94
Views
0
CrossRef citations to date
0
Altmetric
Molecular plant pathology / Pathologie Moléculaire

MCT1 plays crucial roles in conidiation, lactate metabolism and pathogenicity in Colletotrichum gloeosporioides

, , , & ORCID Icon
Pages 176-185 | Accepted 09 Nov 2022, Published online: 02 Dec 2022

References

  • Baltazar F, Cassio F, Leao C. 2006. Functional purification of the monocarboxylate transporter of the yeast Candida utilis. Biotechnol Lett. 28(16):1221–1226. doi:10.1007/s10529-006-9088-5.
  • Barhoom S, Kupiec M, Zhao X, Xu JR, Sharon A. 2008. Functional characterization of CgCTR2, a putative vacuole copper transporter that is involved in germination and pathogenicity in Colletotrichum gloeosporioides. Eukaryotic Cell. 7(7):1098–1108. doi:10.1128/EC.00109-07.
  • Bogo A, Casa RT, Rufato L, Goncalves MJ. 2012. The effect of hail protection nets on Glomerella leaf spot in ‘royal Gala’ apple. Crop Prot. 31(1):40–44. doi:10.1016/j.cropro.2011.08.024.
  • Butz CE, McClelland GB, Brooks GA. 2004. MCT1 confirmed in rat striated muscle mitochondria. J Appl Physiol. 97(3):1059–1066. doi:10.1152/japplphysiol.00009.2004.
  • Casal M, Paiva S, Andrade RP, Gancedo C, Leao C. 1999. The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol. 181(8):2620–2623. doi:10.1128/JB.181.8.2620-2623.1999.
  • Chague V, Maor R, Sharon A. 2009. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC Microbiol. 9(1):173. doi:10.1186/1471-2180-9-173.
  • Cui ZF, Gao NN, Wang Q, Ren Y, Wang K, Zhu TH. 2015. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Curr Genet. 61(4):545–553. doi:10.1007/s00294-015-0474-1.
  • Ene IV, Brunke S, Brown AJ, Hube B. 2014. Metabolism in fungal pathogenesis. Cold Spring Harb Perspect Med. 4(12):a019695. doi:10.1101/cshperspect.a019695.
  • Enerson BE, Drewes LR. 2003. Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci. 92(8):1531–1544. doi:10.1002/jps.10389.
  • González E, Sutton TB, Correll JC. 2006. Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular, and pathogenicity tests. Phytopathology. 96(9):982–992. doi:10.1094/Phyto-96-0982.
  • Gu Q, Yuan Q, Zhao D, Huang J, Hsiang T, Wei Y, Zheng L. 2019. Acetyl-coenzyme A synthetase gene ChAcs1 is essential for lipid metabolism, carbon utilization and virulence of the hemibiotrophic fungus Colletotrichum higginsianum. Mol Plant Pathol. 20(1):107–123. doi:10.1111/mpp.12743.
  • Halestrap AP. 2012. The monocarboxylate transporter family—structure and functional characterization. IUBMB Life. 64(1):1–9. doi:10.1002/iub.573.
  • Halestrap AP, Price NT. 1999. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 343(2):281–299. doi:10.1042/0264-6021:3430281.
  • Kim YK, Kawano T, Li D, Kolattukudy PE. 2000. A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides. Plant Cell. 12(8):1331–1343. doi:10.1105/tpc.12.8.1331.
  • Kirk P, Wilson MC, Heddle C, Brown MH, Barclay A, Halestrap AP. 2000. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19(15):3896–3904. doi:10.1093/emboj/19.15.3896.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 25(4):402–408. doi:10.1006/meth.2001.1262.
  • Locher KP. 2016. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 23(6):487–493. doi:10.1038/nsmb.3216.
  • Makuc J, Paiva S, Schauen M, Kramer R, Andre B, Casal M, Leao C, Boles E. 2001. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast. 18(12):1131–1143. doi:10.1002/yea.763.
  • Nesher I, Minz A, Kokkelink L, Tudzynski P, Sharon A. 2011. Regulation of pathogenic spore germination by CgRac1 in the fungal plant pathogen Colletotrichum gloeosporioides. Eukaryotic Cell. 10(8):1122–1130. doi:10.1128/EC.00321-10.
  • Ng M, Louie J, Cao J, Felmlee MA. 2019. Developmental expression of monocarboxylate transporter 1 and 4 in rat liver. J Pharm Pharm Sci. 22(1):376–387. doi:10.18433/jpps30537.
  • Pacheco A, Talaia G, Sa-Pessoa J, Bessa D, Goncalves MJ, Moreira R, Paiva S, Casal M, Queiros O. 2012. Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2. FEMS Yeast Res. 12(3):375–381. doi:10.1111/j.1567-1364.2012.00790.x.
