166
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Metabolite Profiling of Antioxidant Rich Fractions of Punica granatum L. Mesocarp and CD36 Expression Regulation

, , , , , ORCID Icon & show all
Pages 36-54 | Received 05 Aug 2021, Accepted 02 Sep 2021, Published online: 22 Oct 2021

References

  • Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598–612. doi:10.4239/wjd.v6.i4.598.
  • International Diabetes Federation. IDF diabetes atlas. Belgium: International Diabetes Federation. 2019.
  • Cantley J, Ashcroft FM. Correction to: Q&A: insulin secretion and type 2 diabetes: why do β-cells fail?BMC Biol. 2019;17(1):32. doi:10.1186/s12915-019-0650-8.
  • Ott C, Jacobs K, Haucke E, Navarrete SA, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29. doi:10.1016/j.redox.2013.12.016.
  • Sompong W, Meeprom A, Cheng H, Adisakwattana SA. A comparative study of ferulic acid on different monosaccharide-mediated protein glycation and oxidative damage in bovine serum albumin. Molecules. 2013;18(11):13886–903. doi:10.3390/molecules181113886.
  • Schaffer SW, Jong CJ, Mozaffari M. Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vascul Pharmacol. 2012;57(5–6):139–49. doi:10.1016/j.vph.2012.03.005.
  • Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45–63.
  • Kuniyasu A, Ohgami N, Hayashi S, Miyazaki A, Horiuchi S, Nakayama H. CD36-mediated endocytic uptake of advanced glycation end products (AGE) in mouse 3T3-L1 and human subcutaneous adipocytes. FEBS Lett. 2003;537(1–3):85–90. doi:10.1016/S0014-5793(03)00096-6.
  • Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H. CD36, a member of class B scavenger receptor family, is a receptor for advanced glycation end products. Ann N Y Acad Sci. 2001; 947:350–5. doi:10.1111/j.1749-6632.2001.tb03961.x.
  • Sun Y, Scavini M, Orlando RA, Murata GH, Servilla KS, Tzamaloukas AH, Schrader R, Bedrick EJ, Burge MR, Abumrad NA, Zager PG. Increased CD36 expression signals monocyte activation among patients with type 2 diabetes. Diabetes Care. 2010;33(9):2065–7. doi:10.2337/dc10-0460.
  • Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, Barit D, Coughlan MT, Drew BG, Lancaster GI, et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes. 2008;57(9):2461–9. doi:10.2337/db07-1808.
  • Zhu W, Li W, Silverstein RL. Advanced glycation end products induce a prothrombotic phenotype in mice via interaction with platelet CD36. Blood. 2012;119(25):6136–44. doi:10.1182/blood-2011-10-387506.
  • Susztak K, Ciccone E, Mccue P, Sharma K, Böttinger EP. Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy. PLoS Med. 2005;2(2):e45. doi:10.1371/journal.pmed.0020045.
  • Guimarães EL, Empsen C, Geerts A, Van Grunsven LA. Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J Hepatol. 2010;52(3):389–97. doi:10.1016/j.jhep.2009.12.007.
  • Geloen A, Helin L, Geeraert B, Malaud E, Holvoet P, Marguerie G. CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. PLoS One. 2012;7(5):e37633. doi:10.1371/journal.pone.0037633.
  • Glatz JF, Angin Y, Steinbusch LK, Schwenk RW, Luiken JJ. CD36 as a target to prevent cardiac lipotoxicity and insulin resistance. Prostaglandins Leukot Essent Fatty Acids. 2013;88(1):71–7. doi:10.1016/j.plefa.2012.04.009.
  • de Oliveira Silva C, Delbosc S, Araïs C, Monnier L, Cristol J-P, Pares-Herbute N. Pares-Herbute N. Modulation of CD36 protein expression by AGEs and insulin in aortic VSMCs from diabetic and non-diabetic rats. Nutr Metab Cardiovasc Dis. 2008;18(1):23–30. doi:10.1016/j.numecd.2006.07.008.
  • Ramlagan P, Rondeau P, Planesse C, Neergheen-Bhujun VS, Fawdar S, Bourdon E, Bahorun T. Punica granatum L. mesocarp suppresses advanced glycation end products (AGEs)- and H2O2-induced oxidative stress and pro-inflammatory biomarkers. J Funct Foods. 2017; 29:115–26. doi:10.1016/j.jff.2016.12.007.
  • Fischer UA, Carle R, Kammerer DR. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n). Food Chem. 2011;127(2):807–21. doi:10.1016/j.foodchem.2010.12.156.
  • Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem. 2000;48(10):4581–9. doi:10.1021/jf000404a.
  • Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–6. doi:10.1006/abio.1996.0292.
  • Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem. 2002;50(16):4437–44. doi:10.1021/jf0201529.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–7. doi:10.1016/S0891-5849(98)00315-3.
