1,580
Views
34
CrossRef citations to date
0
Altmetric
Symposium contribution/Contribution à un symposium

Fusarium mycotoxins: a trans-disciplinary overview

ORCID Icon, , , , , , ORCID Icon, , & show all
Pages 161-171 | Accepted 12 Jan 2018, Published online: 27 Feb 2018

References

  • Alexander NJ, McCormick SP, Waalwijk C, van der Lee T, Proctor RH. 2011. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol. 48:485–495.
  • Alexander NJ, Proctor RH, McCormick SP. 2009. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev. 28:198–215.
  • Aoki T, O’Donnell K, Geiser DM. 2014. Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol. 80:189–201.
  • Aoki T, Vaughan MM, McCormick SP, Busman M, Ward TJ, Kelly A, O’Donnell K, Johnston PR, Geiser DM. 2015. Fusarium dactylidis sp. nov., a novel nivalenol toxin-producing species sister to F. pseudograminearum isolated from orchard grass (Dactylis glomerata) in Oregon and New Zealand. Mycologia 107:409–418.
  • Awad WA, Ghareeb K, Bohm J, Zentek J. 2010. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit Contam. 27:510–520.
  • Bai GH, Desjardins AE, Plattner RD. 2001. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98.
  • Bakker MG, Acharya J, Moorman TB, Robertson AE, Kaspar TC. 2016. The potential for cereal rye cover crops to host corn seedling pathogens. Phytopathology 106:591–601.
  • Bec S, Ward T, Farman M, O’Donnell K, Hershman D, Van Sanford D, Vaillancourt LJ. 2014. Characterization of Fusarium strains recovered from wheat with symptoms of head blight in Kentucky. Plant Dis. 99:1622–1632.
  • Block A, Vaughan MM, Christensen SA, Alborn HT, Tumlinson JH. 2017. Elevated carbon dioxide reduces emission of herbivore induced volatiles in Zea mays. Plant Cell Environ. 40:1725–1734.
  • Bowers E, Hellmich R, Munkvold G. 2014. Comparison of fumonisin contamination using HPLC and ELISA methods in Bt and near-isogenic maize hybrids infested with European corn borer or Western bean cutworm. J Agric Food Chem. 62:6463–6472.
  • Brakhage AA. 2013. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 11:21–32.
  • Brown DW, Busman M, Proctor RH. 2014. Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol Plant-Microbe Interact. 27:809–823.
  • Brown DW, Lee S-H, Kim L-H, Ryu J-G, Lee S, Seo Y, Kim YH, Busman M, Yun S-H, Proctor RH, Lee T. 2015. Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics. Mol Plant-Microbe Interact. 28:319–332.
  • Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE. 2002. Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol. 36:224–233.
  • Brown DW, Proctor RH. 2016. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet Biol. 89:37–51.
  • Brown DW, Proctor RH, Dyer RB, Plattner RD. 2003. Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J Agric Food Chem. 51:7936–7944.
  • Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, Profizi C, Baillieul F. 2017. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol Res. 202:11–20.
  • Comby M, Lacoste S, Baillieul F, Profizi C, Dupont J. 2016. Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Frontier Microbiol. 7:403.
  • Crous PW, Robert VARG, Lombard L, Alejandra G, van Diepeningen A, O’Donnell K, Ward TJ. 2015. Fusarium MLST database. Available from http://www.westerdijkinstitute.nl/fusarium/.
  • Cundliffe E, Cannon M, Davies J. 1974. Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Proc Nat Acad Sci USA. 71:30–34.
  • Desjardins AE, Plattner RD. 2000. Fumonisin B1-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. J Agric Food Chem. 48:5773–5780.
  • Edwards J, Auer D, de Alwis SK, Summerell B, Aoki T, Proctor RH, Busman M, O’Donnell K. 2016. Fusarium agapanthi sp. nov., a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy. Mycologia 108:981–992.
