12,091
Views
50
CrossRef citations to date
0
Altmetric
Articles

Combating COVID-19 and Building Immune Resilience: A Potential Role for Magnesium Nutrition?

ORCID Icon
Pages 685-693 | Received 13 May 2020, Accepted 16 Jun 2020, Published online: 10 Jul 2020

References

  • Johns Hopkins University. COVID-19 Dashboard by the Center for Systems Science and Engineering. Coronavirus Resource Center; 2020 Apr 21 [accessed 2020 Apr 21]. https://coronavirus.jhu.edu/map.html.
  • Martindale R, Patel JJ, Taylor B, Warren M, McClave SA. Nutrition therapy in the patient with COVID-19 disease requiring ICU care: joint recommendations from SCCM and ASPEN. Crit Care Med.; 2020 [accessed 2020 Apr 21]. https://www.sccm.org/getattachment/Disaster/Nutrition-Therapy-COVID-19-SCCM-ASPEN.pdf?lang=en-US
  • Laviano A, Koverech A, Zanetti M. Nutrition support in the time of SARS-CoV-2 (COVID-19). Nutrition. 2020;74:110834. doi:10.1016/j.nut.2020.110834.
  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. doi:10.1016/S0140-6736(20)30628-0.
  • Chen D, Li X, Qifa s, Hu C, Su F, Dai J. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19). Infectious Diseases (except HIV/AIDS). 2020. doi:10.1101/2020.02.27.20028530.
  • Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: their roles in pathogenesis. J Microbiol Immunol Infect. 2020. doi:10.1016/j.jmii.2020.03.022.
  • Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020;323(8):707. doi:10.1001/jama.2020.0757.
  • Salata C, Calistri A, Parolin C, Palù G. Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathog Dis. 2019;77(9). doi:10.1093/femspd/ftaa006.
  • National Institute of Allergy and Infectious Diseases. Coronaviruses; 2020 [accessed 2020 Apr 13]. https://www.niaid.nih.gov/diseases-conditions/coronaviruses.
  • de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–34. doi:10.1038/nrmicro.2016.81.
  • Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(6):1294–7. doi:10.1007/s00134-020-05991-x.
  • Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–7. doi:10.1002/path.1570.
  • Ciaglia E, Vecchione C, Puca AA. COVID-19 infection and circulating ACE2 levels: protective role in women and children. Front Pediatr. 2020;8. doi:10.3389/fped.2020.00206.
  • Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. doi:10.1038/s41368-020-0074-x.
  • Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185–92. doi:10.1007/s11684-020-0754-0.
  • Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Bioinformatics. 2020. doi:10.1101/2020.01.26.919985.
  • Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-NCov infection: A bioinformatics analysis based on single-cell transcriptomes. Microbiology. 2020. doi:10.1101/2020.01.30.927806.
  • World Health Organization. Coronavirus disease (COVID-2019) R&D; 2020 [accessed 2020 Apr 13]. https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus/en/.
  • Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens. 2007;21(1):20–7. doi:10.1038/sj.jhh.1002101.
  • Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. The cytokine release syndrome (CRS) of severe COVID-19 and interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi:10.1016/j.ijantimicag.2020.105954.
  • Leiva-Juárez MM, Kolls JK, Evans SE. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol. 2018;11(1):21–34. doi:10.1038/mi.2017.71.
  • Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol. 2018;150(6):661–76. doi:10.1007/s00418-018-1747-9.
  • Brune K, Frank J, Schwingshackl A, Finigan J, Sidhaye VK. Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol Lung Cell Mol Physiol. 2015;308(8):L731–45. doi:10.1152/ajplung.00309.2014.
  • Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–57. doi:10.1038/ni.3153.
  • Castilletti C, Bordi L, Lalle E, Rozera G, Poccia F, Agrati C, Abbate I, Capobianchi MR. Coordinate induction of IFN-alpha and -gamma by SARS-CoV also in the absence of virus replication. Virology. 2005;341(1):163–9. doi:10.1016/j.virol.2005.07.015.
