567
Views
58
CrossRef citations to date
0
Altmetric
Articles

Nutritional and Physiological Criteria in the Assessment of Milk Protein Quality for Humans

, PhD, , PhD & , PhD
Pages 191S-205S | Received 01 Nov 1999, Published online: 14 Jun 2013

REFERENCES

  • Munro HN: General aspects of the regulation of protein metabolism by diets and by hormones. In Munro HN, Allison JB: “Mammalian Protein Metabolism,” vol 3. New York: Academic Press, pp 389–481, 1969.
  • Young VR, Pellett PL: How to evaluate dietary protein. In Barth CA, Schlimme E (eds): “Milk Proteins: Nutritional, Clinical, Functional and Technological Aspects.” New York: Springer-Verlag, pp 7–36, 1989.
  • Rennie MJ, Smith K, Watt PW: Measurement of tissue protein synthesis rates in vivo: an optimal approach. Am J Physiol 266: E298–E307, 1994.
  • Millward DJ, Pacy PJ: Postprandial protein utilization and protein quality assessment in man. Clin Sci 88: 597–606, 1995.
  • FAO/WHO: Report of the Joint FAO/WHO Expert Consultation on Protein Quality Evaluation. Rome: Food and Agriculture Organization of the United Nations, 1990.
  • Manatt MW, Garcia PA: Nitrogen balance: Concepts and techniques. In Nissen S (ed): “Modern Methods in Protein Nutrition and Metabolism.” San Diego: Academic Press, pp 9–66, 1992.
  • FAO/WHO/UNU: Energy and protein requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. WHO Technical Report No 724. Geneva: WHO, 1985.
  • Young VR: Adult amino acid requirements: The case for a major revision in current recommendations. J Nutr 124: 1517S–1523S, 1994.
  • Fuller MF, Garlick PJ: Human amino acid requirements: can the controversy be resolved? Annu Rev Nutr 14: 217–241, 1994.
  • Millward DJ, Rivers JPW: The nutritional role of indispensable amino acids and the metabolic basis for their requirements. Eur J Clin Nutr 42: 367–393, 1988.
  • Young VR: Human amino acid requirements: counterpoint to Millward and the importance of tentative revised estimates. J Nutr 128: 1570–1573, 1998.
  • Rose WC: The amino acid requirements of adult man. Nutr Abstr Rev 27: 631–647, 1957.
  • Young VR, Bier DM, Pellett PL: A theoretical basis for increasing current estimates of the amino acid requirements in adult man with experimental support. Am J Clin Nutr 50: 80–92, 1989.
  • Young VR, El-Khoury AE: The notion of the nutritional essentiality of amino acids, revisited, with a note on the indispensable amino acid requirement in adults. In Cynober LA (ed): “Amino Acid Metabolism and Therapy in Health and Nutritional Disease.” Boca Raton: CRC Press, pp 191–232, 1995.
  • Zello GA, Wykes U, Ball RO, Pencharz PB: Recent advances in methods of assessing dietary amino acid requirements for adult humans. J Nutr 125: 2907–2915, 1995.
  • Waterlow JC: The requirement of adult man for indispensable amino acids. Eur J Clin Nutr 50: S151–S179, 1996.
  • Millward DJ: Can we define indispensable amino acid requirements and assess protein quality in adults. J Nutr 124: 1509S–1516S, 1994.
  • Millward DJ: Human amino acid requirements. J Nutr 127: 1842–1846, 1997.
  • Young VR, Scrimshaw NS, Pellett PL: Significance of dietary protein sources in human nutrition: animal or plant protein. In Waterlow JC, Armstrong DG, Fowder L, Reiley R (eds): “Feeding a World Population of More than Eight Billion People: A Challenge to Science.” New York: Oxford University Press, pp 205–212, 1998.
  • Sanchez M, El-Khoury AE, Castillo L, Chapman TE, Basile A, Beaumier L, Young VR: Twenty-four hour intravenous and oral tracer studies with L-[1-13C]phenylalanine and L-[3,3-2H2]tyrosine at a tyrosine-free generous phenylalanine intake in adults. Am J Clin Nutr 63: 532–545, 1995.
  • Kies C: Comparative value of various sources of nonspecific nitrogen for the human. J Agric Food Chem 22: 190–193, 1974.
  • Hoerr RA, Yu Y-M, Wagner DA, Burke JF, Young VR: Recovery of 13C in breath from NaH13CO3 infused by gut and vein: effect of feeding. Am J Physiol 257: E426–E438, 1993.
  • Hiramatsu T, Cortiella J, Marchini JS, Chapman TE, Young VR: Source and amount of dietary nonspecific nitrogen in relation to whole-body leucine, phenylalanine, and tyrosine kinetics in young men. Am J Clin Nutr 59: 1347–1355, 1994.
  • El-Khoury AE, Fukagawa NK, Sanchez M, Tsay RH, Gleason RE, Chapman TE, Young VR: Validation of the tracer balance concept with reference to leucine: 24h intravenous tracer studies with L-[1-13C)leucine and (15N-15N)urea. Am J Clin Nutr 59: 1000–1011, 1994.
