5), 1678–1688. https://doi.org/10.1175/JCLI-D-11-00216.1
  • Barrett, B. S., & Gensini, V. (2013). Modulation of daily United States April–May tornado day likelihood by phase of the Madden–Julian oscillation. Geophysical Research Letters, 40(11), 2790–2795. https://doi.org/10.1002/grl.50522
  • Baxter, S., Weaver, S., Gottschalck, J., & Xue, Y. (2014). Pentad evolution of wintertime impacts of the Madden–Julian Oscillation over the contiguous United States. Journal of Climate, 27(19), 7356–7367. https://doi.org/10.1175/jcli-d-14-00105.1
  • Bechtold, P., Kohler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., & Balsamo, G. (2008). Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 134(634), 1337–1351. https://doi.org/10.1002/qj.289
  • Becker, E. J., Berbery, E. H., & Higgins, R. W. (2011). Modulation of cold-season U.S. daily precipitation by the Madden–Julian oscillation. Journal of Climate, 24(19), 5157–5166. https://doi.org/10.1175/2011JCLI4018.1
  • Bellenger, H., & Duvel, J. P. (2012). The event-to-event variability of the boreal winter MJO. Geophysical Research Letters, 39(8), L08701. https://doi.org/10.1029/2012GL051294
  • Benedict, J. J., & Randall, D. A. (2007). Observed characteristics of the MJO relative to maximum rainfall. Journal of the Atmospheric Sciences, 64(7), 2332–2354. https://doi.org/10.1175/JAS3968.1
  • Benedict, J. J., & Randall, D. A. (2009). Structure of the Madden–Julian oscillation in the superparameterized CAM. Journal of the Atmospheric Sciences, 66(11), 3277–3296. https://doi.org/10.1175/2009JAS3030.1
  • Bergman, J. W., Hendon, H. H., & Weickmann, K. M. (2001). Intraseasonal air–sea interactions at the onset of El niño. Journal of Climate, 14(8), 1702–1719. https://doi.org/10.1175/1520-0442(2001)014<1702:IASIAT>2.0.CO;2
  • Betts, A., & Miller, M. (1986). A new convective adjustment scheme. Part II: Single column tests using GATE wave,BOMEX, ATEX and Arctic air-mass data sets. Quarterly Journal of the Royal Meteorological Society, 112(473), 693–709. https://doi.org/10.1002/qj.49711247308
  • Blackmon, M. L. (1976). A climatological spectral study of the 500 mb geopotential height of the Northern hemisphere. Journal of the Atmospheric Sciences, 33(8), 1607–1623. https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2
  • Blackmon, M. L., Lee, Y.-H., & Wallace, J. M. (1984). Horizontal structure of 500mb height fluctuations with long, intermediate and short time scales. Journal of the Atmospheric Sciences, 41(6), 961–980. https://doi.org/10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2
  • Bond, N. A., & Vecchi, G. A. (2003). The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Weather and Forecasting, 18(4), 600–613. https://doi.org/10.1175/1520-0434(2003)018<0600:TIOTMO>2.0.CO;2
  • Branstator, G. (1985). Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part I: Forced solutions. Journal of the Atmospheric Sciences, 42(21), 2225–2241. https://doi.org/10.1175/1520-0469(1985)042<2225:AOGCMS>2.0.CO;2
  • Bretherton, C. S., Peters, M. E., & Back, L. E. (2004). Relationships between water vapor path and precipitation over the tropical oceans. Journal of Climate, 17(7), 1517–1528. https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2
  • Brunet, G., Shapiro, M., Hoskins, B., Moncrieff, M., Dole, R., Kiladis, G. N., Kirtman, B., Lorenc, A., Mills, B., Morss, R., Polavarapu, S., Rogers, D., Schaake, J., & Shukla, J. (2010). Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bulletin of the American Meteorological Society, 91(10), 1397–1406. https://doi.org/10.1175/2010BAMS3013.1
  • Cassou, C. (2008). Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature, 455(7212), 523–527. https://doi.org/10.1038/nature07286
  • Chang, C. P. (1977). Viscous internal gravity waves and low-frequency oscillations in the tropics. Journal of the Atmospheric Sciences, 34(6), 901–910. https://doi.org/10.1175/1520-0469(1977)034<0901:VIGWAL>2.0.CO;2
  • Chang, C. P., & Lim, H. (1988). Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations. Journal of the Atmospheric Sciences, 45(11), 1709–1720. https://doi.org/10.1175/1520-0469(1988)045<1709:KWCAPM>2.0.CO;2
  • Charney, J. G., & Eliassen, A. (1964). On the growth of the hurricane depression. Journal of the Atmospheric Sciences, 21(1), 68–75. https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
  • Chen, B., & Mapes, B. E. (2018). Effects of a simple convective organization scheme in a two-plume GCM. Journal of Advances in Modeling Earth Systems, 10(3), 867–880. https://doi.org/10.1002/2017MS001106
  • Chen, G., & Wang, B. (2018a). Dynamic moisture mode versus moisture mode in MJO dynamics: Importance of the wave feedback and boundary layer convergence feedback. Climate Dynamics, 52, https://doi.org/10.1007/s00382-018-4433-7
  • Chen, G., & Wang, B. (2018b). Does the MJO have a westward group velocity? Journal of Climate, 31(6), 2435–2443. https://doi.org/10.1175/JCLI-D-17-0446.1
  • Chen, S. S., & Houze, R. A., Jr. (1997). Diurnal variation and life-cycle of deep convective systems over the tropical pacific warm pool. Quarterly Journal of the Royal Meteorological Society, 123(538), 357–388. https://doi.org/10.1002/qj.49712353806
  • Chikira, M., & Sugiyama, M. (2010). A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. Journal of the Atmospheric Sciences, 67(7), 2171–2193. https://doi.org/10.1175/2010jas3316.1
  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart, F. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
  • DeMott, C. A., Klingaman, N. P., & Woolnough, S. J. (2015). Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Reviews of Geophysics, 53(4), 1099–1154. https://doi.org/10.1002/2014RG000478
  • Dias, J., Leroux, S., Tulich, S. N., & Kiladis, G. N. (2013). How systematic is organized tropical convection within the MJO? Geophysical Research Letters, 40(7), 1420–1425. https://doi.org/10.1002/grl.50308
  • Dole, R. M., & Gordon, N. D. (1983). Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Monthly Weather Review, 111(8), 1567–1586. https://doi.org/10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2
  • Donald, A., Meinke, H., Power, B., Maia, A. D. H. N., Wheeler, M. C., White, N., Stone, R. C., & Ribbe J. (2006). Near-global impact of the Madden–Julian oscillation on rainfall. Geophysical Research Letters, 33(9), L09704. https://doi.org/10.1029/2005GL025155
  • Emanuel, K. A. (1987). An air-sea interaction model of intraseasonal oscillations in the tropics. Journal of the Atmospheric Sciences, 44(16), 2324–2340. https://doi.org/10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2
  • Emanuel, K. A. (1995). The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. Journal of the Atmospheric Sciences, 52(22), 3960–3968. https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2
  • Emanuel, K. A. (2019). Inferences from simple models of slow, convectively coupled processes. Journal of the Atmospheric Sciences, 76(1), 195–208. https://doi.org/10.1175/JAS-D-18-0090.1
  • Feng, J., Liu, P., Chen, W., & Wang, X. (2015). Contrasting Madden–Julian Oscillation activity during various stages of EP and CP El Niños. Atmospheric Science Letters, 16(1), 32–37. https://doi.org/10.1002/asl2.516
  • Feng, P.-N., & Lin, H. (2019). Modulation of the MJO-related teleconnections by the QBO. Journal of Geophysical Research: Atmospheres, 124(22), 12,022–12,033. https://doi.org/10.1029/2019JD030878
  • Feng, P.-N., Lin, H., Derome, J., & Merlis, T. (2021). Forecast skill of the NAO in the subseasonal-to-seasonal prediction models. Journal of Climate, 34(12), 4757–4769. https://doi.org/10.1175/JCLI-D-20-0430.1