  • Shi S-Q, Peng J-P, Li Y-C, Qin C, Liang G-D, Xu L, Yang Y, Wang J-L, Sun Q-H. The expression of membrane protein augments the specific responses induced by SARS-CoV nucleocapsid DNA immunization. Mol Immunol. 2006;43(11):1791–8. doi:10.1016/j.molimm.2005.11.005.
  • Tseng C-T, Perrone LA, Zhu H, Makino S, Peters CJ. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol. 2005;174(12):7977–85. doi:10.4049/jimmunol.174.12.7977.
  • Navarro G, Taroumian S, Barroso N, Duan L, Furst D. Tocilizumab in rheumatoid arthritis: a meta-analysis of efficacy and selected clinical conundrums. Semin Arthritis Rheum. 2014;43(4):458–69. doi:10.1016/j.semarthrit.2013.08.001.
  • Yokota S, Miyamae T, Imagawa T, Iwata N, Katakura S, Mori M, Woo P, Nishimoto N, Yoshizaki K, Kishimoto T, et al. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2005;52(3):818–25. doi:10.1002/art.20944.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5.
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. J Infect. 2020;80(6):607–13. doi:10.1016/j.jinf.2020.03.037.
  • Beisel WR. Herman Award Lecture, 1995: infection-induced malnutrition-from cholera to cytokines. Am J Clin Nutr. 1995;62(4):813–9. doi:10.1093/ajcn/62.4.813.
  • Grimble RF. Basics in clinical nutrition: main cytokines and their effect during injury and sepsis. e-SPEN Eur e-J Clin Nutr Metab. 2008;3(6):e289–92. doi:10.1016/j.eclnm.2008.07.002.
  • Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press (US); 1997 [accessed 2019 Sep 30]. http://www.ncbi.nlm.nih.gov/books/NBK109825/.
  • U.S. Department of Health and Human Services. Nutrient assessment for DRI review; 2014 [accessed 2020 Apr 13]. https://health.gov/our-work/food-nutrition/dietary-reference-intakes-dris/nutrient-assessment-dri-review.
  • de Baaij JHF, Hoenderop JGJ, Bindels R. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1–46. doi:10.1152/physrev.00012.2014.
  • Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28(1):304–5. doi:10.1093/nar/28.1.304.
  • Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2012;40(Database issue):D742–53. doi:10.1093/nar/gkr1014.
  • Elin RJ. Assessment of magnesium status. Clin Chem. 1987;33(11):1965–70.
  • Wallach S. Availability of body magnesium during magnesium deficiency. Magnesium. 1988;7(5-6):262–70.
  • Elin RJ. Laboratory tests for the assessment of magnesium status in humans. Magnes Trace Elem. 1991;10(2-4):172–81.
  • Costello RB, Elin RJ, Rosanoff A, Wallace TC, Guerrero-Romero F, Hruby A, Lutsey PL, Nielsen FH, Rodriguez-Moran M, Song Y, et al. Perspective: the case for an evidence-based reference interval for serum magnesium: the time has come. Adv Nutr. 2016;7(6):977–93. doi:10.3945/an.116.012765.
  • Kielstein JT, David S. Magnesium: the “earth cure” of AKI? Nephrol Dial Transplant. 2013;28(4):785–7. doi:10.1093/ndt/gfs347.
  • Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003;24(1-3):27–37. doi:10.1016/S0098-2997(02)00089-4.
  • Cao S, Hodges JK, McCabe LD, Weaver CM. Magnesium requirements in children: recommendations for reevaluation and comparison with current evidence for adults. Nutr Today. 2019;54(5):195–206. doi:10.1097/NT.0000000000000363.
  • Moshfegh AJ, Goldman J, Ahuja J, Rhodes D, Lacomb R. What we eat in America, NHANES 2005-2006, usual nutrient intakes from food and water compared to 1997 dietary reference intakes for vitamin D, calcium, phosphorus, and magnesium. U.S. Department of Agriculture, Agriculture Research Service; 2009 [accessed 2019 Aug 1]. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0506/usual_nutrient_intake_vitD_ca_phos_mg_2005-06.pdf.