  • Basile-Filho A, El-Khoury AE, Beaumier L, Wang SY, Young VR: Continuous twenty-four hour L-(1-13C)phenylalanine and L-(3,3-2H2)tyrosine oral tracer studies at an “intermediate” phenylalanine intake, to estimate requirements in adults. Am J Clin Nutr 65: 473–488, 1997.
  • Zello GA, Pencharz PB, Ball RO: The dietary lysine requirement of adult males determined by the oxidation of an indicator amino acid, L-[1-13C]phenylalanine. Am J Physiol 264: E677–E685, 1993.
  • Savoie L, Gauthier SF: Dialysis cell for the in vitro measurement of protein digestibility. J Food Sci 51: 494–498, 1986.
  • Corring T, Juste C, Lhoste EF: Nutritional regulation of pancreatic and biliary secretions. Nutr Res Rev 2: 553–561, 1989.
  • Mahé S, Marteau Ph, Huneau JF, Thuillier F, Tomé D: Intestinal nitrogen and electrolyte movement following fermented milk ingestion in humans. Br J Nutr 71: 169–180, 1994.
  • Boirie Y, Fauquant J, Rulquin H, Maubois JL, Beaufrère B: Production of large amounts of [13C]leucine-enriched milk proteins by lactating cows. J Nutr 125: 92–8, 1995.
  • Moughan P, Rutherfurd S: A new methods for determining digestible reactive lysine in foods. J Agric Food Chem 44: 2202–2209, 1996.
  • Bos C, Mahé S, Gaudichon C, Benamouzig R, Gausserès N, Luengo C, Ferrière F, Rautureau J, Tomé D: Assessment of milk protein nutritional quality by net postprandial utilization of [15N]-labeled milk nitrogen in humans. Br J Nutr 81: 221–226, 1999.
  • Huisman J, Verstegen HWA, Van Lecuwen P, Tainminga S: Reduction of N pollution by decrease of the excretion of endogenous N in pigs. In “Nitrogen Flow in Pig Production and Environmental Consequences.” Wageningen: Pudoc Scientific Publishers, pp 55–61, 1993.
  • Van Leeuwen P, Veldman A, Boisen S, Deuring K,Van Kempten GJM, Derksen GB, Verstegen MWA, Schaafsma G: Apparent ileal dry matter and crude protein digestibility of rations fed to pigs and determined with the use of chromic oxide (Cr2O3) and acid-insoluble ash in digestive markers. Br J Nutr 76: 551–562, 1996.
  • Caine WR, Sauer WC, Tamminga S, Verstegen MWA, Schulze H: Apparent ileal digestibilities of amino acids in newly weaned piglets fed diets with protease-treated soybean meal. J Animal Sci 75: 2962–2969, 1997a.
  • Caine WR, Tamminga S, Verstegen MWA, Sauer WC, Schulze H: Endogenous recoveries of true ileal digestibilities of amino acids in newly weaned piglets fed diets with protease-treated soybean meal. J Animal Sci 75: 2970–2979, 1997b.
  • Rowan AM, Moughan PJ, Wilson PJ, Maher K, Tasman-Jones C: Comparison of ileal and faecal digestibility of dietary amino acids in adult humans arid evaluation of the pig as a model for animal digestion studies in man. Br J Nutr 71: 29–42, 1994.
  • Gaudichon C, Roos N, Mahé S, Sick H, Bouley C, Tomé D: Gastric emptying regulates the kinetics of nitrogen absorption from 15N-labelled milk and 15N-labelled yogurt in miniature pigs. J Nutr 124: 1970–1977, 1994.
  • Gaudichon C, Mahé S, Benamouzig R, Luengo C, Fouillet H, Daré S,Van Oycke M, Ferrière F, Rautureau J, Tomé D: Net postprandial utilisation of [15N]-labeled milk protein nitrogen as influenced by diet composition in humans. J Nutr 129: 890–895, 1999.
  • Mahé S, Huneau JF, Marteau P, Thuillier F, Tomé D: Gastro-ileal nitrogen and electrolyte movements after bovine milk ingestion in humans. Am J Clin Nutr 56: 410–416, 1992.
  • Roos N, Mahe S, Benamouzig R, Sick H, Rautureau J, Tome D: [15N]-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J Nutr 125: 1238–1244, 1995.
  • Gausserès N, Mahé S, Benamouzig R, Luengo C, Drouet H, Rautureau J, Tomé D: The gastro-ileal digestion of [15N]-labelled pea nitrogen in adult humans. Br J Nutr 76: 75–85, 1996.
  • Gaudichon C, Mahé S, Roos N, Benamouzig R, Luengo C, Huneau JF, Sick H, Bouley C, Rautureau J, Tomé D: Exogenous and endogenous nitrogen flow rates and level of protein hydrolysis in the human jejunum after [15N]-labeled milk and [15N]-labeled yogurt ingestion. Br J Nutr 74: 251–260, 1995.
  • Gaudichon C, Mahé S, Luengo C, Laurent C, Meaugeais M, Krempf M, Tomé D: A 15N-leucine-dilution method to measure endogenous contribution to luminal nitrogen in the human upper jejunum. Eur J Clin Nutr 50: 261–268, 1996.