  • Duan X, Jiang Y, Su X, Zhang Z, Shi J. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem. 2007;101(4):1365–71. doi:10.1016/j.foodchem.2005.06.057.
  • Dorman HJD, Koşar M, Kahlos K, Holm Y, Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J Agric Food Chem. 2003;51(16):4563–9. doi:10.1021/jf034108k.
  • Kumar M, Chandel M, Kumar S, Kaur S. Studies on the antioxidant/genoprotective activity of extracts of Koelreuteria paniculata laxm. Am J Biomed Sci. 2011;1:177–89. doi:10.5099/aj120200132.
  • Wang W, Yagiz Y, Buran TJ, Nunes CN, Gu L. Phytochemicals from berries and grapes inhibited the formation of advanced glycation end‐products by scavenging reactive carbonyls. Food Res Int. 2011;44(9):2666–73. doi:10.1016/j.foodres.2011.05.022.
  • Meeprom A, Sompong W, Chan CB, Adisakwattana S. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules. 2013;18(6):6439–51. doi:10.3390/molecules18066439.
  • Johnson RN, Metcalf PA, Baker JR. Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta. 1983;127(1):87–95. doi:10.1016/0009-8981(83)90078-5.
  • Boyer F, Rondeau P, Bourdon E. Hyperglycemia induces oxidative damage in SW872 cells. Arch Med Biomed Res. 2014;1:66–78.
  • Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49(5):1304–13. doi:10.1038/ki.1996.186.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4.
  • Marimoutou M, Le Sage F, Smadja J, Lefebvre d’Hellencourt C, Gonthier M-P, Robert-Da Silva C. Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNFα and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-κB genes. J Inflamm (Lond). 2015;12:10. doi:10.1186/s12950-015-0055-6.
  • Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144–58.
  • Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555–9. doi:10.1016/S0308-8146(98)00102-2.
  • Saad H, Bouhtoury FC, Pizzi A, Rod K, Charrier B, Ayed N. Characterization of pomegranate peels tannin extractives. Ind Crops Prod. 2012; 40:239–46. doi:10.1016/j.indcrop.2012.02.038.
  • Khaled SE, Hashem FA-M, Shabana MH, Hammam A-MM, Madboli ANA, Al-Mahdy DA, Farag MA. A biochemometric approach for the assessment of Phyllanthus emblica female fertility effects as determined via UPLC-ESI-qTOF-MS and GC-MS. Food Funct. 2019;10(8):4620–35. doi:10.1039/c9fo00767a.
  • Serag A, Baky MH, Döll S, Farag MA. UHPLC-MS metabolome based classification of umbelliferous fruit taxa: a prospect for phyto-equivalency of its different accessions and in response to roasting. RSC Adv. 2020;10(1):76–85. doi:10.1039/C9RA07841J.
  • Issa MY, Mohsen E, Younis IY, Nofal ES, Farag MA. Volatiles distribution in jasmine flowers taxa grown in Egypt and its commercial products as analyzed via solid-phase microextraction (SPME) coupled to chemometrics. Ind Crops Prod. 2020; 144:112002. doi:10.1016/j.indcrop.2019.112002.
  • Sánchez-Rabaneda F, Jáuregui O, Casals I, Andrés-Lacueva C, Izquierdo-Pulido M, Lamuela-Raventós RM. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J Mass Spectrom. 2003;38(1):35–42. doi:10.1002/jms.395.
  • Mena P, Calani L, Dall’Asta C, Galaverna G, García-Viguera C, Bruni R, Crozier A, Del Rio D. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules. 2012;17(12):14821–40. doi:10.3390/molecules171214821.
  • Ambigaipalan P, de Camargo AC, Shahidi F. Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J Agric Food Chem. 2016;64(34):6584–604. doi:10.1021/acs.jafc.6b02950.
  • Al-Olayan EM, El-Khadragy MF, Metwally DM, Moneim AEA. Protective effects of pomegranate (Punica granatum) juice on testes against carbon tetrachloride intoxication in rats. BMC Complement Altern Med. 2014; 14:164 doi:10.1186/1472-6882-14-164.
  • Wu S, Tian L. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (Punica granatum). Molecules. 2017; 22:1606. doi:10.3390/molecules22101606.
  • Abu-Reidah IM, Ali-Shtayeh MS, Jamous RM, Arráez-Román D, Segura-Carretero A. HPLC-DAD-ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015; 166:179–91. doi:10.1016/j.foodchem.2014.06.011.
  • Zhang YJ, Abe T, Tanaka T, Yang CR, Kouno I. Phyllanemblinins A-F, new ellagitannins from Phyllanthus emblica. J Nat Prod. 2001;64(12):1527–32. doi:10.1021/np010370g.
