1,880
Views
1
CrossRef citations to date
0
Altmetric
Bacteria and phytoplasmas/Bactéries et phytoplasmes

Shifts in Xanthomonas spp. causing bacterial spot in processing tomato in the Midwest of the United States

, , , , , ORCID Icon & ORCID Icon show all
Pages 652-667 | Accepted 24 Feb 2022, Published online: 05 Apr 2022

References

  • Abbasi PA, Weselowski B. 2015. Efficacy of Bacillus subtilis QST 713 formulations, copper hydroxide, and their tank mixes on bacterial spot of tomato. Crop Prot. 74:70–76. doi:10.1016/j.cropro.2015.04.009
  • Adhikari P, Adhikari TB, Timilsina S, Meadows I, Jones JB, Panthee DR, Louws FJ. 2019. phenotypic and genetic diversity of Xanthomonas perforans populations from tomato in North Carolina. Phytopathology. 109(9):1533–1543. doi:10.1094/PHYTO-01-19-0019-R.
  • Araújo ER, Pereira RC, Moita AW, Ferreira MASV, Café-Fiho AC, Quezado-Duval AM 2010. Effect of temperature on pathogenicity components of tomato bacterial spot and competition between Xanthomonas perforans and X. gardneri. III International Symposium on Tomato Diseases. Acta Hort. 914:39–42.
  • Bashan Y, Diab S, Okon Y. 1982. Survival ofXanthomonas campestris pv.vesictoria in pepper seeds and roots in symptomless and dry leaves in non-host plants and in the soil. Plant Soil. 68(2):161–170. doi:10.1007/BF02373702.
  • Bernal E, Liabeuf D, Francis DM 2020. Evaluating Quantitative Trait Locus.
  • Bouzar H, Jones JB, Somodi GC, Stall RE, Daouzli N, Lambe RC, Gastelum RF, Correa RT. 1996. Diversity of Xanthomonas campestris pv. vesicatoria in tomato and pepper fields of Mexico. Can J Plant Pathol. 18(1):75–77. doi:10.1080/07060669609500659.
  • Chuang D, Chien Y, Wu H-P. 2007. Cloning and Expression of the Erwinia carotovora subsp. carotovora Gene Encoding the Low-Molecular-Weight Bacteriocin Carocin S1. J Bacteriol. 189(2):620–626. doi:10.1128/jb.01090-06.
  • Conover RA, Gerhold NR. 1981. Mixtures of copper and maneb or mancozeb for control of bacterial spot of tomato and their compatibility for control of fungus diseases .Vol 94. Florida State Horticultural Society, Proceedings; pp.154–156.
  • Coyne DP, Schuster MLA. 1974. Morphological and physiological component genetic approach to breeding for tolerance to the bacterial pathogen’s, Pseudomonas phaseolicola and Xanthomonas phaseoli. Reports of Bean Improvement Cooperative and National Dry Bean Council Research Conference. pp. 23–24.
  • Cuppels DA, Louws FJ, Ainsworth T. 2006. Development and evaluation of PCR-based diagnostic assays for the bacterial speck and bacterial spot pathogens of tomato. Plant Dis. 90(4):451–458. doi:10.1094/PD-90-0451.
  • Diachun S, Valleau WD. 1946. Growth and overwintering of Xanthomonas vesicatoria in association with wheat roots. Phytopathology. 36:277–280.
  • Egel DS, Jones JB, Minsavage GV, Creswell T, Ruhl G, Maynard E, Marchino C. 2018. Distribution and Characterization of Xanthomonas Strains Causing Bacterial Spot of Tomato in Indiana. Plant Health Progress. 19(4):319–321. doi:10.1094/PHP-07-18-0041-BR.