  • Fries EM. 1821. Systema mycologicum. Vol 1. Lundae, Ex Officina Berlingiana. 520 pp.
  • Fuchs E, Binder EM, Heidler D, Krska R. 2002. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit Contam. 19:379–386.
  • Gachango E, Hanson LE, Rojas A, Hao JJ, Kirk WW. 2012. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides. Plant Dis. 96:1767–1774.
  • Gale LR, Harrison SA, Ward TJ,, Milus EA, Gale SW, Kistler HC. 2011. Nivalenol-type populations of Fusarium graminearum O’Donnell Kand F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124–134.
  • Gale LR, Ward TJ, Balmas V, Kistler HC. 2007. Population subdivision of Fusarium graminearum sensu stricto in the upper Midwestern United States. Phytopathology 97:1434–1439.
  • Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK, Brandt ME, Brown DW, Burgess LW, Chulze S, Coleman JJ, et al. 2013. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103:400–408.
  • Geiser DM, Jimenez-Gasco MD, Kang SC, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K. 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur J Plant Pathol. 110:473–479.
  • Gräfenhan T, Johnston PR, Vaughan MM, McCormick SP, Proctor RH, Busman M, Ward TJ, O’Donnell K. 2016. Fusarium praegraminearum sp. nov., a novel nivalenol mycotoxin-producing pathogen from New Zealand can induce head blight on wheat. Mycologia 108:1229–1239.
  • Grudzinska-Sterno M, Yuen J, Stenlid J, Djurle A. 2016. Fungal communities in organically grown winter wheat affected by plant organ and development stage. Eur J Plant Pathol. 146:401–417.
  • Guan S, He J, Young JC, Zhu H, Li X-Z, Ji C, Zhou T. 2009. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture 290:290–295.
  • Hansen FT, Gardiner DM, Lysoe E, Fuertes PR, Tudzynski B, Wiemann P, Sondergaard TE, Giese H, Brodersen DE, Sorensen JL. 2015. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet Biol. 75:20–29.
  • He JW, Yang R, Zhou T, Boland GJ, Scott PM, Bondy GS. 2015. An epimer of deoxynivalenol: purification and structure identification of 3-epi-deoxynivalenol. Food Addit Contam. 32:1523–1530.
  • Hertz M, Jensen IR, Jensen LO, Thomsen SN, Winde J, Dueholm MS, Sorensen LH, Wollenberg RD, Sorensen HO, Sondergaard TE, Sorensen JL. 2016. The fungal community changes over time in developing wheat heads. Int J Food Microbiol. 222:30–39.
  • Ikunaga Y, Sato I, Grond S, Numaziri N, Yoshida S, Yamaya H, Hiradate S, Hasegawa M, Toshima H, Koitabashi M, et al. 2011. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Appl Microbiol Biotechnol. 89:419–427.
  • Karlsson I, Friberg H, Steinberg C, Persson P. 2014. Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS ONE. 9:e111786.
  • Kazan K, Gardiner DM, Manners JM. 2012. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol. 13:399–413.
  • Kelly AC, Clear RM, O’Donnell K, McCormick SP, Turkington TK, Tekauz A, Gilbert J, Kistler HC, Busman M, Ward TJ. 2015. Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genet Biol. 82:22–31.
  • Kelly AC, Proctor RH, Belzile F, Chulze SN, Clear RM, Cowger C, Elmer W, Lee T, Obanor F, Waalwijk C, Ward TJ. 2016. The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum. Fungal Genet Biol. 95:39–48.
  • Kim H-S, Proctor RH, Brown DW. 2017. Comparative genomic analyses of secondary metabolite biosynthetic gene clusters in 207 isolates of Fusarium. In: 29th Fungal Genetics Conference. Genetics Society of America, Pacific Grove, CA. p. 170.
  • Kim YT, Lee YR, Jin J, Han KH, Kim H, Kim JC, Lee T, Yun SH, Lee YW. 2005. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol. 58:1102–1113.
  • Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I. 1998. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins: cloning and characterization of Tri101. J Biol Chem. 273:1654–1661.
  • Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I. 2003. The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett. 539:105–110.
  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. 2007. Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem. 71:2105–2123.
  • Kowalska K, Habrowska-Górczyńska DE, Piastowska-Ciesielska AW. 2016. Zearalenone as an endocrine disruptor in humans. Environ Toxicol Pharmacol. 48:141–149.
  • Laurence MH, Summerell BA, Burgess LW, Liew ECY. 2011. Fusarium burgessii sp. nov. representing a novel lineage in the genus Fusarium. Fungal Div. 49:101–112.
  • Lee T, Han Y-K, Kim K-H, Yun S-H, Lee Y-W. 2002. Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol. 68:2148–2154.
  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhazy A, Krska R, Ruckenbauer P. 2005. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant-Microbe Interact. 18:1318–1324.
  • Li X, Shin S, Heinen S, Dill-Macky R, Berthiller F, Nersesian N, Clemente T, McCormick SP, Muehlbauer GJ. 2015. Transgenic wheat expressing a barley UDP-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum. Mol Plant-Microbe Interact. 28:1237–1246.
  • Li XZ, Zhu C, de Lange CF, Zhou T, He J, Yu H, Gong J, Young JC. 2011. Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance. Food Addit Contam. 28:894–901.
  • Liang J, Lofgren L, Ma Z, Ward TJ, Kistler HC. 2015. Population subdivision of Fusarium graminearum from barley and wheat in the upper Midwestern United States at the turn of the century. Phytopathology 105:1466–1474.
  • Liang JM, Xayamongkhon H, Broz K, Dong Y, McCormick SP, Abramova S, Ward TJ, Ma ZH, Kistler HC. 2014. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States. Fungal Genet Biol. 73:83–92.
  • Lin FY, Lu QX, Xu JH, Shi JR. 2008. Cloning and expression analysis of two salt and Fusarium graminearum stress associated UDP-glucosyltransferases genes in wheat [article in Chinese]. Hereditas 30:1608–1614.
  • Link HF. 1809. Observationes in ordines plantarum naturales. Dissertatio I. Mag Ges naturf Freunde, Berlin. 3:10(Tab I, Fig 10).
  • Lysøe E, Harris LJ, Walkowiak S, Subramaniam R, Divon HH, Riiser ES, Llorens C, Gabaldón T, Kistler HC, Jonkers W, et al. 2014. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS ONE. 9:e112703.
  • Ma LJ, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K. 2013. Fusarium pathogenomics. Annu Rev Microbiol. 67:399–416.
  • Maragos CM, Kurtzman C, Busman M, Price N, McCormick S. 2013. Development and evaluation of monoclonal antibodies for the glucoside of T-2 toxin (T2-Glc). Toxins 5:1299–1313.
  • McCormick SP. 2013. Microbial detoxification of mycotoxins. J Chem Ecol. 39:907–918.
  • McCormick SP, Alexander NJ, Trapp SE, Hohn TM. 1999. Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl Environ Microbiol. 65:5252–5256.
  • McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, Desjardins AE. 2004. Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol. 70:2044–2051.
  • McCormick SP, Kato T, Maragos CM, Busman M, Lattanzio VM, Galaverna G, Dall-Asta C, Crich D, Price NP, Kurtzman CP. 2015. Anomericity of T-2 toxin-glucoside: masked mycotoxin in cereal crops. J Agric Food Chem. 63:731–738.
  • McCormick SP, Price NP, Kurtzman CP. 2012. Glucosylation and other biotransformations of T-2 toxin by yeasts of the Trichomonascus clade. Appl Environ Microbiol. 78:8694–8702.
  • Meek IB, Peplow AW, Ake J, Charles, Phillips TD, Beremand MN. 2003. Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol. 69:1607–1613.
  • Michielse CB, Rep M. 2009. Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol. 10:311–324.
