630
Views
13
CrossRef citations to date
0
Altmetric
Host-pathogen interactions/Interactions hôte-pathogène

Carbon acquisition and metabolism changes during fungal biotrophic plant pathogenesis: insights from Ustilago maydis

&
Pages 247-266 | Accepted 06 Jul 2017, Published online: 08 Aug 2017

References

  • Aro N, Pakula T, Penttilä M. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev. 29:719–739.
  • Bakkeren G, Valent B. 2014. Do pathogen effectors play peek-a-boo? Front Plant Sci. 5:731.
  • Banuett F, Herskowitz I. 1996. Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development. 122:2965–2976.
  • Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, de Vries RP. 2011. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genom. 12:38.
  • Belinchón MM, Gancedo JM. 2003. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae. Arch Microbiol. 180:293–297.
  • Benatti MR, Penning BW, Carpita NC, McCann MC. 2012. We are good to grow: dynamic integration of cell wall architecture with the machinery of growth. Front Plant Sci. 3:187.
  • Benz JP, Protzko RJ, Andrich JMS, Bauer S, Dueber JE, Somerville CR. 2014. Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes. Biotechnol Biofuels. 7:20.
  • Biemelt S, Sonnewald U. 2006. Plant-microbe interactions to probe regulation of plant carbon metabolism. J Plant Physiol. 163:307–318.
  • Braunsdorf C, Mailänder-Sánchez D, Schaller M. 2016. Fungal sensing of host environment. Cell Microbiol. 18:1188–1200.
  • Brown NA, Ries LN, Goldman GH. 2014. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet Biol. 72:48–63.
  • Bruce SA, Saville BJ, Emery RJN. 2011. Ustilago maydis produces cytokinins and abscisic acid for potential regulation of tumor formation in maize. J Plant Growth Regul. 30:51–63.
  • Cano-Canchola C, Acevedo L, Ponce-Noyola P, Flores-Martínez A, Flores-Carreón A, Leal-Morales CA. 2000. Induction of lytic enzymes by the interaction of Ustilago maydis with Zea mays tissues. Fungal Genet Biol. 29:145–151.
  • Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC. 2001. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 127:551–565.
  • Castruita-Domínguez JP, González-Hernández SE, Polaina J, Flores-Villavicencio LL, Alvarez-Vargas A, Flores-Martínez A, Ponce-Noyola P, Leal-Morales CA. 2014. Analysis of a polygalacturonase gene of Ustilago maydis and characterization of the encoded enzyme. J Basic Microbiol. 54:340–349.
  • Chang PK, Todd RB. 2004. Metabolic pathway regulation. In: Arora DK, editor. Handbook of fungal biotechnology. New York (NY): Marcel Dekker, Inc; p. 25–37.
  • Cheung HYK, Donaldson ME, Spence KL, Fetsch JLO, Harrison MC, Saville BJ. Forthcoming 2017. Zfp1, a Zn(2)Cys(6) transcription factor, plays a key role in the virulence and pathogenesis of Ustilago maydis through the regulation of effector gene expression. Mol Plant Microbe Interact.
  • Cho Y, Kim K-H, LaRota M, Scott D, Santopietro G, Callihan M, Mitchell TK, Lawrence CB. 2009. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol Microbiol. 72:1316–1333.
  • Chou H-M, Bundock N, Rolfe SA, Scholes JD. 2000. Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol Plant Pathol. 1:99–113.
  • Chow C-M, Yagüe E, Raguz S, Wood DA, Thurston CF. 1994. The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source. Appl Environ Microbiol. 60:2779–2785.
  • Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin J-G. 2012. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genom. 13:57.
  • Culleton H, McKie V, de Vries RP. 2013. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus? Biotechnol J. 8:884–894.
  • de Vries RP. 2003. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Appl Microbiol Biotechnol. 61:10–20.
  • de Vries RP, Visser J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev. 65:497–522.
  • DeVit MJ, Waddle JA, Johnston M. 1997. Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell. 8:1603–1618.