  • Fett WF, Dunn MF, Maher GT, et al. 1987. Bacteriocins and temperate phage of Xanthomonas campestris pv. glycines Curr. Microbiol. 16:137–144. doi:10.1007/BF01568392
  • Fonseca NP, Patané JSL, Varani AM, Felestrino ÉB, Caneschi WL, Sanchez AB, Cordeiro IF, de C LCG, de Ab AR, Garcia CCM, et al. 2019. Analyses of seven new genomes of Xanthomonas citri pv. aurantifolii strains, causative agents of citrus canker b and c, show a reduced repertoire of pathogenicity-related genes. Front Microbiol. 10:2361. doi:10.3389/fmicb.2019.02361
  • Gardner MW, Kendrick JB. 1921. Bacterial spot of tomato. J Agric Res. 21:123–156.
  • Gardner MW, Kendrick JB 1923. Bacterial spot of tomato and pepper. Phytopathology. 13:307–315.
  • Getz S. 1983. Influence of Developmental Stage on Susceptibility of Tomato Fruit to Pseudomonas syringae pv. tomato. Tomato. Phytopathology. 73(1):36. doi:10.1094/Phyto-73-36.
  • Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 4(1):178. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
  • Hamza AA, Robène-Soustrade I, Jouen E, Gagnevin L, Lefeuvre P, Chiroleu F, Pruvost O. 2010. Genetic and Pathological Diversity Among Xanthomonas Strains Responsible for Bacterial Spot on Tomato and Pepper in the Southwest Indian Ocean Region. Plant Dis. 94(8):993–999. doi:10.1094/PDIS-94-8-0993.
  • Hert AP, Roberts PD, Momol MT, Minsavage GV, Tudor-Nelson SM, Jones JB. 2005. Relative Importance of Bacteriocin-Like Genes in Antagonism of Xanthomonas perforans Tomato Race 3 to Xanthomonas euvesicatoria Tomato Race 1 Strains. Appl Environ Microbiol. 71(7):3581–3588. doi:10.1128/AEM.71.7.3581-3588.2005.
  • Hockett KL, Renner T, Baltrus DA, Lindow SE. 2015. Independent Co-Option of a Tailed Bacteriophage into a Killing Complex in Pseudomonas. mBio. 6(4):e00452. doi:10.1128/mBio.00452-15.
  • James R, Penfold CN, Moore GR, Kleanthous C. 2002. Killing of E. coli cells by E group nuclease colicins. Biochimie. 84(5–6):381–389. doi:10.1016/s0300-9084(02)01450-5.
  • Jones J, Bouzar H, Somodi G, Stall R, Pernezny K, El-Morsy G, Scott, W. 1998. Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. Vesicatoria in Florida Phytopathology. 88:33–38. doi:10.1094/PHYTO.1998.88.1.33.
  • Jones JB, Pohronezny KL, Stall RE, Jones JP. 1986. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology. 76(4):430–434. doi:10.1094/Phyto-76-430.
  • Khanal S, Hind SR, Babadoost M. 2020. Occurrence of copper-resistant Xanthomonas perforans and X. gardneri in Illinois tomato fields. Plant Health Prog. 21(4):338–344. doi:10.1094/PHP-06-20-0048-RS.
  • Kim SH, Olson TN, Peffer ND, Nikolaeva EV, Park S, Kang S. 2010. First Report of Bacterial Spot of Tomato Caused by Xanthomonas gardneri in Pennsylvania. Plant Dis. 94(5):638. doi:10.1094/PDIS-94-5-0638B.
  • Klein JM, Stockwell VO, Minsavage GV, Vallad GE, Goss EM, Jones JB. 2020. Improved deferred antagonism technique for detecting antibiosis. Lett Appl Microbiol. 71(4):330–336. doi:10.1111/lam.13339.
  • Kucharek T. 1994. Bacterial Spot of Tomato and Pepper. PP3. Gainesville: University of Florida Institute of Food and Agricultural Sciences.
  • Leben C 1981. How plant-pathogenic bacteria survive. Plant Dis. 65:633–637.