  • Ferranti, L., Palmer, T. N., Molteni, F., & Klinker, E. (1990). Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. Journal of the Atmospheric Sciences, 47(18), 2177–2199. https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2
  • Fink, A., & Speth, P. (1997). Some potential forcing mechanisms of the year-to-year variability of the tropical convection and its intraseasonal (25–70-day) variability. International Journal of Climatology, 17(14), 1513–1534. https://doi.org/10.1002/(SICI)1097-0088(19971130)17:14<1513::AID-JOC210>3.0.CO;2-U
  • Flatau, M., Flatau, P. J., Phoebus, P., & Niiler, P. P. (1997). The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. Journal of the Atmospheric Sciences, 54(19), 2373–2386. https://doi.org/10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2
  • Flatau, M., & Kim, Y.-J. (2013). Interaction between the MJO and polar circulations. Journal of Climate, 26(11), 3562–3574. doi:10.1175/JCLI-D-11-00508.1
  • Frederiksen, J. S., & Lin, H. (2013). Tropical–extratropical interactions of intraseasonal oscillations. Journal of the Atmospheric Sciences, 70(10), 3180–3197. https://doi.org/10.1175/JAS-D-12-0302.1
  • Fuchs, Ž., & Raymond, D. J. (2005). Large-scale modes in a rotating atmosphere with radiative–convective instability and WISHE. Journal of the Atmospheric Sciences, 62(11), 4084–4094. https://doi.org/10.1175/JAS3582.1
  • Fuchs, Ž., & Raymond, D. J. (2017). A simple model of intraseasonal oscillations. Journal of Advances in Modeling Earth Systems, 9(2), 1195–1211. https://doi.org/10.1002/2017MS000963
  • Garfinkel, C. I., Benedict, J. J., & Maloney, E. D. (2014). Impact of the MJO on the boreal winter extratropical circulation. Geophysical Research Letters, 41(16), 6055–6062. https://doi.org/10.1002/2014GL061094
  • Garfinkel, C. I., Feldstein, S. B., Waugh, D. W., Yoo, C., & Lee, S. (2012). Observed connection between stratospheric sudden warmings and the Madden–Julian oscillation. Geophysical Research Letters, 39(18), L18807. https://doi.org/10.1029/2012GL053144
  • Garfinkel, C. I., & Schwartz, C. (2017). MJO-related tropical convection anomalies lead to more accurate stratospheric vortex variability in subseasonal forecast models. Geophysical Research Letters, 44, 10,054–10,062. https://doi.org/10.1002/2017GL074470
  • Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulations. Quarterly Journal of the Royal Meteorological Society, 106(449), 447–462. https://doi.org/10.1002/qj.49710644905
  • Gottschalck, J., Wheeler, M., Weickmann, K., Vitart, F., Savage, N., Lin, H., Hendon, H., Waliser, D., Sperber, K., Nakagawa, M., Prestrelo, C., Flatau, M., & Higgins, W. (2010). A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO working group project. Bulletin of the American Meteorological Society, 91(9), 1247–1258. https://doi.org/10.1175/2010BAMS2816.1
  • Grabowski, W. W. (2001). Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). Journal of the Atmospheric Sciences, 58(9), 978–997. https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2
  • Gualdi, S., Navarra, A., & Fischer, M. (1999). The tropical intraseasonal oscillation in a coupled ocean–atmosphere general circulation model. Geophysical Research Letters, 26(19), 2973–2976. https://doi.org/10.1029/1999GL010414
  • Guan, B., Waliser, D. E., Molotch, N. P., Fetzer, E. J., & Neiman, P. J. (2012). Does the Madden-Julian Oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Monthly Weather Review, 140(2), 325–342. https://doi.org/10.1175/MWR-D-11-00087.1
  • Haertel, P. T., & Kiladis, G. N. (2004). Dynamics of 2-day equatorial waves. Journal of the Atmospheric Sciences, 61(22), 2707–2721. https://doi.org/10.1175/JAS3352.1
  • Hall, N. M., Thibault, S., & Marchesiello, P. (2017). Impact of the observed extratropics on climatological simulation of the MJO in a tropical channel model. Climate Dynamics, 48(7-8), 2541–2555. https://doi.org/10.1007/s00382-016-3221-5
  • Hartmann, D. L., Holton, J. R., & Fu, Q. (2001). The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophysical Research Letters, 28(10), 1969–1972. https://doi.org/10.1029/2000GL012833
  • Hayashi, M., & Itoh, H. (2017). A new mechanismof the slow eastward propagation of unstable disturbances with convection in the tropics: Implications for the MJO. Journal of the Atmospheric Sciences, 74(11), 3749–3769. https://doi.org/10.1175/JAS-D-16-0300.1
  • He, J., Lin, H., & Wu, Z. (2011). Another look at influences of the Madden-Julian Oscillation on the wintertime East Asian weather. Journal of Geophysical Research, 116, https://doi.org/10.1029/2010JD014787
  • Henderson, S. A., & Maloney, E. D. (2018). The impact of the Madden–Julian oscillation on high-latitude winter blocking during El niño–Southern oscillation events. Journal of Climate, 31(13), 5293–5318. https://doi.org/10.1175/JCLI-D-17-0721.1
  • Hendon, H. H. (2000). Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. Journal of the Atmospheric Sciences, 57(24), 3939–3952. https://doi.org/10.1175/1520-0469(2001)058<3939:IOASCO>2.0.CO;2
  • Hendon, H. H., & Abhik, S. (2018). Differences in vertical structure of the Madden–Julian oscillation associated with the quasi-biennial oscillation. Geophysical Research Letters, 45(9), 4419–4428. https://doi.org/10.1029/2018gl077207
  • Hendon, H. H., & Glick, J. (1997). Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans. Journal of Climate, 10(4), 647–661. https://doi.org/10.1175/1520-0442(1997)010<0647:IASIIT>2.0.CO;2
  • Hendon, H. H., & Liebmann, B. (1990). The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. Journal of the Atmospheric Sciences, 47(24), 2909–2924. https://doi.org/10.1175/1520-0469(1990)047<2909:TIDOOT>2.0.CO;2
  • Hendon, H. H., & Liebmann, B. (1994). Organization of convection within the Madden–Julian oscillation. Journal of Geophysical Research, 99(D4), 8073–8083. https://doi.org/10.1029/94JD00045
  • Hendon, H. H., & Salby, M. L. (1994). The life cycle of the Madden–Julian oscillation. Journal of the Atmospheric Sciences, 51(15), 2225–2237. https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2
  • Hendon, H. H., Wheeler, M. C., & Zhang, C. (2007). Seasonal dependence of the MJO–ENSO relationship. Journal of Climate, 20(3), 531–543. https://doi.org/10.1175/jcli4003.1
  • Hendon, H. H., Zhang, C., & Glick, J. D. (1999). Interannual variation of the Madden-Julian Oscillation during Austral summer. Journal of Climate, 12(8), 2538–2550. https://doi.org/10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2
  • Higgins, R. W., Schemm, J. K. E., Shi, W., & Leetmaa, A. (2000). Extreme precipitation events in the western United States related to tropical forcing. Journal of Climate, 13(4), 793–820. doi:10.1175/1520-0442(2000)013h0793:EPEITWi2.0.CO;2
  • Hirons, L. C., Inness, P., Vitart, F., & Bechtold, P. (2013a). Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO. Quarterly Journal of the Royal Meteorological Society, 139(675), 1417–1426. https://doi.org/10.1002/qj.2060
  • Hirons, L. C., Inness, P., Vitart, F., & Bechtold, P. (2013b). Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Quarterly Journal of the Royal Meteorological Society, 139(675), 1427–1444. https://doi.org/10.1002/qj.2059
  • Hoskins, B. J. (2013). The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Quarterly Journal of the Royal Meteorological Society, 139(672), 573–584. https://doi.org/10.1002/qj.1991
  • Hoskins, B. J., & Karoly, D. J. (1981). The steady linear response of a spherical atmosphere to thermal and orographic forcing. Journal of the Atmospheric Sciences, 38(6), 1179–1196. https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
  • Hoskins, B. J., & Pearce, R. P. (1983). Large-scale dynamical processes in the atmosphere. Academic Press Inc. pp. 390.