  • Mahé S, Benamouzig R, Gaudichon C, Huneau JF,De Cruz I, Tomé D: Nitrogen movements in the upper jejunum lumen in humans fed low amounts of caseins or β-lactoglobulin. Gastroenterol Clin Biol 19: 20–26, 1995.
  • Mahé S, Roos N, Benamouzig R, Davin L, Luengo C, Gagnon L, Gausserès N, Rautureau J, Tomé D: Gastrojejunal kinetics and the digestion of [15N]β-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am J Clin Nutr 63: 546–552, 1996.
  • Jackson AA: Salvage of urea-nitrogen and protein requirements. Proc Nutr Soc 54: 535–547, 1995.
  • Nicol BM, Phillips PG: The utilization of dietary protein by Nigerian men. Br J Nutr 36: 337–351, 1976.
  • Mason VC: Metabolism of nitrogenous compounds in the large gut. Proc Nutr Soc 43: 45–53, 1984.
  • Drochner W: The influence of changing amounts of crude fibre and peptic components on preceacal and post-ileal digestive processes in the growing pig. J Anim Physiol Anim Nutr 14: 1, 1984.
  • Sauer WC, Ozymek L: Digestibility of amino acids in swine: results and their practical applications. Rev Livest Prod Sci 15: 367, 1986.
  • Zebrowska T: Digestion and absorption of nitrogenous compounds in the large intestine of pigs. Rocz Nauk Rol 95B: 85–90, 1973.
  • Just A, Jorgensen H, Fernandez JA: The digestive capacity of the caecum-colon and the value of the nitrogen absorbed from the hind gut for protein synthesis in pigs. Br J Nutr 46: 209–219, 1981.
  • Darragh AJ, Schaafsma G, Moughan PJ: Impact of amino acid availability in the protein digestibility amino acid score. Proceedings of the Nutrition Week of the International Dairy Federation, Wellington, New Zealand, 9–11 March 1998.
  • Metges CC, Petzke KJ, Hennig U: GC-C-IRMS comparison of N-acetyl- and N-pivaloyl-amino acid esters to measure 15N-isotopic abundances in physiological samples: A pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs. J Mass Spectrom 31: 367–376, 1996.
  • Tanaka N, Kubo K, Shiraki K, Koishi H, Yoshimura H: A pilot study on protein metabolism in the papua new guinea highlanders. J Nutr Sci Vitaminol 26: 247–259, 1980.
  • Deguchi E, Namioka S: Synthesis ability of amino acids and protein from non-protein nitrogen and role of intestinal flora on its utilization in pigs. Bifidobacteria Microflora 8: 1–12, 1989.
  • Torrallardona D, Harris CL, Coates ME, Fuller F: Microbial amino acid synthesis and utilization in rats: incorporation of 15N from 15NH4Cl into lysine in the tissues of germ-free and conventional rats. Br J Nutr 76: 689–700, 1996.
  • Metges CC, El-Khoury AE, Petzke KJ, Bedri S, Fuller MF, Young VR: The quantitative contribution of microbial lysine to lysine flux in healthy male subjects. FASEB 311: A149, 1997.
  • Metges CC, Petzke KJ: Measurement of 15N/14N isotopic composition in individual plasma free amino acids of human adults at natural abundance by gas chromatography-combustion isotope ratio mass spectrometry. Anal Biochem 247: 158–164, 1997.
  • Young VR, Pellett PL: Current concepts concerning indispensable amino acid needs in adults and their implications for international nutrition planning. Food Nutr Bull 12: 289–300, 1990.
  • Sarwar G: Digestibility of protein and bioavailability of amino acids in foods. Wld Rev Nutr Diet 54: 26–70, 1987.
  • Satterlee LD, Marshall HF, Tennyson JM: Measuring protein quality. J Am Off Chem Soc 56: 103–109, 1979.
  • Landers RE: Relationship between protein efficiency ratio of foods and relative nutritive value measured by Tetrahymena pyriformis w bioassay techniques. In Friedman M (ed): “Protein Nutritional Quality of Food and Feeds,” Part I. New York: M. Dekker, pp 185–202, 1975.
  • Sutton NF: Protein efficiency ratio as estimated by Tetrahymena thermophila WH14 and its limitations. M.S. Thesis University of Nebraska Lincoln, NB, 1978.
  • Millward DJ: Postprandial protein utilization and protein quality assessment in man. Clin Sci 88: 597–606, 1995.
  • Young VR, Scrimshaw NS, Bier DM: Whole body protein and amino acid metabolism: relation to protein quality evaluation in human nutrition. J Agric Food Chem 29: 440–447, 1981.
  • Schanbacher FL, Talhouk RS, Murray FA: Biology and origin of bioactive peptides in milk. Livestock Production Science 50: 105–123, 1997.
  • Britton JR, Kastin AJ: Biologically active polypeptides in milk. Am J Med Sci 301: 124–132, 1991.
  • Sanchez L, Calvo M, Brock JH: Biological role of lactoferrin. Arch Dis Childhood 67: 657–661, 1992.