  • Lewis Ivey ML, Tusiime G, Miller SA. 2010. A polymerase chain reaction assay for the detection of Xanthomonas campestris pv. musacearum in banana. Plant Dis. 94(1):109–114.
  • Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ. 1994. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol. 60(7):2286–2295. doi:10.1128/aem.60.7.2286-2295.1994.
  • Ma X 2015. Characterization and management of bacterial spot of processing tomato in Ohio. Ph.D. dissertation, The Ohio State University, Columbus.
  • Ma X, Lewis Ivey ML, Miller SA. 2011. First Report of Xanthomonas gardneri Causing Bacterial Spot of Tomato in Ohio and Michigan. Plant Dis. 95(12):1584. doi:10.1094/PDIS-05-11-0448.
  • Marco GM, Stall. 1983. Control of Bacterial Spot of Pepper Initiated by Strains of Xanthomonas campestris pv. vesicatoria That Differ in Sensitivity to Copper. Plant Dis. 67(7):779–781. doi:10.1094/PD-67-779
  • Marutani-Hert M, Hert AP, Tudor-Nelson SM, Preston JF, Minsavage GV, Stall RE, Roberts PD, Timilsina S, Hurlbert JC, Jones JB. 2020. Characterization of three novel genetic loci encoding bacteriocins associated with Xanthomonas perforans. PLoS ONE. 15(5):e0233301. doi:10.1371/journal.pone.0233301.
  • Mtui HD, Bennett MA, Maerere AP, Miller SA, Kleinhenz MD, Sibuga KP. 2010. Effect of seed treatments and mulch on seedborne bacterial pathogens and yield of tomato (Solanum lycopersicum Mill.) in Tanzania. J Anim Plant Sci. 8(3):1006–1015.
  • Newberry E, Bhandari R, Kemble J, Sikora E, Potnis N. 2020. Genome-resolved metagenomics to study co-occurrence patterns and intraspecific heterogeneity among plant pathogen metapopulations. Environ Microbiol. 22(7):2693–2708. doi:10.1111/1462-2920.14989.
  • Newberry EA, Bhandari R, Minsavage GV, Timilsina S, Jibrin MO, Kemble J, Sikora EJ, Jones JB, Potnis N 2019. Independent Evolution with the Gene Flux Originating from Multiple Xanthomonas Species Explains Genomic Heterogeneity in Xanthomonas perforans. Stabb EV, editor. Appl Environ Microbiol. 85(20). [accessed 2021 Dec 27]. https://doi.org/10.1128/AEM.00885-19
  • Peterson GH. 1963. Survival of Xanthomonas vesicatoria in soil and diseased tomato plants. Phytopathology. 53:765–767.
  • Potnis N. 2021. Harnessing Eco-Evolutionary dynamics of Xanthomonads on tomato and pepper to tackle new problems of an old disease. Annu Rev Phytopathol. 59(1):289–310. doi:10.1146/annurev-phyto-020620-101612.
  • Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, et al. 2011. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genom. 12(1):146. doi:10.1186/1471-2164-12-146.
  • Potnis N, Timilsina S, Strayer A, Shantharaj D, Barak JD, Paret ML, Vallad GE, Jones JB. 2015. Bacterial spot of tomato and pepper: diverse X anthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol Plant Pathol. 16(9):907–920. doi:10.1111/mpp.12244.
  • Quezado-Duval AM, Leite RP, Truffi D, Camargo LEA. 2004. Outbreaks of Bacterial Spot Caused by Xanthomonas gardneri on Processing Tomato in Central-West Brazil. Plant Dis. 88(2):157–161. doi:10.1094/PDIS.2004.88.2.157.
  • Rajashekara G, Glover DA, Krepps M, Splitter GA. 2005. Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections. Cell Microbiol. 7:1459–1473. doi:10.1111/j.1462-5822.2005.00570.x
  • Sahin F 1997. Detection, identification and characterization of strains of Xanthomonascampestris pv. vesicatoria by traditional and molecular methods, and resistance in Capsicum species to Xanthomonas campestris pv. vesicatoria pepper race 6. Ph.D. dissertation, The Ohio State University, Columbus.