  • Hoskins, B. J., & Yang, G.-Y. (2000). The equatorial response to higher-latitude forcing. Journal of the Atmospheric Sciences, 57(9), 1197–1213. https://doi.org/10.1175/1520-0469(2000)057<1197:TERTHL>2.0.CO;2
  • Houze, R. A., Jr., Chen, S. S., & Kingsmill, D. E. (2000). Convection over the Pacific warm pool in relation to the atmospheric Kelvin-Rossby wave. Journal of the Atmospheric Sciences, 57(18), 3058–3089. https://doi.org/10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2
  • Huffman, G. J., Adler, R., Morrissey, M. M., Bolvin, D., Curtis, S., Joyce, R., McGavock, Brad, & Susskind, J. (2001). Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology, 2(1), 36–50. https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
  • Hung, M.-P., Lin, J.-L., Wang, W., Kim, D., Shinoda, T., & Weaver, S. J. (2013). MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. Journal of Climate, 26(17), 6185–6214. https://doi.org/10.1175/JCLI-D-12-00541.1
  • Hurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic significance and environmental impact. Geophysical Monographic Series, 134, 1–35. https://doi.org/10.1029/134GM01
  • Jeong, J.-H., Ho, C.-H., & Kim, B.-M. (2005). Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in East Asia. Journal of Geophysical Research, 110(D11), D11104. https://doi.org/10.1029/2004JD005408
  • Jeong, J.-H., Kim, B.-M., Ho, C.-H., & Noh, Y.-H. (2008). Systematic variation in wintertime precipitation in East-Asia by MJO-induced extratropical vertical motion. Journal of Climate, 21(4), 788–801. https://doi.org/10.1175/2007JCLI1801.1
  • Jiang, X., Adames, A. F., Kim, D., Maloney, E. D., Lin, H., Kim, H., Zhang, C., DeMott, C. A., & Klingaman, N. P. (2020). Fifty year's of research on the Madden-Julian Oscillation: Recent progress, challenges, and perspectives. Journal of Geophysical Research – Atmosphere, 125, e2019JD030911. https://doi.org/10.1029/2019JD030911
  • Jiang, X., Waliser, D. E., Olson, W. S., Tao, W.-K., L'Ecuyer, T. S., Li, K.-F., Yung, Yuk L., Shige, S., Lang, S., & Takayabu, Y. N. (2011). Vertical diabatic heating structure of the MJO: Intercomparison between recent reanalyses and TRMM estimates. Monthly Weather Review, 139(10), 3208–3223. https://doi.org/10.1175/2011mwr3636.1
  • Jiang, X., Waliser, D. E., Xavier, P. K., Petch, J., Klingaman, N. P., Woolnough, S. J., Guan, B., Bellon, G., Crueger, T., DeMott, C., Hannay, C., Lin, H., Hu, W., Kim, D., Lappen, C.-L., Lu, M.-M., Ma, H.-Y., Miyakawa, T., Ridout, J. A., … Zhu, H. (2015). Vertical structure and physical processes of the Madden-Julian Oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research: Atmospheres, 120(10), 4718–4748. https://doi.org/10.1002/2014JD022375
  • Jiang, X., Zhao, M., Maloney, E. D., & Waliser, D. E. (2016). Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden-Julian Oscillation. Geophysical Research Letters, 43, 10,412–10,419. https://doi.org/10.1002/2016GL070898
  • Johnson, R. H., & Ciesielski, P. E. (2013). Structure and properties of Madden–Julian Oscillations deduced from DYNAMO sounding arrays. Journal of the Atmospheric Sciences, 70(10), 3157–3179. https://doi.org/10.1175/JAS-D-13-065.1
  • Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., & Schubert, W. H. (1999). Trimodal characteristics of tropical convection. Journal of Climate, 12(8), 2397–2418. https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
  • Jones, C., & Carvalho, L. M. V. (2006). Changes in the activity of the Madden–Julian Oscillation during 1958–2004. Journal of Climate, 19(24), 6353–6370. https://doi.org/10.1175/JCLI3972.1
  • Jones, C., & Carvalho, L. M. V. (2012). Spatial–intensity variations in extreme precipitation in the contiguous United States and the Madden–Julian Oscillation. Journal of Climate, 25, 4849–4913. https://doi.org/10.1175/jcli-d-11-00278.1
  • Kang, W., & Tziperman, E. (2018). The role of zonal asymmetry in the enhancement and suppression of sudden stratospheric warming variability by the Madden–Julian Oscillation. Journal of Climate, 31(6), 2399–2415. https://doi.org/10.1175/jcli-d-17-0489.1
  • Kemball-Cook, S. R., & Weare, B. C. (2001). The onset of convection in the Madden–Julian Oscillation. Journal of Climate, 14(5), 780–793. https://doi.org/10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2
  • Kemball-Cook, S., Wang, B., & Fu, X. (2002). Simulation of the intraseasonal Oscillation in the ECHAM-4 model: The impact of coupling with an ocean model. Journal of the Atmospheric Sciences, 59(9), 1433–1453. https://doi.org/10.1175/1520-0469(2002)059<1433:SOTIOI>2.0.CO;2
  • Kessler, W. S. (2001). EOF representations of the Madden–Julian Oscillation and Its connection with ENSO*. Journal of Climate, 14(13), 3055–3061. https://doi.org/10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2
  • Khairoutdinov, M., Randall, D., & DeMott, C. (2005). Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. Journal of the Atmospheric Sciences, 62(7), 2136–2154. https://doi.org/10.1175/JAS3453.1
  • Khairoutdinov, M. F., & Emanuel, K. (2018). Intraseasonal variability in a cloud-permitting near-global equatorial aquaplanet model. Journal of the Atmospheric Sciences, 75(12), 4337–4355. https://doi.org/10.1175/JAS-D-18-0152.1
  • Khairoutdinov, M. F., & Randall, D. A. (2003). Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. Journal of the Atmospheric Sciences, 60(4), 607–625. https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2
  • Kikuchi, K., Kiladis, G. N., Dias, J., & Nasuno, T. (2018). Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: Slow Kelvin waves as building blocks. Climate Dynamics, 50(11-12), 4211–4230. https://doi.org/10.1007/s00382-017-3869-5
  • Kikuchi, K., Wang, B., & Kajikawa, Y. (2012). Bimodal representation of the tropical intraseasonal Oscillation. Climate Dynamics, 38(9-10), 1989–2000. https://doi.org/10.1007/s00382-011-1159-1
  • Kiladis, G. N., Dias, J., Straub, K. H., Wheeler, M. C., Tulich, S. N., Kikuchi, K., Weickmann, K. M., & Ventrice, M. J. (2014). A comparison of OLR and circulation-based indices for tracking the MJO. Monthly Weather Review, 142(5), 1697–1715. https://doi.org/10.1175/MWR-D-13-00301.1
  • Kiladis, G. N., Straub, K. H., & Haertel, P. T. (2005). Zonal and vertical structure of the Madden-Julian Oscillation. Journal of the Atmospheric Sciences, 62(8), 2790–2809. https://doi.org/10.1175/jas3520.1
  • Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., & Roundy, P. E. (2009). Convectively coupled equatorial waves. Reviews of Geophysics, 47(2), RG2003. https://doi.org/10.1029/2008RG000266
  • Kim, D., Sobel, A. H., Del Genio, A. D., Chen, Y., Camargo, S. J., Yao, M.-S., Kelley, M., & Nazarenko, L. (2012). The tropical subseasonal variability simulated in the NASA GISS general circulation model. Journal of Climate, 25(13), 4641–4659. https://doi.org/10.1175/JCLI-D-11-00447.1
  • Kim, D., Sobel, A. H., & Kang, I.-S. (2011). A mechanism denial study on the Madden–Julian Oscillation. Journal of Advances in Modelling Earth Systems, 3, M12007. https://doi.org/10.1029/2011MS000081
  • Kim, D., Sobel, A. H., Maloney, E. D., Frierson, D. M. W., & Kang, I. S. (2011). A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. Journal of Climate, 24(21), 5506–5520. https://doi.org/10.1175/2011JCLI4177.1
  • Kim, D., Sperber, K., Stern, W., Waliser, D., Kang, I.-S., Maloney, E., Wang, W., Weickmann, K., Benedict, J., Khairoutdinov, M., Lee, M.-I., Neale, R., Suarez, M., Thayer-Calder, K., & Zhang, G. (2009). Application of MJO simulation diagnostics to climate models. Journal of Climate, 22(23), 6413–6436. https://doi.org/10.1175/2009JCLI3063.1
  • Kim, H., Son, S. W., & Yoo, C. (2020). QBO Modulation of the MJO-related precipitation in East Asia. Journal of Geophysical Research: Atmospheres, 125(4), e2019JD031929. https://doi.org/10.1029/2019JD031929
  • Kim, H.-M., Caron, J. M., Richter, J. H., & Simpson, I. R. (2020b). The lack of QBO-MJO connection in CMIP6 models. Geophysical Research Letters, 47, e2020GL087295. https://doi.org/10.1029/2020GL087295
  • Kim, H.-M., Janiga, M. A., & Pegion, K. (2019). MJO propagation processes and mean biases in the SubX and S2S reforecasts. Journal of Geophysical Research: Atmospheres, 124(16), 9314–9331. https://doi.org/10.1029/2019JD031139
  • Kim, H.-M., Kim, D., Vitart, F., Toma, V. E., Kug, J.-S., & Webster, P. J. (2016). MJO propagation across the Maritime Continent in the ECMWF ensemble prediction system. Journal of Climate, 29(11), 3973–3988. https://doi.org/10.1175/JCLI-D-15-0862.1
  • Kim, H.-M., Richter, J. H., & Martin, Z. (2020a). Insignificant QBO-MJO prediction skill relationship in the SubX and S2S subseasonal refocasts. Journal of Geophysical Research: Atmospheres, 124(23), 12,655–12,666. https://doi.org/10.1029/2019JD031416
  • Kim, H.-M., Webster, P. J., Toma, V. E., & Kim, D. (2014). Predictability and prediction skill of the MJO in two operational forecasting systems. Journal of Climate, 27(14), 5364–5378. https://doi.org/10.1175/JCLI-D-13-00480.1
  • Knutson, T. R., & Weickmann, K. (1987). 30–60 day atmospheric Oscillations: Composite life cycles of convection and circulation anomalies. Monthly Weather Review, 115(7), 1407–1436. https://doi.org/10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2
  • Knutson, T. R., Weickmann, K. M., & Kutzbach, J. E. (1986). Global-scale intraseasonal Oscillations of outgoing longwave radiation and 250 mb zonal wind during Northern Hemisphere summer. Monthly Weather Review, 114(3), 605–623. https://doi.org/10.1175/1520-0493(1986)114<0605:GSIOOO>2.0.CO;2
  • Kuo, H. L. (1974). Further studies of the parameterization of the influence of cumulus convection on large-scale flow. Journal of the Atmospheric Sciences, 31(5), 1232–1240. https://doi.org/10.1175/1520-0469(1974)031%3C1232:fsotpo%3E2.0.co;2
  • Kuo, Y.-H., Neelin, J. D., Chen, C.-C., Chen, W.-T., Donner, L. J., Gettelman, A., Jiang, X., Kuo, K.-T., Maloney, E., Mechoso, C. R., Ming, Y., Schiro, K. A., Seman, C. J., Wu, C.-M., & Zhao, M. (2019). Convective transition statistics over tropical oceans for climate model diagnostics: GCM evaluation. Journal of the Atmospheric Sciences, https://doi.org/10.1175/jas-d-19-0132.1
  • L'Heureux, M. L., & Higgins, R. W. (2008). Boreal winter links between the Madden–Julian Oscillation and the Arctic Oscillation. Journal of Climate, 21(12), 3040–3050. https://doi.org/10.1175/2007jcli1955.1
  • Lau, K.-M., & Chan, P. H. (1985). Aspects of the 40–50 day Oscillation during the northern winter as inferred from outgoing longwave radiation. Monthly Weather Review, 113(11), 1889–1909. https://doi.org/10.1175/1520-0493(1985)113<1889:AOTDOD>2.0.CO;2
  • Lau, K.-M., & Chan, P. H. (1986). Aspects of the 40–50 day Oscillation during the northern summer as inferred from outgoing longwave radiation. Monthly Weather Review, 114(7), 1354–1367. https://doi.org/10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2
  • Lau, K.-M., & Chan, P. H. (1988). Intraseasonal and interannual variations of tropical convection: A possible link between the 40–50 day Oscillation and ENSO? Journal of the Atmospheric Sciences, 45(3), 506–521. https://doi.org/10.1175/1520-0469(1988)045<0506:IAIVOT>2.0.CO;2
  • Lau, K.-M., & Peng, L. (1987). Origin of low-frequency (intraseasonal) Oscillations in the tropical atmosphere. Part I: Basic theory. Journal of the Atmospheric Sciences, 44(6), 950–972. https://doi.org/10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2
  • Lau, K.-M., Peng, L., Sui, C. H., & Nakazawa, T. (1989). Dynamics of super cloud clusters, westerly wind bursts, 30–60 day Oscillations and ENSO: An unified view. Journal of the Meteorological Society of Japan, 67, 205–219. https://doi.org/10.2151/jmsj1965.67.2_205
  • Lau, K.-M., & Phillips, T. J. (1986). Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal time scales. Journal of the Atmospheric Sciences, 43(11), 1164–1181. https://doi.org/10.1175/1520-0469(1986)043<1164:CFOFGH>2.0.CO;2
  • Lau, K.-M., & Waliser, D. E. (2012). Intraseasonal variability in the atmosphere-ocean climate system (2nd ed.). Springer.