  • World Health Organization, ed. Calcium and magnesium in drinking-water: public health significance. Geneva‎, Switzerland: World Health Organization; 2009.
  • Fryar CD, Gu Q, Ogden CL, Flegal KM. Anthropometric reference data for children and adults: United States, 2011-2014. Vital Health Stat. 2016;3(39):1–46.
  • Fryar CD, Kruszon-Moran D, Gu Q, Ogden CL. Mean body weight, height, waist circumference, and body mass index among adults: United States, 1999-2000 through 2015-2016. Natl Health Stat Rep. 2018;(122):1–16.
  • Ford ES, Mokdad AH. Dietary magnesium intake in a national sample of U.S. adults. J Nutr. 2003;133(9):2879–82. doi:10.1093/jn/133.9.2879.
  • Rude RK, Kirchen ME, Gruber HE, Stasky AA, Meyer MH. Clinical manifestations of magnesium deficiency. Mineral Electrolyte Metab. 1998;24 (5):314–22. doi:10.1159/000057389.
  • Zhan J, Wallace TC, Butts SJ, Cao S, Ansu V, Spence LA, Weaver CM, Gletsu-Miller N. Circulating ionized magnesium as a measure of supplement bioavailability: results from a pilot study for randomized clinical trial. Nutrients. 2020;12(5):1245. doi:10.3390/nu12051245.
  • Soliman HM, Mercan D, Lobo SSM, Mélot C, Vincent J-L. Development of ionized hypomagnesemia is associated with higher mortality rates. Crit Care Med. 2003;31(4):1082–7. doi:10.1097/01.CCM.0000060867.17556.A0.
  • Reinhart RA, Desbiens NA. Hypomagnesemia in patients entering the ICU. Crit Care Med. 1985;13(6):506–7. doi:10.1097/00003246-198506000-00015.
  • Ryzen E, Wagers PW, Singer FR, Rude RK. Magnesium deficiency in a medical ICU population. Crit Care Med. 1985;13(1):19–21. doi:10.1097/00003246-198501000-00006.
  • Rubeiz GJ, Thill-Baharozian M, Hardie D, Carlson RW. Association of hypomagnesemia and mortality in acutely ill medical patients. Crit Care Med. 1993;21(2):203–9. doi:10.1097/00003246-199302000-00010.
  • Huijgen HJ, Soesan M, Sanders R, Mairuhu WM, Kesecioglu J, Sanders GT. Magnesium levels in critically ill patients. What should we measure? Am J Clin Pathol. 2000;114(5):688–95. doi:10.1309/JR9Y-PPTX-AJTC-QDRD.
  • Chernow B, Bamberger S, Stoiko M, Vadnais M, Mills S, Hoellerich V, Warshaw AL. Hypomagnesemia in patients in postoperative intensive care. Chest. 1989;95(2):391–7. doi:10.1378/chest.95.2.391.
  • Guérin C, Cousin C, Mignot F, Manchon M, Fournier G. Serum and erythrocyte magnesium in critically ill patients. Intensive Care Med. 1996;22(8):724–7. doi:10.1007/BF01709512.
  • Fiser RT, Torres A, Butch AW, Valentine JL. Ionized magnesium concentrations in critically ill children. Crit Care Med. 1998;26(12):2048–52. doi:10.1097/00003246-199812000-00039.
  • Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR. Modern nutrition in health and disease. Wolters Kluwer Health; 2012 [accessed 2020 Apr 13]. https://library.biblioboard.com/content/d7522477-6f1f-4adf-902e-e4d1d17099a5.
  • Nielsen FH. Magnesium, inflammation, and obesity in chronic disease. Nutr Rev. 2010;68(6):333–40. doi:10.1111/j.1753-4887.2010.00293.x.
  • Mazidi M, Rezaie P, Banach M. Effect of magnesium supplements on serum C-reactive protein: a systematic review and meta-analysis. Archiv Med Sci. 2018;14(4):707–16. doi:10.5114/aoms.2018.75719.
  • Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M, Zambrano-Galvan G, Guerrero-Romero F. Effect of magnesium supplementation on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Curr Pharm Des. 2017;23(31):4678–86. doi:10.2174/1381612823666170525153605.
  • Afshar Ebrahimi F, Foroozanfard F, Aghadavod E, Bahmani F, Asemi Z. The effects of magnesium and zinc co-supplementation on biomarkers of inflammation and oxidative stress, and gene expression related to inflammation in polycystic ovary syndrome: a randomized controlled clinical trial. Biol Trace Elem Res. 2018;184(2):300–7. doi:10.1007/s12011-017-1198-5.
  • Sugimoto J, Romani AM, Valentin-Torres AM, Luciano AA, Ramirez Kitchen CM, Funderburg N, Mesiano S, Bernstein HB. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol. 2012;188(12):6338–46. doi:10.4049/jimmunol.1101765.
  • Cairns CB, Krafi M. Magnesium attenuates the neutrophil respiratory burst in adult asthmatic patients. Acad Emerg Med. 1996;3(12):1093–7. doi:10.1111/j.1553-2712.1996.tb03366.x.
  • Nielsen FH. Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res. 2018;11:25–34. doi:10.2147/JIR.S136742.
  • Chacko SA, Song Y, Nathan L, Tinker L, de Boer IH, Tylavsky F, Wallace R, Liu S. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care. 2010;33(2):304–10. doi:10.2337/dc09-1402.
  • Mahalle N, Garg MK, Kulkarni MV, Naik SS. Relation of magnesium with insulin resistance and inflammatory markers in subjects with known Coronary artery disease. J Cardiovasc Dis Res. 2014;5(1):22–9. doi:10.5530/jcdr.2014.1.4.
  • Institute of Medicine (US) Committee on Standards for Systematic Reviews of Comparative Effectiveness Research. Finding what works in health care: standards for systematic reviews. (Eden J, Levit L, Berg A, Morton S, eds.). National Academies Press (US); 2011 [accessed 2020 Apr 14]. http://www.ncbi.nlm.nih.gov/books/NBK209518/.
  • Bressendorff I, Hansen D, Pasch A. The effect of increasing dialysate magnesium on calciprotein particles, inflammation and bone markers: post hoc analysis from a randomized controlled clinical trial. Nephrol Dial Transplant. 2019. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-02005700/full.
  • Rashvand S, Mobasseri M, Tarighat-Esfanjani A. The effects of choline and magnesium co-supplementation on metabolic parameters, inflammation, and endothelial dysfunction in patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. J Am Coll Nutr. 2019;38(8):714–721. doi:10.1080/07315724.2019.1599745. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01941545/full.
  • Steward CJ, Zhou Y, Keane G, Cook MD, Liu Y, Cullen T. One week of magnesium supplementation lowers IL-6, muscle soreness and increases post-exercise blood glucose in response to downhill running. Eur J Appl Physiol. 2019;119(11-12):2617–27. doi:10.1007/s00421-019-04238-y.
  • Dmitrasinovic G, Pesic V, Stanic D, Plecas-Solarovic B, Dajak M, Ignjatovic S. ACTH, cortisol and IL-6 levels in athletes following magnesium supplementation. J Med Biochem. 2016;35(4):375–84. doi:10.1515/jomb-2016-0021.
  • Mojtahedzadeh M, Chelkeba L, Ranjvar-Shahrivar M, Najafi A, Moini M, Najmeddin F, Sadeghi K, Barkhordari K, Gheymati A, Ahmadi A, et al. Randomized trial of the effect of magnesium sulfate continuous infusion on IL-6 and CRP serum levels following abdominal aortic aneurysm surgery. Iran J Pharm Res. 2016;15(4):951–6.
  • Zogović D, Pešić V, Dmitrašinović G, Dajak M, Plećaš B, Batinić B, Popović D, Ignjatović S. Pituitary-gonadal, pituitary-adrenocortical hormones and IL-6 levels following long-term magnesium supplementation in male students. J Med Biochem. 2014;33(3):291–8. doi:10.2478/jomb-2014-0016.