  • Munkvold GP. 2017. Fusarium species and their associated mycotoxins. In Mycotoxigenic Fungi: Methods and Protocols. Edited by A. Moretti and A. Susca. Springer New York, New York, NY. pp. 51–106.
  • Nganje WE, Bangsund DA, Leistritz FL, Wilson WW, Tiapo NM. 2004. Regional economic impacts of Fusarium head blight in wheat and barley. Rev Agric Econ. 26:332–347.
  • Nicolaisen M, Justesen AF, Knorr K, Wang J, Pinnschmidt HO. 2014. Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecol. 11:145–153.
  • Niehaus E-M, Janevska S, von Bargen KW, Sieber CMK, Harrer H, Humpf H-U, Tudzynski B. 2014. Apicidin F: characterization and genetic manipulation of a new secondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS ONE. 9:e103336.
  • Niehaus E-M, Kleigrewe K, Wiemann P, Studt L, Sieber Christian MK, Connolly Lanelle R, Freitag M, Güldener U, Tudzynski B, Humpf H-U. 2013. Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol. 20:1055–1066.
  • Niehaus EM, Munsterkotter M, Proctor RH, Brown DW, Sharon A, Idan Y, Oren-Young L, Sieber CM, Novak O, Pencik A, et al. 2016. Comparative “omics” of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol Evol. 8:3574–3599.
  • O’Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP, Ward TJ, Frandsen RJ, Lysøe E, Rehner SA, Aoki T, et al. 2013. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol. 52:20–31.
  • O’Donnell K, Ward TJ, Robert VARG, Crous PW, Geiser DM, Kang S. 2015. DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 43:583–595.
  • Palumbo JD, O’Keeffe TL, Abbas HK. 2008. Microbial interactions with mycotoxigenic fungi and mycotoxins. Toxin Rev. 27:261–285.
  • Peplow AW, Meek IB, Wiles MC, Phillips TD, Beremand MN. 2003. Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides. Appl Environ Microbiol. 69:5935–5940.
  • Pestka J. 2010. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. 3:323–347.
  • Proctor RH, Hohn TM, McCormick SP. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant-Microbe Interact. 8:593–601.
  • Proctor RH, McCormick SP, Alexander NJ, Desjardins AE. 2009. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol. 74:1128–1142.
  • Proctor RH, Van Hove F, Susca A, Stea G, Busman M, van der Lee T, Waalwijk C, Moretti A, Ward TJ. 2013. Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol Microbiol. 90:290–306.
  • Reynolds H, Slot JC, Divon HH, Lysøe E, Proctor RH, Brown DW. 2017. Differential retention of gene functions in a secondary metabolite cluster. Mol Biol Evol. 34:2002–2015.
  • Sarver BA, Ward TJ, Gale LR, Broz K, Kistler HC, Aoki T, Nicholson P, Carter J, O’Donnell K. 2011. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol. 48:1096–1107.
  • Sato I, Ito M, Ishizaka M, Ikunaga Y, Sato Y, Yoshida S, Koitabashi M, Tsushima S. 2012. Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera with distinct degradation mechanisms. FEMS Microbiol Lett. 327:110–117.
  • Schmale DG, Wood-Jones AK, Cowger C, Bergstrom GC, Arellano C. 2011. Trichothecene genotypes of Gibberella zeae from winter wheat fields in the eastern USA. Plant Pathol. 60:909–917.
  • Semeiks J, Borek D, Otwinowski Z, Grishin NV. 2014. Comparative genome sequencing reveals chemotype-specific gene clusters in the toxigenic black mold Stachybotrys. BMC Genom. 15:590.
  • Sieber CM, Lee W, Wong P, Munsterkotter M, Mewes HW, Schmeitzl C, Varga E, Berthiller F, Adam G, Guldener U. 2014. The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS ONE. 9:e110311.
  • Stockmann-Juvala H, Savolainen K. 2008. A review of the toxic effects and mechanisms of action of fumonisin B1. Human Exp Toxicol. 27:799–809.