  • Lau, N.-C. (1988). Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. Journal of the Atmospheric Sciences, 45(19), 2718–2743. https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2
  • Lee, C.-Y., Camargo, S. J., Vitart, F., Sobel, A. H., & Tippett, M. K. (2018). Sub-seasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Weather Forecasting, 33, https://doi.org/10.1175/waf-d-17-0165.1
  • Lee, H.-J., & Seo, K.-H. (2019). Impact of the Madden–Julian Oscillation on Antarctic sea ice and its dynamical mechanism. Scientific Reports, 9(1), 10761. https://doi.org/10.1038/s41598-019-47150-3
  • Lee, R. W., Woolnough, S. J., Charlton Perez, A. J., & Vitart, F. (2019). ENSO modulation of MJO teleconnections to the North Atlantic and Europe. Geophysical Research Letters, 46(22), 13,535–13,545. https://doi.org/10.1029/2019GL084683
  • Li, K.-F., Tian, B., Waliser, D. E., & Yung, Y. L. (2010). Tropical mid-tropospheric CO2 variability driven by the Madden–Julian Oscillation. Proceedings of the National Academy of Sciences, 107(45), 19,171–19,175. https://doi.org/10.1073/pnas.1008222107
  • Liebmann, B., & Hartmann, D. L. (1984). An observational study of tropical-midlatitude interaction on intraseasonal time scales during winter. Journal of the Atmospheric Sciences, 41(23), 3333–3350. https://doi.org/10.1175/1520-0469(1984)041<3333:AOSOTI>2.0.CO;2
  • Liebmann, B., Hendon, H. H., & Glick, J. D. (1994). The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian Oscillation. Journal of the Meteorological Society of Japan, 72, 401–412. https://doi.org/10.2151/jmsj1965.72.3_401
  • Lim, Y., & Son, S.-W. (2020). QBO-MJO connection in CMIP5 models. Journal of Geophysical Research: Atmospheres, 125, https://doi.org/10.1029/2019JD032157
  • Lim, Y., Son, S.-W., & Kim, D. (2018). MJO prediction skill of the subseasonal-to-seasonal prediction models. Journal of Climate, 31(10), 4075–4094. https://doi.org/10.1175/JCLI-D-17-0545.1
  • Lim, Y., Son, S.-W., Marshall, A. G., Hendon, H. H., & Seo, K.-H. (2019). Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Climate Dynamics, 53(3-4), 1681–1695. https://doi.org/10.1007/s00382-019-04719-y
  • Lin, H. (2020). Subseasonal forecast skill over the Northern polar region in boreal winter. Journal of Climate, 33(5), 1935–1951. https://doi.org/10.1175/JCLI-D-19-0408.1
  • Lin, H., & Brunet, G. (2009). The influence of the Madden-Julian Oscillation on Canadian wintertime surface air temperature. Monthly Weather Review, 137(7), 2250–2262. https://doi.org/10.1175/2009MWR2831.1
  • Lin, H., & Brunet, G. (2011). Impact of the North Atlantic Oscillation on the forecast skill of the Madden-Julian Oscillation. Geophysical Research Letters, 38, L02802. https://doi.org/10.1029/2010GL046131
  • Lin, H., & Brunet, G. (2018). Exratropical response to the MJO: Nonlinearity and sensitivity to initial state. Journal of the Atmospheric Sciences, 75(1), 219–234. https://doi.org/10.1175/JAS-D-17-0189.1
  • Lin, H., Brunet, G., & Derome, J. (2007). Intraseasonal variability in a dry atmospheric model. Journal of the Atmospheric Sciences, 64(7), 2422–2441. https://doi.org/10.1175/JAS3955.1
  • Lin, H., Brunet, G., & Derome, J. (2008). Forecast skill of the Madden-Julian Oscillation in two Canadian atmospheric models. Monthly Weather Review, 136(11), 4130–4149. https://doi.org/10.1175/2008MWR2459.1
  • Lin, H., Brunet, G., & Derome, J. (2009). An observed connection between the North Atlantic Oscillation and the Madden-Julian Oscillation. Journal of Climate, 22(2), 364–380. https://doi.org/10.1175/2008JCLI2515.1
  • Lin, H., Brunet, G., & Fontecilla, J. S. (2010). Impact of the Madden-Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophysical Research Letters, 37, L19803. https://doi.org/10.1029/2010GL044315
  • Lin, H., Brunet, G., & Mo, R. (2010). Impact of the Madden-Julian Oscillation on wintertime precipitation in Canada. Monthly Weather Review, 138(10), 3822–3839. https://doi.org/10.1175/2010MWR3363.1
  • Lin, H., Brunet, G., & Yu, B. (2015). Interannual variability of the Madden-Julian Oscillation and its impact on the North Atlantic Oscillation in the boreal winter. Geophysical Research Letters, 42(13), 5571–5576. https://doi.org/10.1002/2015GL064547
  • Lin, H., Derome, J., & Brunet, G. (2007). The nonlinear transient atmospheric response to tropical forcing. Journal of Climate, 20(22), 5642–5665. https://doi.org/10.1175/2007JCLI1383.1
  • Lin, H., Frederiksen, J., Straus, D., & Stan, C. (2019). Tropical-Extratropical interactions and teleconnections. Chapter 7. In A. W. Robertson & F. Vitart (Eds.), Sub-seasonal to seasonal prediction: The gap between weather and climate forecasting (pp. 143–164). Elsevier.