  • Chung HS, Park CS, Hong SH, Lee S, Cho M-L, Her Y-M, Sa GJ, Lee J, Choi JH. Effects of magnesium pretreatment on the levels of T helper cytokines and on the severity of reperfusion syndrome in patients undergoing living donor liver transplantation. Magnes Res. 2013;26(2):46–55. doi:10.1684/mrh.2013.0338.
  • Moslehi N, Vafa M, Rahimi-Foroushani A, Golestan B. Effects of oral magnesium supplementation on inflammatory markers in middle-aged overweight women. J Res Med Sci. 2012;17(7):607–14.
  • Muroi C, Burkhardt J-K, Hugelshofer M, Seule M, Mishima K, Keller E. Magnesium and the inflammatory response: potential pathophysiological implications in the management of patients with aneurysmal subarachnoid hemorrhage? Magnes Res. 2012;25(2):64–71. doi:10.1684/mrh.2012.0314.
  • Simental-Mendía LE, Rodríguez-Morán M, Reyes-Romero MA, Guerrero-Romero F. No positive effect of oral magnesium supplementation in the decreases of inflammation in subjects with prediabetes: a pilot study. Magnes Res. 2012;25(3):140–6. doi:10.1684/mrh.2012.0322.
  • Kim DJ, Xun P, Liu K, Loria C, Yokota K, Jacobs DR, He K. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care. 2010;33(12):2604–10. doi:10.2337/dc10-0994.
  • Shibata M, Ueshima K, Harada M, Nakamura M, Hiramori K, Endo S, Sato N, Mukaida H, Suzuki T, Suzuki T, et al. Effect of magnesium sulfate pretreatment and significance of matrix metalloproteinase-1 and interleukin-6 levels in coronary reperfusion therapy for patients with acute myocardial infarction. Angiology. 1999;50(7):573–82. doi:10.1177/000331979905000707.
  • Silhol F, Sarlon G, Deharo J-C, Vaïsse B. Downregulation of ACE2 induces overstimulation of the renin–angiotensin system in COVID-19: should we block the renin–angiotensin system? Hypertens Res. 2020. doi:10.1038/s41440-020-0476-3.
  • Whang R, Whang DD, Ryan MP. Refractory potassium repletion. A consequence of magnesium deficiency. Arch Intern Med. 1992;152(1):40–5.
  • Huang C-L, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18(10):2649–52. doi:10.1681/ASN.2007070792.
  • Veltri KT, Mason C. Medication-induced hypokalemia. P T Peer Rev J Formul Manag. 2015;40(3):185–90.
  • Hammond DA, Stojakovic J, Kathe N, Tran J, Clem OA, Erbach K, King J. Effectiveness and safety of magnesium replacement in critically ill patients admitted to the medical intensive care unit in an academic medical center: a retrospective, cohort study. J Intensive Care Med. 2019;34(11-12):967–72. doi:10.1177/0885066617720631.
  • Dickerson RN. Guidelines for the intravenous management of hypophosphatemia, hypomagnesemia, hypokalemia, and hypocalcemia. Hosp Pharm. 2001;36(11):1201–8. doi:10.1177/001857870103601111.
  • Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, Bhattoa HP. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4): 988. doi:10.3390/nu12040:988.
  • Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa D, Ginde AA, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;i6583. doi:10.1136/bmj.i6583.
  • Meltzer DO, Best TJ, Zhang H, Vokes T, Arora V, Solway J. Association of vitamin D deficiency and treatment with COVID-19 incidence. Infectious Diseases (except HIV/AIDS). 2020. doi:10.1101/2020.05.08.20095893.
  • D’Avolio A, Avataneo V, Manca A, Cusato J, De Nicolò A, Lucchini R, Keller F, Cantù M. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359. doi:10.3390/nu12051359.
  • Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res. 2020. doi:10.1007/s40520-020-01570-8.
  • Glicio EJ. Vitamin D level of mild and severe elderly cases of COVID-19: A preliminary report. SSRN; 2020.