  • Parkunan T, Das AK, Banerjee D, Mohanty N, Paul A, Nanda PK, Biswas TK, Naskar S, Bag S, Sarkar M, et al. 2017. Changes in expression of monocarboxylate transporters, heat shock proteins and meat quality of large White Yorkshire and Ghungroo pigs during hot summer period. Asian Australas J Anim Sci. 30(2):246–253. doi:10.5713/ajas.16.0020.
  • Perez de Heredia F, Wood IS, Trayhurn P. 2010. Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Pflugers Arch. 459(3):509–518. doi:10.1007/s00424-009-0750-3.
  • Ries LNA, Beattie S, Cramer RA, Goldman GH, Casal M, Paiva S, Andrade RP, Gancedo C, Leão C. 2018. Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Mol Microbiol. 107(3):277–297. doi:10.1111/mmi.13887.
  • Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP. 1998. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J Physiol. 513(Pt 3):719–732. doi:10.1111/j.1469-7793.1998.719ba.x.
  • Rockenbach MF, Boneti JI, Cangahuala-Inocente GC, Gavioli-Nascimento MCA, Guerra MP. 2015. Histological and proteomics analysis of apple defense responses to the development of Colletotrichum gloeosporioides on leaves. Physiol Mol Plant Path. 89:97–107. doi:10.1016/j.pmpp.2015.01.003.
  • Sá-Pessoa J, Amillis S, Casal M, Diallinas G. 2015. Expression and specificity profile of the major acetate transporter AcpA in Aspergillus nidulans. Fungal Genet Biol. 76:93–103. doi:10.1016/j.fgb.2015.02.010.
  • Semighini CP, Goldman MHS, Goldman GH. 2004. Multi-copy suppression of an Aspergillus nidulans mutant sensitive to camptothecin by a putative monocarboxylate transporter. Curr Microbiol. 49(4):229–233. doi:10.1007/s00284-004-4293-8.
  • Shnaiderman C, Miyara I, Kobiler I, Sherman A, Prusky D. 2013. Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity. Mol Plant Microbe Interact. 26(3):345–355. doi:10.1094/MPMI-07-12-0170-R.
  • Stacey J, Isaac PG. 1994. Restriction enzyme digestion, gel electrophoresis, and vacuum blotting of DNA to nylon membranes. Methods Mol Biol. 28:25–36. doi:10.1385/0-89603-254-X:25.
  • Tan QQ, Zhao XZ, He HY, Zhang JX, Yi TY. 2021. Carbamoyl phosphate synthetase subunit Cpa1 interacting with Dut1, controls development, arginine biosynthesis, and pathogenicity of Colletotrichum gloeosporioides. Fungal Biol. 125(3):184–190. doi:10.1016/j.funbio.2020.10.009.
  • Tang QY, Zhang CX. 2013. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 20(2):254–260. doi:10.1111/j.1744-7917.2012.01519.x.
  • Ueno K, Matsumoto Y, Uno J, Sasamoto K, Sekimizu K, Kinjo Y, Chibana H. 2011. Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine. PLoS One. 6(9):e24759. doi:10.1371/journal.pone.0024759.
  • Wachtler B, Citiulo F, Jablonowski N, Forster S, Dalle F, Schaller M, Wilson D, Hube B. 2012. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One. 7(5):e36952. doi:10.1371/journal.pone.0036952.
  • Wang MY, Zhou ZS, Wu JY, Ji ZR, Zhang JX. 2018. Comparative transcriptome analysis reveals significant differences in gene expression between appressoria and hyphae in Colletotrichum gloeosporioides. Gene. 670:63–69. doi:10.1016/j.gene.2018.05.080.
  • Wei H, Vienken K, Weber R, Bunting S, Requena N, Fischer R. 2004. A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genet Biol. 41(2):148–156. doi:10.1016/j.fgb.2003.10.006.
  • Wu J, Ji Z, Wang N, Chi F, Xu C, Zhou Z, Zhang J. 2016. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation. Curr Microbiol. 73(6):802–810. doi:10.1007/s00284-016-1131-8.
  • Zhao XZ, Tang BZ, Xu J, Wang N, Zhou ZS, Zhang JX. 2020. A SET domain-containing protein involved in cell wall integrity signaling and peroxisome biogenesis is essential for appressorium formation and pathogenicity of Colletotrichum gloeosporioides. Fungal Genet Biol. 145:103474. doi:10.1016/j.fgb.2020.103474.
  • Zhou Z, Wu J, Wang M, Zhang J. 2017. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides. Microb Pathog. 110:85–92. doi:10.1016/j.micpath.2017.06.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.