  • Lin, H., Mo, R., Vitart, F., & Stan, C. (2019). Eastern Canada flooding 2017 and its subseasonal predictions. Atmosphere-Ocean, 57(3), 195–207. https://doi.org/10.1080/07055900.2018.1547679
  • Lin, J.-L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R., Lin, W., Wheeler, M. C., Schubert, S. D., Del Genio, A., Donner, L. J., Emori, S., Gueremy, J.-F., Hourdin, F., Rasch, P. J., Roeckner, E., & Scinocca, J. F. (2006). Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. Journal of Climate, 19(12), 2665–2690. https://doi.org/10.1175/JCLI3735.1
  • Lin, J.-L., Mapes, B., Zhang, M., & Newman, M. (2004). Stratiform precipitation, vertical heating profiles, and the Madden-Julian Oscillation. Journal of the Atmospheric Sciences, 61(3), 296–309. https://doi.org/10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2
  • Lindzen, R. S. (1974). Wave-CISK in the tropics. Journal of the Atmospheric Sciences, 31(1), 156–179. https://doi.org/10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2
  • Ling, J., Zhang, C., Joyce, R., Xie, P. P., & Chen, G. (2019). Possible role of the diurnal cycle in land convection in the barrier effect on the MJO by the maritime continent. Geophysical Research Letters, 46(5), 3001–3011. https://doi.org/10.1029/2019GL081962
  • Liu, C., Tian, B., Li, K.-F., Manney, G. L., Livesey, N. J., Yung, Y. L., & Waliser, D. E. (2014). Northern Hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden–Julian Oscillation and Quasi–Biennial Oscillation. Journal of Geophysical Research: Atmospheres, 119, 12,599–12,620. https://doi.org/10.1002/2014JD021876
  • Liu, F., & Wang, B. (2017). Effects of moisture feedback in a frictional coupled Kelvin–Rossby wave model and implication in the Madden–Julian Oscillation dynamics. Climate Dynamics, 48(1-2), 513–522. https://doi.org/10.1007/s00382-016-3090-y
  • Liu, P., Satoh, M., Wang, B., Fudeyasu, H., Nasuno, T., Li, T., Miura, H., Taniguchi, H., Masunaga, H., Fu, X., & Annamalai, H. (2009). An MJO simulated by the NICAM at 14- and 7-km resolutions. Monthly Weather Review, 137(10), 3254–3268. https://doi.org/10.1175/2009MWR2965.1
  • Lorenz, D. J., & Hartmann, D. L. (2006). The effect of the MJO on the North American monsoon. Journal of Climate, 19(3), 333–343. https://doi.org/10.1175/JCLI3684.1
  • Madden, R. A., & Julian, P. R. (1971). Detection of a 40–50 d Oscillation in the zonal wind in the tropical pacific. Journal of the Atmospheric Sciences, 28(5), 702–708. https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
  • Madden, R. A., & Julian, P. R. (1972). Description of global-scale circulation cells in the tropics with a 40-50 day period. Journal of the Atmospheric Sciences, 29(6), 1109–1123. https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
  • Madden, R. A., & Julian, P. R. (1994). Observations of the 40–50-day tropical Oscillation—a review. Monthly Weather Review, 122(5), 814–837. https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2
  • Majda, A. J., & Biello, J. A. (2004). A multiscale model for tropical intraseasonal Oscillation. Proceedings of the National Academy of Sciences, 101(14), 4736–4741. https://doi.org/10.1073/pnas.0401034101
  • Majda, A. J., & Stechmann, S. N. (2009). A simple dynamical model with features of convective momentum transport. Journal of the Atmospheric Sciences, 66(2), 373–392. https://doi.org/10.1175/2008JAS2805.1
  • Maloney, E. D., & Hartmann, D. L. (2000). Modulation of eastern North Pacific hurricanes by the Madden–Julian Oscillation. Journal of Climate, 13(9), 1451–1460. https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2
  • Maloney, E. D., & Hartmann, D. L. (2001). The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. Journal of Climate, 14(9), 2015–2034. https://doi.org/10.1175/1520-0442(2001)014<2015:TSOIVI>2.0.CO;2
  • Marshall, A. G., Hendon, H. H., Son, S.-W., & Lim, Y. (2017). Impact of the quasi-biennial Oscillation on predictability of the Madden-Julian Oscillation. Climate Dynamics, 49(4), 1365–1377. https://doi.org/10.1007/s00382-016-3392-0
  • Marshall, A. G., Hudson, D., Wheeler, M. C., Alves, O., Hendon, H. H., Pook, M. J., & Risbey, J. S. (2014). Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Climate Dynamics, 43(7-8), 1915–1937. https://doi.org/10.1007/s00382-013-2016-1
  • Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan, 44, 25–43. https://doi.org/10.2151/jmsj1965.44.1_25
  • Matthews, A. J. (2000). Propagation mechanisms for the Madden-Julian Oscillation. Quarterly Journal of the Royal Meteorological Society, 126(569), 2637–2651. https://doi.org/10.1002/qj.49712656902
  • Matthews, A. J., Hoskins, B. J., & Masutani, M. (2004). The global response to tropical heating in the Madden–Julian Oscillation during the northern winter. Quarterly Journal of the Royal Meteorological Society, 130(601), 1991–2011. https://doi.org/10.1256/qj.02.123
  • Matthews, A. J., & Kiladis, G. N. (1999). The tropical–extratropical interaction between high-frequency transients and the Madden–Julian Oscillation. Monthly Weather Review, 127(5), 661–677. https://doi.org/10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2
  • McPhaden, J. M., Zhang, X., Henden, H., & Wheeler, M. C. (2006b). Large scale dynamics and MJO forcing of ENSO variability. Geophysical Research Letters, 33(16), LI6702. https://doi.org/10.1029/2006GL026786
  • McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006a). ENSO as an integrating concept in Earth science. Science, 314(5806), 1740–1745. https://doi.org/10.1126/science.1132588
  • Milliff, R. F., & Madden, R. A. (1996). The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere. Journal of the Atmospheric Sciences, 53(4), 586–597. https://doi.org/10.1175/1520-0469(1996)053<0586:TEAVSO>2.0.CO;2
  • Miura, H., Satoh, M., Nasuno, T., Noda, A. T., & Oouchi, K. (2007). A Madden-Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318(5857), 1763–1765. https://doi.org/10.1126/science.1148443
  • Miyakawa, T., Satoh, M., Miura, H., Tomita, H., Yashiro, H., Noda, A. T., Yamada, Y., Kodama, C., Kimoto, M., & Yoneyama, K. (2014). Madden–Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nature Communications, 5(1), https://doi.org/10.1038/ncomms4769
  • Mo, K. C., & Higgins, R. W. (1998). Tropical convection and precipitation regimes in the western United States. Journal of Climate, 11(9), 2404–2423. https://doi.org/10.1175/1520-0442(1998)011<2404:TCAPRI>2.0.CO;2
  • Mo, K. C., Jones, C., & Nogues-Paegle, J. (2012). Pan-America. In W. K. M. Lau & D. E. Waliser (Eds.), Intraseasonal variability in the atmosphere-ocean climate system (pp. 111–145). Springer.
  • Mo, K. C., & Livezey, R. E. (1986). Tropical-extratropical geopotential height teleconnections during the Northern hemisphere winter. Monthly Weather Review, 114(12), 2488–2515. https://doi.org/10.1175/1520-0493(1986)114<2488:TEGHTD>2.0.CO;2
  • Mo, K. C., & White, G. H. (1985). Teleconnections in the Southern hemisphere. Monthly Weather Review, 113(1), 22–37. https://doi.org/10.1175/1520-0493(1985)113<0022:TITSH>2.0.CO;2
  • Moncrieff, M. W. (1992). Organized convective systems: Archetypal dynamic-models, mass and momentum flux theory, and parameterization. Quarterly Journal of the Royal Meteorological Society, 118(507), 819–850. https://doi.org/10.1002/qj.49711850703
  • Mori, M., & Watanabe, M. (2008). The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. Journal of the Meteorological Society of Japan, 86, 213–236. https://doi.org/10.2151/jmsj.86.213
  • Mundhenk, B. D., Barnes, E. A., Maloney, E. D., & Baggett, C. F. (2018). Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian Oscillation and quasi-biennial Oscillation. npj Climate and Atmospheric Science, 1(1), 20177. https://doi.org/10.1038/s41612-017-0008-2
  • Murakami, T., Nakazawa, T., & He, J. (1984). On the 40–50 day Oscillations during the 1979 Northern Hemisphere summer, Part I: Phase propagation. Journal of the Meteorological Society of Japan, 62, 440–467. https://doi.org/10.2151/jmsj1965.62.3_440
  • Murphy, A. H., & Epstein, E. S. (1989). Skill scores and correlation coefficients in model verification. Monthly Weather Review, 117(3), 572–582. https://doi.org/10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2
  • Nakazawa, T. (1988). Tropical super clusters within intraseasonal variations over the western Pacific. Journal of the Meteorological Society of Japan, 66, 823–839. https://doi.org/10.2151/jmsj1965.66.6_823
  • Nasuno, T., Miura, H., Satoh, M., Noda, A. T., & Oouchi, K. (2009). Multi-scale organization of convection in a global numerical simulation of the December 2006 MJO event using explicit moist processes. Journal of the Meteorological Society of Japan. Series II, 87(2), 335–345. https://doi.org/10.2151/jmsj.87.335
  • National Academies of Sciences, Engineering, and Medicine (NAS). (2016). Next generation earth system prediction: Strategies for subseasonal to seasonal forecasts. The National Academies Press. https://doi.org/10.17226/21873
  • Naumann, G., & Vargas, W. M. (2010). Joint diagnostic of the surface air temperature in Southern South America and the Madden–Julian Oscillation. Weather and Forecasting, 25(4), 1275–1280. https://doi.org/10.1175/2010WAF2222418.1