  • Ding S-J, Ge W, Buswell JA. 2001. Endoglucanase I from the edible straw mushroom, Volvariella volvacea: purification, characterization, cloning and expression. Eur J Biochem. 268:5687–5695.
  • Divon HH, Fluhr R. 2007. Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol Lett. 266:65–74.
  • Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, et al. 2011. Metabolic priming by a secreted fungal effector. Nature. 478:395–398.
  • Doehlemann G, Molitor F, Hahn M. 2005. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol. 42:601–610.
  • Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, et al. 2008b. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 56:181–195.
  • Doehlemann G, Wahl R, Vranes M, de Vries RP, Kämper J, Kahmann R. 2008a. Establishment of compatibility in the Ustilago maydis/maize pathosystem. J Plant Physiol. 165:29–40.
  • Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. 2012. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 17:413–422.
  • Dolezal AL, Shu X, OBrian GR, Nielsen DM, Woloshuk CP, Boston RS, Payne GA. 2014. Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels. Front Microbiol. 5:384.
  • Dowzer CE, Kelly JM. 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol. 11:5701–5709.
  • Doyle CE, Cheung HYK, Spence KL, Saville BJ. 2016. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumour maturation, teliospore development, and meiosis. Fungal Genet Biol. 94:54–68.
  • Eckardt NA. 2017. The plant cell reviews plant immunity: receptor-like kinases, ROS-RLK crosstalk, quantitative resistance, and the growth/defense trade-off. Plant Cell. 29:601–602.
  • Feng J, Zhang H, Strelkov SE, Hwang S-F. 2014. The LmSNF1 gene is required for pathogenicity in the canola blackleg pathogen Leptosphaeria maculans. PLoS One. 9:e92503.
  • Fernandez J, Marroquin-Guzman M, Wilson RA. 2014. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. Annu Rev Phytopathol. 52:155–174.
  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE. 2003. The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol. 132:821–829.
  • Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol Mol Bio Rev. 62:334–361.
  • Geiser E, Reindl M, Blank LM, Feldbrügge M, Wierckx N, Schipper K. 2016. Activating intrinsic CAZymes of the smut fungus Ustilago maydis for the degradation of plant cell wall components. Appl Environ Microbiol. 82:5174–5185.
  • Geiser E, Wierckx N, Zimmermann M, Blank LM. 2013. Identification of an endo-1,4-beta-xylanase of Ustilago maydis. BMC Biotechnol. 13:59.
  • Grabber JH, Ralph J, Hatfield RD. 2000. Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. J Agric Food Chem. 48:6106–6113.
  • Hayes MA, Feechan A, Dry IB. 2010. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiol. 153:211–221.
  • Heath MC. 1998. Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol. 104:117–124.
  • Heisterüber D, Schulte P, Moerschbacher BM. 1994. Soluble carbohydrates and invertase activity in stem rust-infected, resistant and susceptible near-isogenic wheat leaves. Physiol Mol Plant Pathol. 44:111–123.
  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell. 23:3812–3823.
  • Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. 2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog. 8:e1002684.
  • Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, Mishra B, Sharma R, Thines M, Hückelhoven R, et al. 2015. The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol. 206:1116–1126.
  • Herbers K, Meuwly P, Métraux J-P, Sonnewald U. 1996. Salicylic acid- independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett. 397:239–244.
  • Horst RJ, Doehlemann G, Wahl R, Hofmann J, Schmiedl A, Kahmann R, Kämper J, Voll LM. 2010. A model of Ustilago maydis leaf tumor metabolism. Plant Signal Behav. 5:1446–1449.
  • Horst RJ, Engelsdorf T, Sonnewald U, Voll LM. 2008. Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis. J Plant Physiol. 165:19–28.
  • Jeffries TW. 1983. Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol. 27:1–32.
  • Kämper J, Kahmann R, Bölker M, Ma L-J, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. 444:97–101.
  • Kaupert Neto AA, Borin GP, Goldman GH, Damásio AR, Oliveira JV. 2016. Insights into the plant polysaccharide degradation potential of the xylanolytic yeast Pseudozyma brasiliensis. FEMS Yeast Res. 16:fov117.
