499
Views
1
CrossRef citations to date
0
Altmetric
Disease control/Moyens de lutte

Phylogenetic identification of fungi isolated from strawberry and papaya fruits and their susceptibility to fatty acids

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 828-835 | Accepted 26 May 2022, Published online: 09 Jun 2022

References

  • Albores-Flores V, Marín-Saenz IJ, López-García JA, Sánchez-Gutiérrez A, Grajales-Conesa J. 2018. Antifungal property of honey on in vitro development of Colletotrichum gloeosporioides. Mex J Phytopathol. 36:423–431. doi:10.18781/R.MEX.FIT.1805-3
  • Altieri C, Cardillo D, Bevilacqua A, Sinigaglia M. 2007. Inhibition of Aspergillus spp. and Penicillium spp. by fatty acids and their monoglycerides. J Food Protec. 70:1206–1212. doi:10.4315/0362-028X-70.5.1206
  • Arceo-Martínez MT, Jiménez-Mejía R, Salgado-Garciglia R, Santoyo G, López-Meza JE, Loeza-Lara PD. 2019. In vitro and in vivo anti-fungal effect of chitosan on post-harvest strawberry pathogens. Agrociencia. 53:1297–1311. https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1877.
  • Avis TJ, Bélanger RR. 2001. Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol. 67:956–960. doi:10.1128/AEM.67.2.956-960.2001
  • Avis TJ. 2007. Antifungal compounds that target fungal membranes: applications in plant disease control. Can J Plant Pathol. 29:323–329. doi:10.1080/07060660709507478
  • Bazinet RP, Layé S. 2014. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 15:771–785. doi:10.1038/nrn3820
  • Darolt JC, Rocha Neto AC, Di Piero RM. 2016. Effects of the protective, curative, and eradicative applications of chitosan against Penicillium expansum in apples. Braz J Microbiol. 47:1014–1019. doi:10.1016/j.bjm.2016.07.007
  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 13(4):414–430. doi:10.1111/J.1364-3703.2011.00783.X.
  • Era M, Sakai S, Tanaka A, Kawahara T, Kanyama T, Morita H. 2015. Antifungal activity of fatty acid salts against Penicillium pinophilum. Japan J Food Eng. 16:99–108. doi:10.11301/jsfe.16.99
  • Farina V, Tinebra I, Perrone A, Sortino G, Palazzolo E, Mannino G, Gentile C. 2020. Physicochemical, nutraceutical and sensory traits of six papaya (Carica papaya L.) cultivars grown in greenhouse conditions in the Mediterranean climate. Agronomy. 10:501. doi:10.3390/agronomy10040501
  • Groenewald JZ, Nakashima C, Nishikawa J, Shin H-D, Park J-H, Jama AN, Groenewald M, Braun U, Crous PW. 2013. Species concepts in Cercospora: spotting the weeds among the roses. Stud Mycol. 75:115–170. doi:10.3114/sim0012
  • Guerber JC, Liu B, Correll JC, Johnston PR. 2003. Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia. 95:872–895. doi:10.2307/3762016
  • Guo Z, Xing R, Liu S, Zhong Z, Ji X, Wang L, Li P. 2008. The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydr Polym. 71:694–697. doi:10.1016/j.carbpol.2007.06.027
  • Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41:95–98. doi:10.14601/Phytopathol_Mediterr-14998u1.29
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol. 33:1870–1874. doi:10.1093/molbev/msw054
  • Leyva MO, Vicedo B, Finiti I, Flors V, Del Amo G, Real MD, García-Agustín P, González-Bosch C. 2008. Preventive and post-infection control of Botrytis cinerea in tomato plants by hexanoic acid. Plant Phathol. 57:1038–1046. doi:10.1111/j.1365-3059.2008.01891.x
  • Li XH, Lee JH. 2017. Antibiofilm agents: a new perspective for antimicrobial strategy. J Microbiol. 55:753–766. doi:10.1007/s12275-017-7274-x
  • Liu S, Ruan W, Li J, Xu H, Wang J, Gao Y, Wang J. 2008. Biological control of phytopathogenic fungi by fatty acids. Mycopathologia. 166:93–102. doi:10.1007/s11046-008-9124-1
  • Melo NFCB, de Lima MAB, Stamford TLM, Galembeck A, Flores MAP, Takaki GMDC, Medeiros JADC, Stamford-Arnaud TM, Stamford TCM. 2020. In vivo and in vitro antifungal effect of fungal chitosan nanocomposite edible coating against strawberry phytopathogenic fungi. Int J Food Sci Technol. 55:3381–3391. doi:10.1111/ijfs.14669