  • Alipio M. Vitamin D supplementation could possibly improve clinical outcomes of patients infected with coronavirus-2019 (COVID-2019). SSRN Electron J. 2020. doi:10.2139/ssrn.3571484.
  • Raharusun P, Priambada S, Budiarti C, Agung E, Budi C. Patterns of COVID-19 mortality and vitamin D: an Indonesian study. SSRN Electron J. 2020; doi:10.2139/ssrn.3585561.
  • Daneshkhah A, Agrawal V, Eshein A, Subramanian H, Roy HK, Backman V. The possible role of vitamin D in suppressing cytokine storm and associated mortality in COVID-19 patients. Infectious Diseases (except HIV/AIDS); 2020. doi:10.1101/2020.04.08.20058578.
  • Ross AC, Institute of Medicine (U. S.), eds. Dietary reference intakes: calcium, vitamin D. Washington (DC): National Academies Press; 2011.
  • Li YC. Vitamin D: roles in renal and cardiovascular protection. Curr Opin Nephrol Hypertens. 2012;21(1):72–9. doi:10.1097/MNH.0b013e32834de4ee.
  • Li YC, Kong J, Wei M, Chen Z-F, Liu SQ, Cao L-P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110(2):229–38. doi:10.1172/JCI15219.
  • Guyi W, Chenfang W, Quan Z, Fang W, Bo Y, Jianlei L, Yiming L, Tiao L, Siye Z, Chao W, Guobao W, Yanjun Z. C-reactive protein level may predict the risk of COVID-19 aggravation. Open  Forum Infect Dis. 2020;7(5). doi:10.1093/ofid/ofaa153.
  • Zittermann A. Magnesium deficit? Overlooked cause of low vitamin D status? BMC Med. 2013;11:229. doi:10.1186/1741-7015-11-229.
  • Reddy P, Edwards LR. Magnesium supplementation in vitamin D deficiency. Am J Ther. 2019;26(1):e124–32. doi:10.1097/MJT.0000000000000538.
  • Rodríguez-Ortiz ME, Canalejo A, Herencia C, Martínez-Moreno JM, Peralta-Ramírez A, Perez-Martinez P, Navarro-González JF, Rodríguez M, Peter M, Gundlach K, et al. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration. Nephrol Dial Transplant. 2014;29(2):282–9. doi:10.1093/ndt/gft400.
  • Risco F, Traba ML. Bone specific binding sites for 1,25(OH)2D3 in magnesium deficiency. J Physiol Biochem. 2004;60(3):199–203. doi:10.1007/bf03167029.
  • McCoy H, Kenney MA. Interactions between magnesium and vitamin D: possible implications in the immune system. Magnes Res. 1996;9(3):185–203.
  • Rude RK, Adams JS, Ryzen E, Endres DB, Niimi H, Horst RL, Haddad JG, Singer FR. Low serum concentrations of 1,25-dihydroxyvitamin D in human magnesium deficiency. J Clin Endocrinol Metab. 1985;61(5):933–40. doi:10.1210/jcem-61-5-933.
  • Lemay J, Gascon-Barré M. Responsiveness of the intestinal 1,25-dihydroxyvitamin D3 receptor to magnesium depletion in the rat. Endocrinology. 1992;130(5):2767–77. doi:10.1210/endo.130.5.1315257.
  • Deng X, Song Y, Manson JE, Signorello LB, Zhang SM, Shrubsole MJ, Ness RM, Seidner DL, Dai Q. Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med. 2013;11:187. doi:10.1186/1741-7015-11-187.
  • Uwitonze AM, Razzaque MS. Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc. 2018;118(3):181–9. doi:10.7556/jaoa.2018.037.
  • Tan CW, Ho LP, Kalimuddin S, et al. A cohort study to evaluate the effect of combination vitamin D, magnesium and vitamin B12 (DMB) on progression to severe outcome in older COVID-19 patients. Infectious Diseases (except HIV/AIDS); 2020. doi:10.1101/2020.06.01.20112334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.