  • Kelly JM. 2004. The regulation of carbon metabolism in filamentous fungi. In: Brambl R, Marzluf GA, editors. The mycota III. Biochemistry and molecular biology. Berlin-Heidleberg: Springer-Verlag; p. 386–401.
  • Kobakhidze A, Asatiani M, Kachlishvili E, Elisashvili V. 2016. Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes. Ann Agrar Sci. 14:169–176.
  • Kolpak FJ, Blackwell J. 1976. Determination of the structure of cellulose II. Macromolecules. 9:273–278.
  • Kretschmer M, Croll D, Kronstad JW. 2016. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation. Mol Plant Pathol. doi:10.1111/mpp.12486
  • Kruger WM, Pritsch C, Chao S, Muehlbauer GJ. 2002. Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Mol Plant Microbe Interact. 15:445–455.
  • Kubicek CP, Starr TL, Glass NL. 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol. 52:427–451.
  • Kushalappa AC, Yogendra KN, Karre S. 2016. Plant innate immune response: qualitative and quantitative resistance. Crit Rev Plant Sci. 35:38–55.
  • Lammens W, Le Roy K, Schroeven L, Van Laere A, Rabijns A, Van den Ende W. 2009. Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J Exp Bot. 60:727–740.
  • Lanver D, Berndt P, Tollot M, Naik V, Vranes M, Warmann T, Münch K, Rössel N, Kahmann R. 2014. Plant surface cues prime Ustilago maydis for biotrophic development. PLoS Pathog. 10:e1004272.
  • Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L, et al. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci. 4:272.
  • Levasseur A, Lomascolo A, Chabrol O, Ruiz-Dueñas FJ, Boukhris-Uzan E, Piumi F, Kües U, Ram AFJ, Murat C, Haon M, et al. 2014. The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genom. 15:486.
  • Lingner U, Münch S, Deising HB, Sauer N. 2011. Hexose transporters of a hemibiotrophic plant pathogen: functional variations and regulatory differences at different stages of infection. J Biol Chem. 286:20913–20922.
  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42:D490–495.
  • Mäkelä MR, Donofrio N, de Vries RP. 2014. Plant biomass degradation by fungi. Fungal Genet Biol. 72:2–9.
  • Malinovsky FG, Fangel JU, Willats WGT. 2016. The role of the cell wall in plant immunity. Front Plant Sci. 5:178.
  • Martínez-Soto D, Robledo-Briones AM, Estrada-Luna AA, Ruiz-Herrera J. 2013. Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms. Plant Signal Behav. 8:e25059.
  • Matei A, Doehlemann G. 2016. Cell biology of corn smut disease – Ustilago maydis as a model for biotrophic interactions. Curr Opin Microbiol. 34:60–66.
  • Méndez-Morán L, Reynaga-Peña CG, Springer PS, Ruiz-Herrera J. 2005. Ustilago maydis infection of the nonnatural host Arabidopsis thaliana. Phytopathology. 95:480–488.
  • Miwa T, Takagi Y, Shinozaki M, Yun C-W, Schell WA, Perfect JR, Kumagai H, Tamaki H. 2004. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot Cell. 3:919–931.
  • Morkunas I, Ratajczak L. 2014. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant. 36:1607–1619.
  • Morrison EN, Emery RJN, Saville BJ. 2015. Phytohormone involvement in the Ustilago maydis–Zea mays pathosystem: relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLoS One. 10:e0130945.
  • Morrison EN, Emery RJN, Saville BJ. 2017. Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize. Plant Pathol. 66:726–742.
  • Mueller AN, Ziemann S, Treitschke Aßmann D, Doehlemann G. 2013. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector pit2. Plos Pathog. 9:e1003177.
  • Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP. 2008. The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol. 45:S63–70.
  • Nadal M, Garcia-Pedrajas MD, Gold SE. 2010. The snf1 gene of Ustilago maydis acts as a dual regulator or cell wall degrading enzymes. Phytopathology. 100:1364–1372.