  • Studt L, Troncoso C, Gong F, Hedden P, Toomajian C, Leslie JF, Humpf HU, Rojas MC, Tudzynski B. 2012. Segregation of secondary metabolite biosynthesis in hybrids of Fusarium fujikuroi and Fusarium proliferatum. Fungal Genet Biol. 49:567–577.
  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol. 31:21–32.
  • Uhlig S, Busman M, Shane DS, Rønning H, Rise F, Proctor R. 2012. Identification of early fumonisin biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides. J Agric Food Chem. 60:10293–10301.
  • Uhlig S, Petersen D, Flaoyen A, Wilkins A. 2005. 2-Amino-14,16-dimethyloctadecan-3-ol, a new sphingosine analogue toxin in the fungal genus Fusarium. Toxicon 46:513–522.
  • Vanheule A, Audenaert K, Warris S, van de Geest H, Schijlen E, Hofte M, De Saeger S, Haesaert G, Waalwijk C, van der Lee T. 2016. Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen. BMC Genom. 17:670.
  • Vanhoutte I, Audenaert K, De Gelder L. 2016. Biodegradation of mycotoxins: tales from known and unexplored worlds. Frontier Microbiol. 7:561.
  • Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schofbeck D, McCormick S, Broz K, Stuckler R, Schuhmacher R, et al. 2015. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ Microbiol. 17:2588–2600.
  • Vaughan MM, Backhouse D, Ponte EMD. 2016a. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review. World Mycotoxin J. 9:685–700.
  • Vaughan MM, Huffaker A, Schmelz EA, Dafoe NJ, Christensen S, Sims J, Martins VF, Swerbilow J, Romero M, Alborn HT, et al. 2014. Effects of elevated [CO2] on maize defence against mycotoxigenic Fusarium verticillioides. Plant Cell Environ. 37:2691–2706.
  • Vaughan MM, Huffaker A, Schmelz EA, Dafoe NJ, Christensen SA, McAuslane HJ, Alborn HT, Allen LH, Teal PE. 2016b. Interactive effects of elevated [CO2] and drought on the maize phytochemical defense response against mycotoxigenic Fusarium verticillioides. PLoS ONE 11:e0159270.
  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Nat Acad Sci USA. 99:9278–9283.
  • Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol. 45:473–484.
  • Wetterhorn KM, Newmister SA, Caniza RK, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I. 2016. Crystal structure of Os79 (Os04g0206600) from Oryza sativa: a UDP-glucosyltransferase involved in the detoxification of deoxynivalenol. Biochemistry 55:6175–6186.
  • Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, et al. 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathogens 9:e1003475.
  • Windels CE. 2000. Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90:17–21.
  • Wu F, Groopman JD, Pestka JJ. 2014. Public health impacts of foodborne mycotoxins. Annu Rev Food Sci Technol. 5:351–372.
  • Yoshida S, Ohba A, Liang YM, Koitabashi M, Tsushima S. 2012. Specificity of Pseudomonas isolates on healthy and Fusarium head blight-infected spikelets of wheat heads. Microb Ecol. 64:214–225.
  • Young CA, Kinkel L. 2017. Welcome to Phytobiomes. Phytobiomes J. 1:3–4.
  • Young JC, Zhou T, Yu H, Zhu H, Gong J. 2007. Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food Chem Toxicol. 45:136–143.
  • Yu H, Zhou T, Gong J, Young C, Su X, Li XZ, Zhu H, Tsao R, Yang R. 2010. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol. 10:182.
  • Zhou T, He J, Gong J. 2008. Microbial transformation of trichothecene mycotoxins. World Mycotoxin J. 1:23–30.
  • Zhou X, O’Donnell K, Aoki T, Smith JA, Kasson MT, Cao ZM. 2016. Two novel Fusarium species that cause canker disease of prickly ash (Zanthoxylum bungeanum) in northern China form a novel clade with Fusarium torreyae. Mycologia 108:668–681.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.