  • Iyer S, Lönnerdal B: Lactoferrin, lactoferrin receptors and iron metabolism. Eur J Clin Nutr 47: 232–241, 1993.
  • Zioudriou C, Streaty RA, Klee WA: Opioid peptides derived from food proteins: the exorphins. J Biol Chem 254: 2446–2449, 1979.
  • Yoshikawa M, Tani F, Ashikaga T, Yoshimura T, Chiba H: Purification and characterization of an opioid antagonist from peptic digest of bovine κ-casein. J Agric Food Chem 50: 2951–2954, 1986.
  • Tani F, Lio K, Chiba H, Yoshikawa M: Isolation and characterization of opioid antagonist peptides derived from human lactoferrin. Agric Biol Chem 54: 1803–1810, 1990.
  • Meisel H: Biochemical properties of regulatory peptides derived from milk proteins. Biopoly 43: 119–128, 1997.
  • Loukas S, Panetsos F, Donga E, Zioudriou C: β-casomorphins and related peptides. Nyberg F, Brantl V (eds), Fyris-Trych AB Upsala, 143–149, 1990.
  • Henschen A, Lottspeich F, Brantl V, Teschemacher H: Novel opioid peptides derived from casein (β-casomorphins). II. Structure of active components from bovine casein peptone. Hoppe-Seyler’s Zeitshrift für Physiologishe Chemie 360: 1217–1224, 1979.
  • Chiba H, Tani F, Yoshikawa M: Opioid agonist peptides derived from κ-casein. J Dairy Res 56: 363–366, 1989.
  • Chang KJ, Killian A, Hazum E, Cuatrecas P: Morphiceptin (NH4-Tyr-Pro-Phe-Pro-CONH2): a potent specific agonist for morphine (μ) receptor. Science 212: 75–77, 1991.
  • Brantl V, Teschemacher H, Henschen A, Lottspeich F: Novel opioid peptides derived from casein (β-casomorphins). I. Isolation from bovine casein peptone. Hoppe-Seyler’s Zeitshrift für Physiologishe Chemie 360: 1211–1216, 1979.
  • Brantl V: Novel opioid peptides derived from human β-casein. Eur J Pharmacol 106: 213–214, 1984.
  • Antila P, Paakkarl I, Järvinen A, Mattila MJ, Laukkanen M, Pihlanto-Leppälä A, Mantsala P, Hellman J: Opioid peptides derived from in vitro proteolysis of bovine whey proteins. Int Dairy J 1: 215–229, 1991.
  • Jollès P, Levy-Toledano S, Fiat AM, Soria C, Gillesen D, Thomaidis A, Dunn FW, Caen JP: Analogy between fibrinogen and casein. Effect of an undecapeptide isolated from k-casein on platelet function. Eur J Biochem 158: 379–382, 1986.
  • Raha S, Dosquet C, Abgrall JF, Jollès P, Fiat AM, Caen JP: KRDS—a tetrapeptide deriverd from lactotransferrin—inhibits binding of monoclonal antibodies against glycoprotein IIb-IIIa on ADP-stimulated platelets and megakaryocytes. Blood 72: 172–178, 1988.
  • Sato K, Shinomoto H, Tanimoto M, Dosako S, Nakajima I: Uptake and secretion of human lactoferrin by B lymphocytes. Agric Biol Chem 54: 1275–1279, 1990.
  • Li Y, Tomé D, Desjeux JF: Indirect effect of casein phosphopeptides on calcium absorption in rat ileum in vivo. Reprod Nutr Dev 29: 227–233, 1989.
  • Matar C, Amiot J, Savoie L, Goulet J: The effect of milk fermentation by Lactobacillus helveticus on the release of peptides during in vitro digestion. J Dairy Sci 79: 971–979, 1996.
  • Matar C, Goulet J: β-casomorphins 4 from milk fermented by a mutant of Lactobacillus helveticus. Int Dairy J 6: 383–397, 1996.
  • Yamamoto N: Antihypertensive peptides derived from food proteins. Biopolymers 43: 129–134, 1997.
  • Matar C, Nadathur SS, Bakalinski T, Goulet J: Antimutagenic effects of milk fermented by lactobacillus helveticus L89 and a protease-deficient derivative. J Dairy Sci 80: 1965–1970, 1997.
  • Ganjan LS, Thornton WH, Marshall RT, Mc Donald RS: Antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells. J Dairy Sci 80: 2325–2329, 1997.
  • Meisel H: Chemical characterization and opioid activity of an exorphin isolated from in vivo digest of casein. FEBS Lett 196: 223–227, 1986.
  • Hata Y, Yamamoto M, Ohni M, Nakajima K, Nakamura Y, Takano T: A placebo controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am J Clin Nut 64: 767–771, 1996.
  • Nakamura Y, Yamamoto N, Sakai K, Takano T: Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I converting enzyme. J Dairy Sci 78: 1253–1257, 1995.
  • Mahé S, Messing B, Thuillier F, Tomé D: Digestion of bovine milk proteins in patients with a high jejunostomy. Am J Clin Nutr 54: 534–538, 1991.