  • Nahas E, Waldemarin MM. 2002. Control of amylase production and growth characteristics of Aspergillus ochraceus. Rev Latinoam Microbiol. 44:5–10.
  • Nehlin JO, Carlberg M, Ronne H. 1991. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10:3373–3377.
  • Ohta A. 1997. Ability of ectomycorrhizal fungi to utilize starch and related substrates. Mycoscience. 38:403–408.
  • Oliveira JV, Borges TA, Corrêa Dos Santos RA, Freitas LF, Rosa CA, Goldman GH, Riaño-Pachón DM. 2014. Pseudozyma brasiliensis sp. nov., a xylanolytic, ustilaginomycetous yeast species isolated from an insect pest of sugarcane roots. Int J Syst Evol Microbiol. 64:2159–2168.
  • Onishi N, Tanaka T. 1996. Purification and properties of a galacto- and gluco-oligosaccharide-producing β-glycosidase from Rhodotorula minuta IFO879. J Ferment Bioeng. 82:439–443.
  • Ospina-Giraldo MD, Mullins E, Kang S. 2003. Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr Genet. 44:49–57.
  • Ostling J, Carlberg M, Ronne H. 1996. Functional domains in the Mig1 repressor. Mol Cell Biol. 16:753–761.
  • Ostling J, Ronne H. 1998. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur J Biochem. 252:162–168.
  • Papamichos-Chronakis M, Gligoris T, Tzamarias D. 2004. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep. 5:368–372.
  • Parrent JL, James TY, Vasaitis R, Taylor AF. 2009. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol. 9:148.
  • Pons T, Olmea O, Chinea G, Beldarraín A, Márquez G, Acosta N, Rodríguez L, Valencia A. 1998. Structural model for family 32 of glycosyl-hydrolase enzymes. Proteins Struct Funct Genet. 33:383–395.
  • Ries LN, Beattie SR, Espeso SA, Cramer RA, Goldman GH. 2016. Diverse regulation of the CreA carbon catabolite repressor in Aspergillus nidulans. Genetics. 203:335–352.
  • Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 57:675–709.
  • Ronne H. 1995. Glucose repression in fungi. Trends Genet. 11:12–17.
  • Ruijter GJ, Visser J. 1997. Carbon repression in Aspergilli. FEMS Microbiol Lett. 151:103–114.
  • Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. 2014. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Bio Rev. 78:614–649.
  • Sauer N, Ludwig A, Knoblauch A, Rothe P, Gahrtz M, Klebl F. 2004. AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes. Plant J. 40:120–130.
  • Saville BJ, Donaldson ME, Doyle CE. 2012. Investigating host induced meiosis in a fungal plant pathogen. In: Swan A, editor. Meiosis – molecular mechanisms and cytogenetic diversity. Rijeka: InTech; p. 411–460.
  • Schauwecker F, Wanner G, Kahmann R. 1995. Filament-specific expression of a cellulase gene in the dimorphic fungus Ustilago maydis. Biol Chem Hoppe Seyler. 376:617–625.
  • Schuler D, Wahl R, Wippel K, Vranes M, Münsterkötter M, Sauer N, Kämper J. 2015. Hxt1, a monosaccharide transporter and sensor required for virulence of the maize pathogen Ustilago maydis. New Phytol. 206:1086–1100.
  • Schuster M, Schweizer G, Reissmann S, Kahmann R. 2016. Genome editing in Ustilago maydis using the CRISPR–Cas system. Fungal Genet Biol. 89:3–9.
  • Seiboth B, Metz B. 2011. Fungal arabinan and L-arabinose metabolism. Appl Microbiol Biotechnol. 89:1665–1673.
  • Shewale JG, Sadana J. 1981. Purification, characterization, and properties of β-glucosidase enzymes from Sclerotium rolfsii. Arch Biochem Biophys. 207:185–196.
  • Siemens J, González M-C, Wolf S, Hofmann C, Greiner S, Du Y, Rausch T, Roitsch T, Ludwig-Müller J. 2011. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana. Mol Plant Pathol. 12:247–262.