  • Latté KP, Kolodziej H. Pelargoniins, new ellagitannins from Pelargonium reniforme. Phytochemistry. 2000;54(7):701–8. doi:10.1016/S0031-9422(00)00176-X.
  • Hanhineva K, Rogachev I, Kokko H, Mintz-Oron S, Venger I, Kärenlampi S, Aharoni A. Non-targeted analysis of spatial metabolite composition in strawberry (Fragariaxananassa) flowers. Phytochemistry. 2008;69(13):2463–81. doi:10.1016/j.phytochem.2008.07.009.
  • Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, Heber D. (). In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem. 2005;16(6):360–7. doi:10.1016/j.jnutbio.2005.01.006.
  • Hassanen EI, Tohamy AF, Issa MY, Ibrahim MA, Farroh KY, Hassan AM. Pomegranate juice diminishes the mitochondria-dependent cell death and NF-kB signaling pathway induced by copper oxide nanoparticles on liver and kidneys of rats. Int J Nanomed. 2019; 14:8905–22. doi:10.2147/IJN.S229461.
  • Barbieri M, Heard CM. Isolation of punicalagin from Punica granatum rind extract using mass-directed semi-preparative ESI-AP single quadrupole LC-MS. J Pharm Biomed Anal. 2019;166:90–4. doi:10.1016/j.jpba.2018.12.033.
  • Rahimi HR, Arastoo M, Ostad SN. A comprehensive review of Punica granatum (Pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iran J Pharm Res. 2012;11(2):385–400.
  • Segarra G, Jáuregui O, Casanova E, Trillas I. Simultaneous quantitative LC-ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry. 2006;67(4):395–401. doi:10.1016/j.phytochem.2005.11.017.
  • Farag MA, Gad HA, Heiss AG, Wessjohann LA. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem. 2014;151:333–42. doi:10.1016/j.foodchem.2013.11.032.
  • Šavikin K, Živković J, Alimpić A, Zdunić G, Janković T, Duletić-Laušević S, Menković N. Activity guided fractionation of pomegranate extract and its antioxidant, antidiabetic and antineurodegenerative properties. Ind Crops Prod. 2018; 113:142–9. doi:10.1016/j.indcrop.2018.01.031.
  • Sannigrahi S, Kanti Mazuder U, Kumar Pal D, Parida S, Jain S. Antioxidant potential of crude extract and different fractions of Enhydra fluctuans Lour. Iran J Pharm Res. 2010;9(1):75–82.
  • Cuvelier ME, Richard H, Berset C. Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotechnol Biochem. 1992;56(2):324–5. doi:10.1271/bbb.56.324.
  • Patel A, Patel A, Patel A, Patel NM. Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacognosy Res. 2010;2(3):152–8. doi:10.4103/0974-8490.65509.
  • Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99(1):191–203. doi:10.1016/j.foodchem.2005.07.042.
  • Wei Y, Chen L, Chen J, Ge L, He RQ. Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol. 2009;10:10. doi:10.1186/1471-2121-10-10.
  • Liu W, Ma H, Frost L, Yuan T, Dain JA, Seeram NP. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species. Food Funct. 2014;5(11):2996–3004. doi:10.1039/c4fo00538d.
  • Kumagai Y, Nakatani S, Onodera H, Nagatomo A, Nishida N, Matsuura Y, Kobata K, Wada M. Anti-glycation effects of pomegranate (Punica granatum L.) fruit extract and its components in vivo and in vitro. J Agric Food Chem. 2015;63(35):7760–4. doi:10.1021/acs.jafc.5b02766.
  • Yeh W-J, Hsia S-M, Lee W-H, Wu C-H. Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings. J Food Drug Anal. 2017;25(1):84–92. doi:10.1016/j.jfda.2016.10.017.
  • Lo CY, Hsiao WT, Chen XY. Efficiency of trapping methylglyoxal by phenols and phenolic acids. J Food Sci. 2011;76(3):H90–H96. doi:10.1111/j.1750-3841.2011.02067.x.
  • Piwowar A, Knapik-Kordecka M, Szczecińska J, Warwas M. Plasma glycooxidation protein products in type 2 diabetic patients with nephropathy. Diabetes Metab Res Rev. 2008;24(7):549–53. doi:10.1002/dmrr.885.
  • Bhattacherjee A, Datta A. Mechanism of antiglycating properties of syringic and chlorogenic acids in in vitro glycation system. Food Res Int. 2015;77:540–8. doi:10.1016/j.foodres.2015.08.025.
  • Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules. 2014;19(11):18828–49. doi:10.3390/molecules191118828.
  • Khangholi S, Majid FA, Berwary NJ, Ahmad F, Aziz RB. The mechanisms of inhibition of advanced glycation end products formation through polyphenols in hyperglycemic condition. Planta Med. 2016;82(1–2):32–45. doi:10.1055/s-0035-1558086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.