  • Yvon M, Pélissier JP: Characterization and kinetics of evacuation of peptides resulting from casein hydrolysis in the stomach of the calf. J Agric Food Chem 35: 148–156, 1987.
  • Scanff P, Yvon M, Thirouin S, Pélissier JP: Characterization and kinetics of gastric emptying of peptides derived from milk proteins in the preruminant calf. J Dairy Res 59: 437–447, 1992.
  • Svedberg J,De Haas J, Leimenstoll G, Paul F, Teschemacher H: Demonstration of β-casomorphin immunoreactive materials in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6: 825–830, 1985.
  • Whitworth NS, Grosvenor CE: Transfer of milk prolactin to the plasma of neonatal rats by intestinal absorption. J Endocrinol 79: 191–199, 1978.
  • Gardner MLG: Gastrointestinal absorption of intact proteins. Annu Rev Nutr 8: 329–350, 1988.
  • Gonnella P, Harmatz P, Walker WA: Prolactin is transported across the epithelium of the jejunum and ileum of the sukling rat. J Cell Physiol 140: 138–149, 1989.
  • Marcon-Genty D, Tomé D, Kheroua O, Dumontier AM, Heyman M, Desjeux JF: Transport of β-lactoglobulin across rabbit ileum in vitro. Am J Physiol 256: G943–G948, 1989.
  • Caillard I, Tomé D: Different routes for the transport of α-lactalbumin in rabbit ileum. J Nutr Biochem 3: 653–658, 1992.
  • Caillard I, Tomé D: Modulation of β-lactoglobulin transport in rabbit ileum. Am J Physiol 266: G1053–G1059, 1994.
  • Chabance B, Marteau P, Rambaud JC, Migliore-Samour D, Boynard M, Perrotin P, Guillet R, Jollès P, Fiat AM: Casein peptide release and passage to the blood in humans during digestion of milk and yogurt. Biochimie 80: 155–165, 1998.
  • Tomé D, Dumontier AM, Hautefeuille M, Desjeux JF: Opiate activity and transepithelial passage of intact β-casomorphins in rabbit ileum. Am J Physiol 253: G737–G744, 1987.
  • Umbach M, Teschemacher H, Praetorius K, Hirschhauser R, Bostedt H: Demonstration of a β-casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regulatory Peptides 12: 223–230, 1985.
  • Hamosh M: Digestion in the premature infant: the effects of human milk. Semin Pernatol 18: 485–494, 1994.
  • Hamosh M: Should infant formulas be supplemented with bioactive components and conditionally essential nutrients present in human milk? J Nutr 127: 71S–974S, 1997.
  • Armand M, Hamosh M, Metta NR, Angelus PA, Philpott JR, Hendenson TF, Dvyer NK, Lairon D, Hannost P: Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr Res 40: 429–437, 1996.
  • Hansson L, Blackberg L, Edlund M, Lundberg L, Stromqvist M, Herneil O: Recombinant human milk bile salt-stimulated lipase. Catalytic activity is retained in the absence of glycosylation and the unique proline-rich repeats. J Biol Chem 268: 26692–26698, 1994.
  • Wasserman: Lactose stimulated intestinal absorption of calcium: a theory. Nature 201: 997–999, 1964.
  • Lee YS, Noguchi T, Naito H: Phosphopeptides and soluble calcium in the small intestine of rats given a casein digest. Br J Nutr 43: 457–467, 1980.
  • Lee YS, Noguchi T, Naito H: Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br J Nutr 49: 67–76, 1983.
  • Hansen M, Sandström B, Lönnerdal B: The effect of casein phosphopeptides on zinc and calcium absorption from phytate infants diets assessed in rats pups and Caco-2 cells. Pediatr Res 40: 547–552, 1996.
  • Sato R, Shindo M, Gunshin H, Nogushi T, Naito H: Characterization of phosphopeptide derived from β-casein: an inhibitor of intra-intestinal precipitation of calcium phosphate. Biochim Biophys Acta 1077: 413–415, 1991.
  • Peres JM, Bouhallab S, Bureau F, Maubois JL, Arhan P, Bouglé D: Absorption digestive du fer lié au caéinophosphopeptide 1-25 de la β-caséine. Le Lait 77: 433–440, 1997.
  • Brock JH, Ismael M, Sanchez L: Interaction of lactoferrin with mononuclear and colon carcinoma cells. Adv Exp Med Biol 357: 157–169, 1994.
  • Sanchez L, Ismael M, Liew FY, Brock JH: Iron transport across Caco-2 cell monolayers. Effect of transferrin, Lactoferrin and nitric oxide. Biochim Biophys Acta 1289: 291–297, 1996.
  • Pantako TO, Passos M, Desrosiers T, Amiot J: Effets des protéines laitières sur l’absorption du Fe, du Mg et du Zn mesurée par les variations temporelles de leurs teneurs dans l’aorte et la veine porte chez le rat. Le Lait 72: 553–573, 1992.
  • Pantako TO, Passos M, Desrosiers T, Amiot J: Effets des protéines laitières sur l’absorption de Ca et P mesurée par les variations temporelles de leurs teneurs dans l’aorte et la veine porte chez le rat. Int Dairy J 4: 1994.