  • Skibbe DS, Doehlemann G, Fernandes J, Walbot V. 2010. Maize tumours caused by Ustilago maydis require organ-specific genes in host and pathogen. Science. 328:89–92.
  • Smith DG, Garcia-Pedrajas MD, Gold SE, Perlin MH. 2003. Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Mol Microbiol. 50:259–275.
  • Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP. 1999. The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol. 32:169–178.
  • Sutton P, Gilbert M, Williams L, Hall JL. 2007. Powdery mildew infection of wheat leaves changes host solute transport and invertase activity. Physiol Plant. 129:787–795.
  • Talbot NJ. 2010. Living the sweet life: how does a plant pathogenic fungus acquire sugar from plants? PLoS Biol. 8:e1000308.
  • Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J, Vermerris W, Koenig S, Feussner K, Feussner I, Kahmann R. 2014. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. eLife. 3:e01355.
  • Tauzin AS, Giardina T. 2014. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci. 5:293.
  • Tetlow IJ, Farrar JF. 1992. Sucrose-metabolizing enzymes from leaves of barley infected with brown rust (Puccinia hordei Otth). New Phytol. 120:475–480.
  • Todd RB, Zhou M, Ohm RA, Leeggangers HACF, Visser L, de Vries RP. 2014. Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genom. 15:214.
  • Tollot M, Assmann D, Becker C, Altmüller J, Dutheil JY, Wegner C-E, Kahmann R. 2016. The WOPR protein Ros1 is a master regulator of sporogenesis and late effector gene expression in the maize pathogen Ustilago maydis. PLoS Pathog. 12:e1005697.
  • Tonukari NJ, Scott-Craig JS, Walton JD. 2000. The Cochliobolus carbonum SNF1 gene is required for cell wall–degrading enzyme expression and virulence on maize. Plant Cell. 12:237–248.
  • van den Brink J, de Vries RP. 2011. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 91:1477–1492.
  • Van der Nest MA, Steenkamp ET, McTaggart AR, Trollip C, Godlonton T, Sauerman E, Roodt D, Naidoo K, Coetzee MPA, Wilken PM, et al. 2015. Saprophytic and pathogenic fungi in the Ceratocystidaceae differ in their ability to metabolize plant-derived sucrose. BMC Evol Biol. 15:273.
  • Vanden Wymelenberg A, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P, et al. 2006. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol. 43:343–356.
  • Voegele RT, Struck C, Hahn M, Mendgen K. 2001. The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci USA. 98:8133–8138.
  • Voegele RT, Wirsel S, Möll U, Lechner M, Mendgen K. 2006. Cloning and characterization of a novel invertase from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection. Mol Plant Microbe Interact. 19:625–634.
  • Vogel J. 2008. Unique aspects of the grass cell wall. Curr Opin Plant Biol. 11:301–307.
  • Voll LM, Horst RJ, Voitsik AM, Zajic D, Samans B, Pons-Kühnemann J, Doehlemann G, Münch S, Wahl R, Molitor A, et al. 2011. Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming. Front Plant Sci. 2:39.
  • Wahl R, Wippel K, Goos S, Kämper J, Sauer N. 2010. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol. 8:e1000303.
  • Wilson WA, Hawley SA, Hardie DG. 1996. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol. 6:1426–1434.
  • Wippel K, Wittek A, Hedrich R, Sauer N. 2010. Inverse pH regulation of plant and fungal sucrose transporters: a mechanism to regulate competition for sucrose at the host/pathogen interface? PLoS One. 5:e12429.
  • Yi M, Park J-H, Ahn J-H, Lee Y-H. 2008. MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol. 45:1172–1181.
  • Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CK-M, Nayak SC. 2016. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev. 40:182–207.
  • Zhang Z, Henderson C, Perfect E, Carver TL, Skamnioti P, Gurr SJ. 2005. Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Mol Plant Pathol. 6:561–575.
  • Zhao Z, Liu H, Wang C, Xu J-R. 2013. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom. 14:274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.