  • Nan-Yi W, Balen FB, Peres NA. 2019. Anthracnose fruit and root necrosis of strawberry are caused by a dominant species within the Colletotrichum acutatum species complex in the United States. Phytopathology. 109:1293–1301. doi:10.1094/PHYTO-12-18-0454-R.
  • O’Donnell K, Sarver BAJ, Brandt M, Chang DC, Noble-Wang J, Park BJ, Sutton DA, Benjamin L, Lindsley M, Padhye A, et al. 2007. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol. 45:2235–2248. doi:10.1128/JCM.00533-07
  • Petrasch S, Knapp SJ, van Kan JAL, Blanco-Ulate B. 2019. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol Plant Pathol. 20:877–892. doi:10.1111/mpp.12794
  • Pohl CH, Kock JLF, Thibane VS. 2011. Antifungal free fatty acids: a review. In: Méndez-Vilas A, editor. Science against microbial pathogens: communicating current research and technology advances. Spain: Formatex Research Center; p. 448.
  • Sandoval FMG, Jiménez MR, Santoyo G, Alva MPN, López MJE, Loeza LPD. 2018. Chitosan-fatty acids composite reduces Botrytis cinerea infection on post-harvest strawberry. Nova Scientia. 10:207–227. doi:10.21640/ns.v10i21.1599
  • Schönfeld P, Wojtczak L. 2016. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 57:943–954. doi:10.1194/jlr.R067629
  • SIAP. 2019. Servicio de Información Agroalimentaria y Pesquera. [Accessed 2021 Mar 21]. https://nube.siap.gob.mx/cierreagricola/
  • SIAP. 2020. Servicio de Información Agroalimentaria y Pesquera [Accessed 2021 Jan 15]. http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalSinPrograma.do
  • Sjögren J, Magnusson J, Broberg A, Schnürer J, Kenne L. 2003. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB14. Appl Environmen Microbiol. 69:7554–7557. doi:10.1128/AEM.69.12.7554-7557.2003
  • Staats M, van Baarlen P, van Kan JAL. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol. 22:333–346. doi:10.1093/molbev/msi020
  • Suárez-Quiroz ML, Mendoza-Bautista I, Monroy-Rivera JA, de la Cruz-Medina J, Angulo-Guerrero O, González-Ríos O. 2013. Isolation, identification, and antifungal susceptibility of phytopathogenic fungi in papaya cv. Maradol (Carica papaya L.). Rev Iberoam Tecnol Post. 14:115–124. http://www.redalyc.org/articulo.oa?id=81329290004.
  • Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 10:512–526. doi:10.1093/oxfordjournals.molbev.a040023
  • Templeton MD, Rikkerink EH, Solon SL, Crowhurts RN. 1992. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene. 122:225–230. doi:10.1016/0378-1119(92)90055-t
  • Urbanek A, Szadziewski R, Stepnowski P, Boros-Majewska J, Gabriel I, Dawgul M, Kamysz W, Sosnowska D, Gołębiowski M. 2012. Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midge Forcipomyia nigra (Diptera: ceratopogonidae). J Insect Physiol. 58:1265–1276. doi:10.1016/j.jinsphys.2012.06.014
  • Walters DR, Walker RL, Walker KC. 2003. Lauric acid exhibits antifungal activity against plant pathogenic fungi. J Phytopathol. 151:228–230. doi:10.1046/j.1439-0434.2003.00713.x
  • White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. Vol. 18. New York (NY): Academic Press; p. 315–322.
  • Woudenberg JHC, Aveskamp MM, de Gruyter J, Spiers AG, Crous PW. 2009. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia. 22:56–62. doi:10.3767/003158509X427808
  • Yenjit P, Issarakraisila M, Intana W, Chantrapromma K. 2010. Fungicidal activity of compounds extracted from the pericarp of Areca catechu against Colletotrichum gloeosporioides in vitro and in Mango fruit. Postharvest Biol Technol. 55:129–132. doi:10.1016/j.postharvbio.2009.09.003
  • Yoon BK, Jackman JA, Valle-González ER, Cho NJ. 2018. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci. 19:1114. doi:10.3390/ijms19041114
  • Zhang Y, Sun W, Ning P, Guo T, Huang S, Tang L, Li Q, Mo J. 2021. First report of anthracnose of papaya (Carica papaya L.) caused by Colletotrichum siamense in China. Plant Dis. doi:10.1094/PDIS-10-20-2154-PDN

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.