  • Barth CA, Behnke U: Nutritional physiology of whey and whey components. Nahrung 41: 2–12, 1997.
  • Brock JH: Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant. Arch Dis Child 55: 417–421, 1980.
  • Moreau MC, Duval-Iflah Y, Muller MC, Raibaud P, Vial M, Gabilan JC, Daniel N: Effets de la lactoferrin et des Ig G bovines données per os sur l’implantation de E. coli dans le tube digestif de souris gnotoxéniques et de nouveau-nés humains. Annales de microbiologie (Institut Pasteur) 134B: 429–441, 1983.
  • Reiter B: Protective protein in milk: biological significance and exploitation. Lysozyme, lactoferrin, lactoperoxydase, xanthineoxidase. Bulletin of Int Dairy Federation 195: 1985.
  • Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabay, Ashi H, Kawase K: Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74: 4137–4142, 1991.
  • Tomita M, Takase M, Bellamy W, Shimamura S: A review: the active peptide of lactoferrin Acta Paediatrica Japonica 36: 585–591, 1994.
  • Zucht HD, Raida M, Andermann K, Mägert HJ, Forssman WG: FEBS Lett 372: 185–188, 1995.
  • Lahov E, Regelson W: Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem Toxicol 34: 131–145, 1996.
  • Azuma N, Yamauchi K, Mitsuoka T: Bifidus growth-promoting activity of glycomacropeptide derived from human κ-casein. Agric Biol Chemi 48: 2159–2162, 1984.
  • Schlimme E, Meisel H: Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects. Nahrung 39: 1–20, 1995.
  • Nuijens JH,van Berkel PHC, Schanbacher F: Structure and biological action of lactoferrin. J Mam Gland Biol Neoplasia 1: 285–294, 1996.
  • Hara H, Fujibayashi A, Kiriyama S: Pancreatic protease secretion profiles after spontaneous feeding of casein or soybean protein diet in unrestrained conscious rats. J Nutr Biochem 3: 176–181, 1992.
  • Daniel H, Vohwinkel M, Rehner G: Effect of casein and β-casomorphin on gastrointestinal motility in rats. J Nutr 120: 252–257, 1990.
  • Beucher S, Levenez F, Yvon M, Corring T: Effects of gastric digestive products from casein on CCK release by intestinal cells in rat. J Nutr Biochem 5: 578–84, 1994.
  • Takahashi M, Moriguchi S, Suganuma H, Shiota A, Tani F, Usui H, Kurahashi K, Sasaki R, Yoshikawa M: Identification of Casoxin C an ileum-contracting peptide derived from bovine κ-casein as antagonist for C3a receptors. Peptides 18: 329–336, 1997.
  • Tomé D,Ben Mansour A, Hautefeuille M, Dumontier AM, Desjeux DF: Neuromediated action of β-casomorphins on ion transport in rabbit ileum. Reprod Nutr Dev 28: 909–918, 1988.
  • Ben Mansour A, Tomé D, Rautureau M, Bisalli A, Desjeux JF: Luminal anti-secretory effects of a β-casomorphin analogue on rabbit ileum treated with cholera toxin. Pediatr Res 24: 751–755, 1988.
  • Mahé S, Tomé D, Dumontier AM, Desjeux JF: Absorption of intact morphiceptin by DFP-treated rabbit ileum. Peptides 10: 45–52, 1989.
  • Morley JE, Levine AS, Yamada T, Gebhard RL, Prigge WF, Shafer RB, Goetz FC, Silvis SE: Effects of exorphins on gastrointestinal fonctions hormonal release and appetite. Gastroenterol 84: 1517–23, 1983.
  • Schusdziarra V, Schick R,De la Fuente A, Hollaad A, Brantl V, Pfeiffer EF: Effect of β-casomorphins on somatostatin release in dogs. Endocrinology 112: 1948–1951, 1983a.
  • Schusdziarra V, Hollaad A, Schick R,De la Fuente A, Kuer M, Maier V, Brantl V, Pfeiffer EF: Modulation of post-prandial insulin release by ingested opiate-like substances in dogs. Diahetologia 24: 113–116, 1983b.
  • Froetschel MA: Bioactive peptides in digesta that regulate gastrointestinal function and intake. J Anim Sci 74: 2500–2508, 1996.
  • Ariyoshi Y: Angiotensin-converting enzyme inhibitors derived from food proteins. Trends Food Sci Technol 4: 139–144, 1993.
  • Kohmura M, Nio N, Kubo K, Minoshima Y, Munekata E, Arioshi Y: In Roberts E, Chase TN and Tower DB (eds): “Inhibition of nervous system function.” New York: Raven Press, pp 269–281, 1989.
  • Maruyama S, Suzuki H: A peptide inhibitor of angiotensin I converting enzymz in the tryptic hydrolysate of casein. Agric Biol Chem 46: 1393–1394, 1982.
  • Maruyama S, Nakagomi K, Tomizura N, Suzuki H: Angiotensin I converting enzyme inhibitor derived from an enzymatic hydrolysate of casein. II. Isolation and bradykinin-potentiating activity on the ileum of rat. Agric Biol Chem 49: 1405–1409, 1985.