  • Neelin, J. D., Held, I. M., & Cook, K. H. (1987). Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. Journal of the Atmospheric Sciences, 44(16), 2341–2348. https://doi.org/10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2
  • Neena, J. M., Lee, J. Y., Waliser, D., Wang, B., & Jiang, X. (2014). Predictability of the Madden–Julian Oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). Journal of Climate, 27(12), 4531–4543. https://doi.org/10.1175/JCLI-D-13-00624.1
  • Nishimoto, E., & Yoden, S. (2017). Influence of the stratospheric quasi-biennial Oscillation on the Madden–Julian Oscillation during Austral summer. Journal of the Atmospheric Sciences, 74(4), 1105–1125. https://doi.org/10.1175/JAS-D-16-0205.1
  • Park, C.-K., Straus, D. M., & Lau, K.-M. (1990). An evaluation of the structure of tropical intraseasonal Oscillations in three general circulation models. Journal of the Meteorological Society of Japan, 68, 403–417. https://doi.org/10.2151/jmsj1965.68.4_403
  • Park, T.-W., Ho, C.-H., Yang, S., & Jeong, J.-H. (2010). Influences of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009–2010. Journal of Geophysical Research, 115(D23), D23122. https://doi.org/10.1029/2010JD014794
  • Pegion, K., & Kirtman, B. P. (2008). The impact of air–sea Interactions on the simulation of tropical intraseasonal variability. Journal of Climate, 21(24), 6616–6635. https://doi.org/10.1175/2008JCLI2180.1
  • Pegion, K., Kirtman, B. P., Becker, E., Collins, D. C., LaJoie, E., Burgman, R., Bell, R., DelSole, T., Min, D., Zhu, Y., Li, W., Sinsky, E., Guan, H., Gottschalck, J., Metzger, E. J., Barton, N. P., Achuthavarier, D., Marshak, J., Koster, R. D., … Kim, H. (2019). The subseasonal experiment (SubX): A multimodel subseasonal prediction experiment. Bulletin of the American Meteorological Society, 100(10), 2043–2060. https://doi.org/10.1175/BAMS-D-18-0270.1
  • Peters, O., & Neelin, J. D. (2006). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. https://doi.org/10.1038/nphys314
  • Rashid, H. A., Hendon, H. H., Wheeler, M. C., & Alves, O. (2010). Predictability of the Madden-Julian Oscillation in the POAMA dynamical seasonal prediction system. Climate Dynamics. https://doi.org/10.1007/s00382-010-0754-x
  • Ray, P., & Zhang, C. (2010). A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian Oscillation. Journal of the Atmospheric Sciences, 67(2), 515–528. https://doi.org/10.1175/2009JAS3059.1
  • Raymond, D. J. (1995). Regulation of moist convection over the West Pacific warm pool. Journal of the Atmospheric Sciences, 52(22), 3945–3959. https://doi.org/10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2
  • Raymond, D. J. (2001). A new model of the Madden–Julian Oscillation. Journal of the Atmospheric Sciences, 58(18), 2807–2819. https://doi.org/10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2
  • Raymond, D. J., & Fuchs, Z. (2009). Moisture modes and the Madden–Julian Oscillation. Journal of Climate, 22(11), 3031–3046. https://doi.org/10.1175/2008JCLI2739.1
  • Riddle, E. E., Stoner, M. B., Jognson, N. C., L’Heureux, M. L., Collins, D. C., & Feldstein, S. B. (2013). The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dynamics, 40(7-8), 1749–1766. https://doi.org/10.1007/s00382-012-1493-y
  • Rostami, M., & Zeitlin, V. (2019). Eastward-moving convection-enhanced modons in shallow water in the equatorial tangent plane. Physics of Fluids, 31(2), 021701. https://doi.org/10.1063/1.5080415
  • Roundy, P. E., MacRitchie, K., Asuma, J., & Melino, T. (2010). Modulation of the global atmospheric circulation by combined activity in the Madden–Julian Oscillation and the El Niño–Southern Oscillation during boreal winter. Journal of Climate, 23(15), 4045–4059. https://doi.org/10.1175/2010JCLI3446.1
  • Salby, M. L., & Hendon, H. H. (1994). Intraseasonal behavior of clouds, temperature, and winds in the tropics. Journal of the Atmospheric Sciences, 51(15), 2207–2224. https://doi.org/10.1175/1520-0469(1994)051<2207:IBOCTA>2.0.CO;2
  • Sasaki, W., Onishi, R., Fuchigami, H., Goto, K., Nishikawa, S., Ishikawa, Y., & Takahashi, K. (2016). MJO simulation in a cloud-system-resolving global ocean-atmosphere coupled model. Geophysical Research Letters, 43(17), 9352–9360. https://doi.org/10.1002/2016GL070550
  • Seo, H., Subramanian, A. C., Miller, A. J., & Cavanaugh, N. R. (2014). Coupled impacts of the diurnal cycle of Sea surface temperature on the Madden–Julian Oscillation. Journal of Climate, 27(22), 8422–8443. https://doi.org/10.1175/JCLI-D-14-00141.1
  • Seo, K.-H., & Son, S.-W. (2012). The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian Oscillation during northern winter. Journal of the Atmospheric Sciences, 69(1), 79–96. https://doi.org/10.1175/2011JAS3686.1
  • Shao, X., Song, J., & Li, S. (2019). The lagged connection of the positive NAO with the MJO phase 3 in a simplified atmospheric model. Theoretical and Applied Climatology, 135(3-4), 1091–1103. https://doi.org/10.1007/s00704-018-2425-5
  • Shapiro, M., Shukla, J., Brunet, G., Nobre, C., Beland, M., Dole, R., Trenberth, K., Anthes, R., Asrar, G., Barrie, L., Bougeault, P., Brasseur, G., Burridge, D., Busalacchi, A., Caughey, J., Chen, D., Church, J., Enomoto, T., Hoskins, B., … Wallace, J. M. (2010). An earth-system prediction initiative for the twenty-first century. Bulletin of the American Meteorological Society, 91(10), 1377–1388. https://doi.org/10.1175/2010BAMS2944.1
  • Shea, D. J., Trenberth, K. E., & Reynolds, R. W. (1992). A global monthly sea surface temperature climatology. Journal of Climate, 5(9), 987–1001. https://doi.org/10.1175/1520-0442(1992)005<0987:AGMSST>2.0.CO;2
  • Sheng, J., & Derome, J. (1991). An observational study of the energy transfer between the seasonal mean flow and transient eddies. Tellus A: Dynamic Meteorology and Oceanography, 43(2), 128–144. https://doi.org/10.3402/tellusa.v43i2.11921
  • Shi, X., Kim, D., Adames-Corraliza, Á. F., & Sukhatme, J. (2018). WISHE-moisture mode in an aquaplanet simulation. Journal of Advances in Modeling Earth Systems, 10(10), 2393–2407. https://doi.org/10.1029/2018MS001441
  • Shukla, J., Anerson, J., Baumhefner, D., Brankovic, C., Chang, Y., Kalnay, E., et al. (2000). Dynamical seasonal prediction. Bulletin of the American Meteorological Society, 81(11), 2593–2606. https://doi.org/10.1175/1520-0477(2000)081<2593:DSP>2.3.CO;2
  • Simmons, A. J., Wallace, J. M., & Branstator, G. (1983). Barotropic wave propagation and instability, and atmospheric teleconnection patterns. Journal of the Atmospheric Sciences, 40(6), 1363–1392. https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2
  • Slingo, J., Inness, P., Neale, R., Woolnough, S., & Yang, G. Y. (2003). Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Annals of Geophysics, 46, 139–155. https://doi.org/10.4401/ag-3383
  • Slingo, J. M., Blackburn, M., Betts, A., Brugge, R., Hodges, K., Hoskins, B., Miller, M., Steenman-Clark, L., & Thuburn, J. (1994). Mean climate and transience in the tropics of the UGAMP GCM: Sensitivity to convective parameterization. Quarterly Journal of the Royal Meteorological Society, 120(518), 881–922. https://doi.org/10.1002/qj.49712051807
  • Slingo, J. M., Rowell, D. P., Sperber, K. R., & Nortley, F. (1999). On the predictability of the interannual behavior of the Madden-Julian Oscillation and its relationship with El Nino. Quarterly Journal of the Royal Meteorological Society, 125, 583–610. https://doi.org/10.1002/qj.49712555411
  • Slingo, J. M., Sperber, K. R., Boyle, J. S., Ceron, J. P., Dix, M., Dugas, B., Ebisuzaki, W., Fyfe, J., Gregory, D., Gueremy, J.-F., Hack, J., Harzallah, A., Inness, P., Kitoh, A., Lau, W. K.-M., McAvaney, B., Madden, R., Matthews, A., Palmer, T. N., … Renno, N. (1996). Intraseasonal Oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dynamics, 12(5), 325–357. https://doi.org/10.1007/BF00231106
  • Sobel, A., & Maloney, E. (2012). An idealized semi-empirical framework for modeling the Madden–Julian Oscillation. Journal of the Atmospheric Sciences, 69(5), 1691–1705. https://doi.org/10.1175/JAS-D-11-0118.1
  • Sobel, A., & Maloney, E. (2013). Moisture modes and the eastward propagation of the MJO. Journal of the Atmospheric Sciences, 70(1), 187–192. https://doi.org/10.1175/JAS-D-12-0189.1
  • Sobel, A. H., Nilsson, J., & Polvani, L. M. (2001). The weak temperature gradient approximation and balanced tropical moisture waves. Journal of the Atmospheric Sciences, 58(23), 3650–3665. https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2
  • Son, S.-W., Lim, Y., Yoo, C., Hendon, H., & Kim, J. (2017). Stratospheric control of the Madden–Julian Oscillation. Journal of Climate, 30(6), 1909–1922. https://doi.org/10.1175/JCLI-D-16-0620.1
  • Sperber, K. R. (2003). Propagation and the vertical structure of the Madden-Julian Oscillation. Monthly Weather Review, 131(12), 3018–3037. https://doi.org/10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2
  • Sperber, K. R., Gualdi, S., Legutke, S., & Gayler, V. (2005). The Madden–Julian Oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dynamics, 25(2-3), 117–140. https://doi.org/10.1007/s00382-005-0026-3