  • Sahin F, Abbasi PA, Ivey MLL, Zhang J, Miller SA. 2003. Diversity Among Strains of Xanthomonas campestris pv. vitians from Lettuce. Phytopathology®. 93(1):64–70. doi:10.1094/PHYTO.2003.93.1.64.
  • Schaad NW, Jones JB, Chun W Laboratory Guide for the Identification of Plant Pathogenic Bacteria. American Phytopathological Society.
  • Srivastava V, Deblais L, Kathayat D, Rotondo F, Helmy YA, Miller SA, Rajashekara G. 2021. Novel small molecule growth inhibitors of Xanthomonas spp. causing bacterial spot of tomato. Phytopathology. 111(6):940–953. doi:10.1094/PHYTO-08-20-0341-R.
  • Strayer-Scherer A, Liao Y, Abrahamian P, Timilsina S, Paret M, Momol T, Jones J, Vallad G 2019. Integrated management of bacterial spot on tomato in Florida. [accessed 2019 May 11]. doi:10.32473/edis-pp353-2019.
  • Strayer AL, Jeyaprakash A, Minsavage GV, Timilsina S, Vallad GE, Jones JB, Paret ML. 2016. A Multiplex Real-Time PCR Assay Differentiates Four Xanthomonas Species Associated with Bacterial Spot of Tomato. Plant Dis. 100(8):1660–1668. doi:10.1094/PDIS-09-15-1085-RE.
  • Thayer PL, Stall RE. 1962. A survey of Xanthomonas vesicatoria resistance to streptomycin. Bull – Univ Fla, Agric Exp Stn. 1523:163–165.
  • Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M, Schwartz A, Bart R, Staskawicz B, Boyer C, Vallad GE, et al. 2015. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri. Appl Environ Microbiol. 81(4):1520–1529. doi:10.1128/AEM.03000-14.
  • Timilsina S, Pereira-Martin JA, Minsavage GV, Iruegas-Bocardo F, Abrahamian P, Potnis N, Kolaczkowski B, Vallad GE, Goss EM, Jones JB. 2019. multiple recombination events drive the current genetic structure of Xanthomonas perforans in Florida. Front Microbiol. 10:448. doi:10.3389/fmicb.2019.00448
  • Tudor SM 1999. Molecular characterization of bacteriocin-like activity in tomato race-three strains of Xanthomonas campestris pv. vesicatoria. Ph.D. dissertation, Univ. of Florida, Gainesville.
  • Tudor-Nelson SM, Minsavage GV, Stall RE, Jones JB. 2003. Bacteriocin-Like substances from tomato race 3 Strains of Xanthomonas campestris pv. vesicatoria. Phytopathology. 93(11):1415–1421. doi:10.1094/PHYTO.2003.93.11.1415.
  • USDA. 2016. Bacterial spot of tomato. Fact sheet. Available at https://nifa.usda.gov/sites/default/files/resource/Tomato_Spot_Fact_Sheet.pdf
  • Vidaver AK. 1983. Bacteriocins: the lure and the reality. Plant Dis. 67(5):471–475. doi:10.1094/PD-67-471.
  • Vidaver AK. 1989. Gram positive bacteria. In: Schaad NW, editor. Laboratory Guide for Identification of Plant Pathogenic Bacteria. St Paul (MN): The American Phytopathological Society; p. 12–16.
  • Wang J, Woo M, Yan C. 2017. Spot plating assay for the determination of survival and plating efficiency of Escherichia coli in sub-MIC levels of antibiotics. JEMI Methods. 1:26–29.
  • Zaccardelli M, Campanile F, Villecco D, Parisi M. 2011. Infections of bacterial spot on processing tomato in southern Italy. Acta Hort. 914:71–73. doi:10.17660/ActaHortic.2011.914.10