  • Maruyama S, Mitachi H, Awaya J, Kurono M, Tomizura N, Suzuki H: Angiotensin I converting enzyme inhibitory activity of the C-terminal hexapeptide of αs1-casein. Agric Biol Chem 51: 2557–2561, 1987.
  • Yamamoto N, Akino A, Takano T: Antihypertensive effect of peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J Dairy Sci 77: 917–922, 1994.
  • Karaki H, Doi K, Sugano S, Uchiwa H, Sugai R, Murakami U, Takamoto S: Antihypertensive effect of tryptic hydrolysate of milk casein in spontaneously hypertensive rats. Comp Biochem Physiol C 96: 367–371, 1990.
  • Masuda O, Nakamur Y, Takano T: Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J Nutr 126: 3063–3068, 1996.
  • Fiat AM, Levy-Toledano S, Caen JP, Jollès P: Biologically active peptides of casein and lactotransferrin implicated in platelet function. J Dairy Res 56: 351–355, 1989.
  • Chabance B, Jollès P, Izquierdo C, Mozoyer E, Francoual C, Drouet L, Fiat AM: Characterization of an antithrombic peptide from κ-casein in newborn after milk ingestion. Br J Nutr 73: 1–8, 1995.
  • Ellis LA, Mastro AM, Picciano MF: Do milk-borne cytokines and hormones influence neonatal immune cell function? J Nutr 127: 985S–988S, 1997.
  • Watson DL, Francis GL, Ballard FJ: Factors in ruminant colostrum that influence cell growth and murine IgE antibody responses. J Dairy Res 59: 369–380, 1992.
  • Wong CW, Regester GO, Francis GL, Watson DK: Immunomodulatory activities of whey fractions in efferent prefemoral lymph of sheep. J Dairy Res 63: 257–267, 1996.
  • Hartman DP, Holiday JW, Bernton EW: Inhibition of lymphocyte proliferation by antibodies to prolactin. Faseb J 3: 2194–2202, 1989.
  • Grove DS, Bour B, Kacsoh B, Mastro AM: Effect of neonatal milk-prolactin deprivation on the ontogeny of the immune system of the rat. Endocr Regul 25: 111–119, 1991.
  • Gala RR, Shevach EM: Influence of prolactin and growth hormone on the activation of dwarf mouse lymphocytes in vivo. Proc Soc Exp Biol Med 204: 224–230, 1993.
  • Gala RR, Shevach EM: Evidence for the release of a prolactin-like substance by mouse lymphocytes and macrophages. Proc Soc Exp Biol Med 205: 12–19, 1994.
  • Gaufo GO, Diamond MC: Prolactin increases CD4/CD8 cell ratio in thymus-grafted congenitally athymic nude mice. Proc Nat Acad Sci USA 93: 4165–4169, 1996.
  • Kooijman R, Hooghe-Peters EL, Hooghe R: Prolactin, growth hormone, and insulin-like growth factor-1 in the immune system. Adv Immunol 63: 377–454, 1996.
  • Yu-Lee LY: Molecular actions of prolactin in the immune system. Proc Soc Exp Biol Med 215: 35–52, 1997.
  • Burrin DG: Is milk-borne insulin-like growth factor-I essential for neonatal development? J Nutr 127: 975S–979S, 1997.
  • Hashizume S, Kuroda K, Murakami K: Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium. Biochim Biophys Acta 763: 377–382, 1983.
  • Mazurier J, Legrand D, Hu WL, Montreuil J, Spik G: Expression of human lactoferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. Eur J Biochem 179: 481–497, 1989.
  • Bennett RM, Davis J: Lactoferrin binding to human peripheral blood cells: an interaction with a B-enriched population of lymphocytes and a subpopulation of adherent mononuclear cells. J Immunol 127: 1211–1216, 1981.
  • Hu WL, Mazurier J, Sawatzki G, Montreuil J, Spik G: Lactoferrin receptor of mouse small intestinal brush border. Biochem J 248: 435–441, 1988.
  • Eda S, Kikugawa K, Beppu M: Characterization of lactoferrin-binding proteins of human macrophages membrane: multiple species of lactoferrin-binding proteins with polylactosamine-binding ability. Biol Pharmaceut Bull 20: 127–133, 1997.
  • McAbee DD, Ling YY: Iron-loading of cultured adult rat hepatocytes reversibly enhances lactoferrin binding and endocytosis. J Cell Physiol 171: 75–86, 1997.
  • Zimecki M, Mazurier J, Machnicki M, Wieczorek Z, Montreuil J, Spik G: Immunostimulatory activity of lactotransferrin and maturation of CD4−CD8− murine thymocytes. Immunol Lett 30: 119–124, 1991.
  • Debbabi H, Dubarry M, Rautureau M, Tomé D. Bovine lactoferrin induces both mucosal and systemic immune responses in mice. J Dairy Res 65: 283–293, 1998.
  • Crouch SP, Slater KJ, Fletcher J: Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80: 235–40, 1992.