  • Stachnik, J. P., Waliser, D. E., Majda, A. J., Stechmann, S. N., & Thual, S. (2015). Evaluating MJO event initiation and decay in the skeleton model using anRMM-like index. Journal of Geophysical Research: Atmospheres, 120(22), 11,486–11,508. https://doi.org/10.1002/2015JD023916
  • Stan, C., Straus, D., Frederiksen, J., Lin, H., Maloney, E., & Schumacher, C. (2017). Review of tropical- extratropical teleconnections on intraseasonal time scales. Reviews of Geophysics, https://doi.org/10.1002/2016RG000538
  • Stechmann, S. N., & Majda, A. J. (2015). Identifying the skeleton of the Madden–Julian Oscillation in observational data. Monthly Weather Review, 143(1), 395–416. https://doi.org/10.1175/MWR-D-14-00169.1
  • Straub, K. H. (2013). MJO initiation in the real-time multivariate MJO index. Journal of Climate, 26(4), 1130–1151. https://doi.org/10.1175/JCLI-D-12-00074.1
  • Straus, D. M., Swenson, E., & Lappen, C.-L. (2015). The MJO cycle forcing of the North Atlantic circulation: Intervention experiments with the community earth system model. Journal of the Atmospheric Sciences, 72(2), 660–681. https://doi.org/10.1175/JAS-D-14-0145.1
  • Sultan, B., Janicot, S., & Diedhiou, A. (2003). The West African monsoon dynamics. Part I: Documentation of intraseasonal variability. Journal of Climate, 16(21), 3389–3406. https://doi.org/10.1175/1520-0442(2003)016<3389:TWAMDP>2.0.CO;2
  • Sun, L., Wang, H., & Liu, F. (2019). Combined effect of the QBO and ENSO on the MJO. Atmospheric and Oceanic Science Letters, 12(3), 170–176. https://doi.org/10.1080/16742834.2019.1588064
  • Takayabu, Y. N. (1994). Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertia-gravity waves. Journal of the Meteorological Society of Japan, 72, 451–465. https://doi.org/10.2151/jmsj1965.72.3_451
  • Tang, Y., & Yu, B. (2008). MJO and its relationship to ENSO. Journal of Geophysical Research Atmosphere, 113(D14), D14106. https://doi.org/10.1029/2007JD009230
  • Thayer-Calder, K., & Randall, D. A. (2009). The role of convective moistening in the Madden–Julian Oscillation. Journal of the Atmospheric Sciences, 66(11), 3297–3312. https://doi.org/10.1175/2009JAS3081.1
  • Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25(9), 1297–1300. https://doi.org/10.1029/98GL00950
  • Thual, S., & Majda, A. J. (2015). A suite of skeleton models for the MJO with refined vertical structure. Mathematics of Climate and Weather Forecasting, 1(1), 70–95. https://doi.org/10.1515/mcwf-2015-0004
  • Thual, S., Majda, A. J., & Stechmann, S. N. (2014). A stochastic skeleton model for the MJO. Journal of the Atmospheric Sciences, 71(2), 697–715. https://doi.org/10.1175/JAS-D-13-0186.1
  • Tian, B., Yung, Y. L., Waliser, D. E., Tyranowski, T., Kuai, L., Fetzer, E. J., & Irion, F. W. (2007). Intraseasonal variations of the tropical total ozone and their connection to the Madden–Julian Oscillation. Geophysical Research Letters, 34(8), L08704. https://doi.org/10.1029/2007GL029451
  • Toms, B. A., Barnes, E. A., Maloney, E. D., & van den Heever, S. C. (2020). The global teleconnection signature of the Madden–Julian Oscillation and its modulation by the quasi-biennial Oscillation. Journal of Geophysical Research: Atmospheres, 125, e2020JD032653. https://doi.org/10.1029/2020JD032653
  • Tseng, K. C., Barnes, E. A., & Maloney, E. D. (2018). Prediction of the midlatitude response to strong Madden-Julian Oscillation events on S2S time scales. Geophysical Research Letters, 45(1), 463–470. https://doi.org/10.1002/2017GL075734
  • Vecchi, G. A., & Bond, N. A. (2004). The Madden-Julian Oscillation (MJO) and the northern high latitude wintertime surface air temperatures. Geophysical Research Letters, 31(4), L04104. https://doi.org/10.1029/2003GL018645
  • Ventrice, M. J., Wheeler, M. C., Hendon, H. H., Schreck, C. J., Thorncroft, C. D., & Kiladis, G. N. (2013). A modified multivariate Madden–Julian Oscillation index using velocity potential. Monthly Weather Review, 141(12), 4197–4210. https://doi.org/10.1175/MWR-D-12-00327.1
  • Vitart, F. (2017). Madden—Julian Oscillation prediction and teleconnections in the S2S database. Quarterly Journal of the Royal Meteorological Society, 143(706), 2210–2220. https://doi.org/10.1002/qj.3079
  • Vitart, F., & Jung, T. (2010). Impact of the Northern Hemisphere extratropics on the skill in predicting the Madden Julian Oscillation. Geophysical Research Letters, 37(23), L23805. https://doi.org/10.1029/2010GL045465
  • Vitart, F., & Molteni, F. (2010). Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Quarterly Journal of the Royal Meteorological Society, 136(649), 842–855. https://doi.org/10.1002/qj.623
  • Vitart, F., & Robertson, A. W. (2018). The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate and Atmospheric Science, 1(1), 1–7. https://doi.org/10.1038/s41612-018-0013-0
  • Waliser, D. E. (2012). Predictability and forecasting. In W. K. M. Lau & D. E. Waliser (Eds.), Intraseasonal variability in the atmosphere-ocean climate system (Ch. 12, pp. 433–476). Springer.
  • Waliser, D. E., Lau, K.-M., & Kim, J.-H. (1999). The influence of coupled sea surface temperatures on the Madden–Julian Oscillation: A model perturbation experiment. Journal of the Atmospheric Sciences, 56(3), 333–358. https://doi.org/10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2
  • Waliser, D. E., Lau, K. M., Stern, W., & Jones, C. (2003). Potential predictability of the Madden-Julian Oscillation. Bulletin of the American Meteorological Society, 84(1), 33–50. https://doi.org/10.1175/BAMS-84-1-33
  • Wallace, J. M., & Guztler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109(4), 784–812. https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
  • Wang, B. (1988). Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. Journal of the Atmospheric Sciences, 45(14), 2051–2065. https://doi.org/10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2
  • Wang, B. (2005). Theory. In K. M. Lau, & D. E. Waliser (Eds.), Intraseasonal Variability in the Atmosphere-Ocean Climate System (pp. 307–360). Chichester: Praxis.
  • Wang, B. (2006). The Asian monsoon (pp. 787). Springer/Praxis Publishing Co.
  • Wang, B., & Chen, G. (2017). A general theoretical framework for understanding essential dynamics of Madden–Julian Oscillation. Climate Dynamics, 49(7-8), 2309–2328. https://doi.org/10.1007/s00382-016-3448-1
  • Wang, B., Chen, G., & Liu, F. (2019). Diversity of the Madden–Julian Oscillation. Science Advances, 5, eaax0220. https://doi.org/10.1126/sciadv.aax0220
  • Wang, B., & Lee, S. S. (2017). MJO propagation shaped by zonal asymmetric structures: Results from 24 GCM simulations. Journal of Climate, 30(19), 7933–7952. https://doi.org/10.1175/JCLI-D-16-0873.1
  • Wang, B., Lee, S-S, Waliser, D. E., Zhang, C., Sobel, A., Maloney, E., Li, T., Jiang, X., & Ha, K.-J. (2018). Dynamics-oriented diagnostics for the Madden-Julian Oscillation. Journal of Climate, 31(8), 3117–3135. https://doi.org/10.1175/jcli-d-17-0332.1 
  • Wang, B., & Li, T. (1994). Convective interaction with boundary-layer dynamics in the development of the tropical intraseasonal system. Journal of the Atmospheric Sciences, 51(11), 1386–1400. https://doi.org/10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2
  • Wang, B., Liu, F., & Chen, G. (2016). A trio-interaction theory for Madden–Julian Oscillation. Geoscience Letters, 3(1), 34. https://doi.org/10.1186/s40562-016-0066-z
  • Wang, B., & Rui, H. (1990). Dynamics of the coupled moist Kelvin–Rossby wave on an equatorialβ-plane. Journal of the Atmospheric Sciences, 47(4), 397–413. https://doi.org/10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2
  • Wang, J., Kim, H-M, Chang, E. K. M., & Son, S-W. (2018). Modulation of the MJO and North Pacific storm track relationship by the QBO. Journal of Geophysical Research: Atmospheres, 123(8), 3976–3992. https://doi.org/10.1029/2017JD027977
  • Wang, S., Tippett, M. K., Sobel, A. H., Martin, Z. K., & Vitart, F. (2019). Impact of the QBO on prediction and predictability of the MJO convection. Journal of Geophysical Research: Atmospheres, 124(22), 11,766–11,782. https://doi.org/10.1029/2019JD030575
  • Wang, W., & Schlesinger, M. E. (1999). The dependence on convective parameterization of the tropical intraseasonal Oscillation simulated by the UIUC 11-layer atmospheric GCM. Journal of Climate, 12(5), 1423–1457. https://doi.org/10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2
  • Webster, P. J., & Holton, J. R. (1982). Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. Journal of the Atmospheric Sciences, 39(4), 722–733. https://doi.org/10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2
  • Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., & Yasunari, T. (1998). Monsoons: Processes, predictability and the prospects for prediction. Journal of Geophysical Research: Oceans, 103(C7), 14451–14510. https://doi.org/10.1029/97JC02719
  • Wheeler, M. (2003). MJO modeling and simulation: Rectifying shortcomings. In D. E. Waliser, S. Schubert, A. Kumar, K. Weickmann, & R. Dole (Eds.), Modeling, simulation, and forecasting of subseasonal variability (Technical Report Series on Global Modeling and Data Assimilation, NASA/CP-2003-104606, Vol. 25, pp. 1–66). NASA.