  • Machnicki M, Zimecki M, Zagulski T: Lactoferrin regulates the release of tumor necrosis factor alpha and interleukin 6 in vivo. Int J Exp Pathol 74: 433–439, 1993.
  • Paul-Eugène N, Dugas B, Kolb JP, Damais C, Braquet P, Paubert-Braquet M, Rialland JP: Effets immunomodulateurs et anti-oxydants de la lactoferrine bovine chez l’homme. C.R. Acad. Sci. Paris, t. 316, Série III, 113–119, 1993.
  • Zimecki M, Mazurier J, Spik G, Kapp JA: Human lactoferrin induces phenotypic and functional changes in murine splenic cells. Immunology 86: 122–127, 1995.
  • Zimecki M, Mazurier J, Spik G, Kapp JA: Lactoferrin inhibits proliferative responses and cytokine production of Th1 but not Th2 cell lines. Arch Immunol Ther Exp 44: 51–56, 1996.
  • Otani H, Monnai M, Hosono A: Bovine κ-casein as inhibitor of the proliferation of mouse splenocytes induced by lipopolysaccharide stimulation. Milchwissenschaft 47: 512–515, 1992.
  • Otani H, Hata I: Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer’s patch cells by bovine milk caseins and their digests. J Dairy Res 62: 339–348, 1995a.
  • Otani H, Monnai M: Inhibition of proliferative responses of mouse spleen lymphocytes by bovine milk κ-casein digests. Food Agric Immunol 5: 219–229, 1993.
  • Otani H, Monnai M: Induction of an interleukin-1 receptor antagonist-like component produced from mouse spleen cells by bovine κ-caseinoglycopeptide. Biosci Biotechnol Biochem 59: 1166–1168, 1995b.
  • Otani H, Monnai M, Kawasaki Y, Kawakami H, Tammoto M: Inhibition of mitogen-induced proliferative responses of lymphocytes by bovine κ-caseinoglycopeptides having different carbohydrate chains. J Dairy Res 62: 349–357, 1995b.
  • Parker F,Migliore Samour D, Floch F, Zerial A, Werner GH, Jollès J, Casaretto M, Zahn H, Jollès P: Immunostimulating hexapeptide from human casein : amino acid sequence, synthesis and biological properties. Eur J Biochem 145: 677–682, 1984.
  • Berthou J, Migliore-Samour D, Lifchitz A, Delettre J, Floch F, Jollès P: Immunostimmulating properties and three dimensional structure of two tripeptides from human and cow caseins. FEBS Lett 218: 55–58, 1987.
  • Migliore Samour D, Jollès P: Casein, a prohormone with an immunostimmulating role for the newborn? Experimentia 44: 188–193, 1988.
  • Kayser H, Meisel H: Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Lett 383: 18–20, 1996.
  • Nichols BL, McKee KS, Henry JF, Heubers HA, Putman M: Human lactoferrin stimulates thymidine incorporation into the DNA of rat crypt cells. Pediatr Res 21: 563–567, 1987.
  • Oguchi S, Walker WA, Sanderson IR: Iron saturation alters the effect of lactoferrin on the proliferation and differentiation of human enterocytes (Caco-2 cells). Biol Neonate 67: 330–339, 1995.
  • Hagiwara T, Shinoda I, Fukuwatari Y, Shimamura S: Effects of lactoferrin and its peptides on proliferation of rat intestinal epithelial cell line, IEC-18, in the presence of epidermal growth factor. Biosci Biotechnol Biochem 59: 1875–1881, 1995.
  • Kohno Y, Shisaki K, Mura T, Ikawa S: Iron-saturated lactoferrin as a comitogenic substance for neonatal rat hepatocytes in primary cultures. Acta paediatrica 82: 650–655, 1993.
  • Azuma N, Mori H, Kaminogawa S, Yamauchi K: Stimulatory effect of human lactoferrin on DNA synthesis in BALB/c 3T3 cells. Agric Biol Chem 53: 31–35, 1989a.
  • Azuma N, Nagaune S, Ishino Y, Mori H, Kaminokawa S, Yamauchi K: DNA-synthesis stimulating peptides from human β-casein. Agric Biol Chem 53: 2631–2634, 1989b.
  • Nagaune S, Azuma N, Ishino Y, Mori H, Kaminokawa S, Yama-uchi K: DNA-synthesis stimulating peptide from bovine β-casein. Agric Biol Chem 53: 3275–3278, 1989.
  • Coste M, Rochet V, Léonil J, Mollé D, Bouhallab S, Tomé D: Identification of C-terminal peptides of bovine β-casein that enhance proliferation of rat lymphocytes. Immunol Letters 33: 41–46, 1992.
  • Takenaka A, Ohishi Y, Noguchi T, Naito H: A tryptic peptide from β-casein depresses protein synthesis and degradation and enhances ureiogenesis in primary cultures of rat hepatocytes. Int J Biochem 23: 483–490, 1991.
  • Alston-Mills B, Allen JC, Sternhagen L: Effects of whey-milk proteins on Caco-2 and HT-29 intestinal cell lines. Livestock Production Science 50: 147–148, 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.