  • Wheeler, M., & Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132(8), 1917–1932. https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
  • Wheeler, M. C., Hendon, H. H., Cleland, S., Meinke, H., & Donald, A. (2009). Impacts of the Madden–Julian Oscillation on Australian rainfall and circulation. Journal of Climate, 22(6), 1482–1498. https://doi.org/10.1175/2008JCLI2595.1
  • Wheeler, M., & Kiladis, G. N. (1999). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. Journal of the Atmospheric Sciences, 56(3), 374–399. https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2
  • Woolnough, S. J., Slingo, J. M., & Hoskins, B. J. (2000). The relationship between convection and sea-surface temperature on intraseasonal timescales. Journal of Climate, 13(12), 2086–2104. https://doi.org/10.1175/1520-0442(2000)013<2086:TRBCAS>2.0.CO;2
  • Woolnough, S. J., Vitart, F., & Balmaseda, M. A. (2007). The role of the ocean in the Madden–Julian Oscillation: Implications for MJO prediction. Quarterly Journal of the Royal Meteorological Society, 133(622), 117–128. https://doi.org/10.1002/qj.4
  • Xie, P., & Arkin, P. A. (1997). Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78(11), 2539–2558. https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  • Yadav, P., Straus, D. M., & Swenson, E. T. (2019). The Euro-Atlantic circulation response to the Madden-Julian Oscillation cycle of tropical heating: Coupled GCM intervention experiments. Atmosphere-Ocean, 57(3), 161–181. https://doi.org/10.1080/07055900.2019.1626214
  • Yang, D., Adames, Á. F., Khouider, B., Wang, B., & Zhang, C. (2020). A review of MJO theories. Chap. 19 in The multiscale global monsoon system. In C. P. Chang, K. J. Ha, R. H. Johnson, D. Kim, G. N. Lau, & B. Wang (Eds.), World scientific series on Asia-Pacific weather and climate (Vol. 11, Ch. 19). World Scientific.
  • Yang, Q., Fu, Q., & Hu, Y. (2010). Radiative impacts of clouds in the tropical tropopause layer. Journal of Geophysical Research, 115, D00H12. https://doi.org/10.1029/2009JD012393
  • Yang, D., & Ingersoll, A. P. (2013). Triggered convection, gravity waves, and the MJO: A shallow-water model. Journal of the Atmospheric Sciences, 70(8), 2476–2486. https://doi.org/10.1175/JAS-D-12-0255.1
  • Yang, D., & Ingersoll, A. P. (2014). A theory of the MJO horizontal scale. Geophysical Research Letters, 41(3), 1059–1064. https://doi.org/10.1002/2013GL058542
  • Yano, J.-I., & Emanuel, K. (1991). An improved model of the equatorial troposphere and its coupling with stratosphere. Journal of the Atmospheric Sciences, 48(3), 377–389. https://doi.org/10.1175/1520-0469(1991)048<0377:AIMOTE>2.0.CO;2
  • Yano, J.-I., Graf, H.-F., & Spineanu, F. (2012). Theoretical and operational implications of atmospheric convective organization. Bulletin of the American Meteorological Society, 93(4), ES39–ES41. https://doi.org/10.1175/BAMS-D-11-00178.1
  • Yano, J. I., & Tribbia, J. J. (2017). Tropical atmospheric Madden–Julian Oscillation: A strongly nonlinear free solitary Rossby wave? Journal of the Atmospheric Sciences, 74(10), 3473–3489. https://doi.org/10.1175/JAS-D-16-0319.1
  • Yasunari, T. (1979). Cloudiness fluctuations associated with the Nothern Hemisphere summer monsoon. Journal of the Meteorological Society of Japan, 57, 227–242. https://doi.org/10.2151/jmsj1965.57.3_227
  • Yoo, C., Lee, S., & Feldstein, S. B. (2012). Mechanisms of Arctic surface air temperature change in response to the Madden–Julian Oscillation. Journal of Climate, 25(17), 5777–5790. https://doi.org/10.1175/JCLI-D-11-00566.1
  • Yoo, C., & Son, S.-W. (2016). Modulation of the boreal wintertime Madden–Julian Oscillation by the stratospheric quasi-biennial Oscillation. Geophysical Research Letters, 43(3), 1392–1398. https://doi.org/10.1002/2016GL067762
  • Zhang, C. (2005). Madden-Julian Oscillation. Reviews of Geophysics, 43, RG2003. https://doi.org/10.1029/2004RG000158
  • Zhang, C., Adames, Á. F., Khouider, B., Wang, B., & Yang, D. (2020). Four theories of the Madden–Julian Oscillation. Reviews of Geophysics, e2019RG000685. https://doi.org/10.1029/2019RG000685
  • Zhang, C., & Dong, M. (2004). Seasonality in the Madden–Julian Oscillation. Journal of Climate, 17(16), 3169–3180. https://doi.org/10.1175/15200442(2004)017<3C3169:sitmo>3E2.0.co;2
  • Zhang, C., Dong, M., Gualdi, S., Hendon, H. H., Maloney, E. D., Marshall, A., Sperber, K. R., & Wang, W. (2006). Simulations of the Madden–Julian Oscillation in four pairs of coupled and uncoupled global models. Climate Dynamics, 27(6), 573–592. https://doi.org/10.1007/s00382-006-0148-2
  • Zhang, C., & Gottschalck, J. (2002). SST anomalies of ENSO and the Madden-Julian Oscillation in the equatorial Pacific. Journal of Climate, 15(17), 2429–2445. https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2
  • Zhang, C., & Webster, P. J. (1992). Laterally forced equatorial perturbations in a linear model. Part I: Stationary transient forcing. Journal of the Atmospheric Sciences, 49(7), 585–607. https://doi.org/10.1175/1520-0469(1992)049<0585:LFEPIA>2.0.CO;2
  • Zhang, C., & Zhang, B. (2018). QBO-MJO connection. Journal of Geophysical Research: Atmospheres, 123(6), 2957–2967. https://doi.org/10.1002/2017JD028171
  • Zhang, G. J., & Song, X. L. (2009). Interaction of deep and shallow convection is key to Madden–Julian Oscillation simulation. Geophysical Research Letters, 36(9), L09708. https://doi.org/10.1029/2009GL037340
  • Zheng, C., Chang, EK-M, Kim, H-M, Zhang, M., & Wang, W. (2018). Impacts of the Madden–Julian Oscillation on storm-track activity, surface air temperature, and precipitation over North America. Journal of Climate, 31(15), 6113–6134. https://doi.org/10.1175/JCLI-D-17-0534.1
  • Zhou, S., L'Heureux, M., Weaver, S., & Kumar, A. (2012). A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dynamics, 38(7-8), 1459–1471. https://doi.org/10.1007/s00382-011-1001-9
  • Zhou, W., Yang, D., Xie, S.-P., & Ma, J. (2020). Amplified Madden-Julian Oscillation impacts in the Pacific-North America region. Nature Climate Change, 10(7), 654–660. https://doi.org/10.1038/s41558-020-0814-0
  • Zhu, C., Nakazawa, T., Li, J., & Chen, L. (2003). The 30–60 day intraseasonal Oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998. Geophysical Research Letters, 30(18), 1952. https://doi.org/10.1029/2003GL017817
  • Zhu, H. Y., Hendon, H., & Jakob, C. (2009). Convection in a parameterized and superparameterized model and its role in the representation of the MJO. Journal of the Atmospheric Sciences, 66(9), 2796–2811. https://doi.org/10.1175/2009jas3097.1