452
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Toward Efficient Enzymatic Glycan Synthesis: Directed Evolution and Enzyme Engineering

&
Pages 181-205 | Received 24 May 2011, Accepted 07 Jul 2011, Published online: 09 Nov 2011

REFERENCES

  • Crocker , P. R. and Feizi , T. 1996 . Carbohydrate recognition systems: functional triads in cell–cell interactions . Curr. Opin. Struct. Biol. , 6 : 679 – 691 .
  • Hakomori , S. 1981 . Glycosphingolipids in cellular interaction, differentiation, and oncogenesis . Annu. Rev. Biochem. , 50 : 733 – 764 .
  • Weymouth-Wilson , A. C. 1997 . The role of carbohydrates in biologically active natural products . Nat. Prod. Rep. , 14 : 99 – 110 .
  • Paulsen , H. 1982 . Progress in the selective chemical synthesis of complex oligosaccharides . Angew. Chem. , 94 : 184 – 201 .
  • Cantarel , B. L. , Coutinho , P. M. , Rancurel , C. , Bernard , T. , Lombard , V. and Henrissat , B. 2009 . The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics . Nucleic Acids Res. , 37 : D233 – D238 .
  • Luley-Goedl , C. and Nidetzky , B. 2010 . Carbohydrate synthesis by disaccharide phosphorylases: reactions, catalytic mechanisms and application in the glycosciences . Biotechnol. J. , 5 : 1324 – 1338 .
  • Nidetzky , B. , Griessler , R. , Schwarz , A. and Splechtna , B. 2004 . Cellobiose phosphorylase from Cellulomonas uda: gene cloning and expression in Escherichia coli, and application of the recombinant enzyme in a ‘glycosynthase-type’ reaction . J. Mol. Catal. B Enzym. , 29 : 241 – 248 .
  • Suzuki , M. , Kaneda , K. , Nakai , Y. , Kitaoka , M. and Taniguchi , H. 2009 . Synthesis of cellobiose from starch by the successive actions of two phosphorylases . New Biotechnol. , 26 : 137 – 142 .
  • Hiraishi , M. , Igarashi , K. , Kimura , S. , Wada , M. , Kitaoka , M. and Samejima , M. 2009 . Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase . Carbohydr. Res. , 344 : 2468 – 2473 .
  • Nishimoto , M. and Kitaoka , M. 2009 . One-pot enzymatic production of β-D-galactopyranosyl-(1,3)-2-acetamido-2-deoxy-D-galactose (galacto-N-biose) from sucrose and 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine) . Carb. Res. , 344 : 2573 – 2576 .
  • McCarter , J. D. and Withers , S. G. 1994 . Mechanisms of enzymatic glycoside hydrolysis . Curr. Opin. Struct. Biol. , 4 : 885 – 892 .
  • Zechel , D. L. and Withers , S. G. 2001 . Dissection of nucleophilic and acid-base catalysis in glycosidases . Curr. Opin. Chem. Biol. , 5 : 643 – 649 .
  • Lang , M. , Kamrat , T. and Nidetzky , B. 2006 . Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable β-glycosylhydrolase CelB from Pyrococcus furiosus . Biotechnol. Bioeng. , 95 : 1093 – 1100 .
  • Yoon , J. H. and McKenzie , D. 2005 . A comparison of the activities of three β-galactosidases in aqueous-organic solvent mixtures . Enzyme Microb. Technol. , 36 : 439 – 446 .
  • Rakić , B. and Withers , S. G. 2009 . Recent developments in glycoside synthesis with glycosynthases and thioglycoligases . Aust. J. Chem. , 62 : 510 – 520 .
  • Shaikh , F. A. and Withers , S. G. 2008 . Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis . Cell Biol. , 86 : 169 – 177 .
  • Mackenzie , L. F. , Wang , Q. , Warren , R. A.J. and Withers , S. G. 1998 . Glycosynthases: mutant glycosidases for oligosaccharide synthesis . J. Am. Chem. Soc. , 120 : 5583 – 5584 .
  • Mayer , C. , Zechel , D. L. , Reid , S. P. , Warren , R. A. and Withers , S. G. 2000 . The E358S mutant of Agrobacterium sp. β-glucosidase is a greatly improved glycosynthase . FEBS Lett. , 466 : 40 – 44 .
  • Hancock , S. M. , Vaughan , M. D. and Withers , S. G. 2006 . Engineering of glycosidases and glycosyltransferases . Curr. Opin. Chem. Biol. , 10 : 509 – 519 .
  • Honda , Y. and Kitaoka , M. 2006 . The first glycosynthase derived from an inverting glycoside hydrolase . J. Biol. Chem. , 281 : 1426 – 1431 .
  • Honda , Y. , Fushinobu , S. , Hidaka , M. , Wakagi , T. , Shoun , H. , Taniguchi , H. and Kitaoka , M. 2008 . Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase . Glycobiology , 18 : 325 – 330 .
  • Wada , J. , Honda , Y. , Nagae , M. , Kato , R. , Wakatsuki , S. , Katayama , T. , Taniguchi , H. , Kumagai , H. , Kitaoka , M. and Yamamoto , K. 2008 . 1,2-α-L-fucosynthase: a glycosynthase derived from an inverting α-glycosidase with an unusual reaction mechanism . FEBS Lett. , 582 : 3739 – 3743 .
  • Hidaka , M. , Fushinobu , S. , Honda , Y. , Wakagi , T. , Shoun , H. and Kitaoka , M. 2010 . Structural explanation for the acquisition of glycosynthase activity . J. Biochem. , 147 : 237 – 244 .
  • Hehre , E. J. , Brewer , C. F. and Genghof , D. S. 1979 . Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of β-amylase on α- and β-maltosyl fluoride . J. Biol. Chem. , 254 : 5942 – 5960 .
  • Jahn , M. , Marles , J. , Warren , R. A. and Withers , S. G. 2003 . Thioglycoligases: mutant glycosidases for thioglycoside synthesis . Angew. Chem. Int. Ed. Engl. , 42 : 352 – 354 .
  • Müllegger , J. , Jahn , M. , Chen , H.-M. , Warren , R. A. and Withers , S. G. 2005 . Engineering of a thioglycoligase: randomized mutagenesis of the acid-base residue leads to the identification of improved catalysts . Protein Eng. Des. Sel. , 18 : 33 – 40 .
  • Kim , Y. W. , Lovering , A. L. , Chen , H. , Kantner , T. , McIntosh , L. P. , Strynadka , N. C. and Withers , S. G. 2006 . Expanding the thioglycoligase strategy to the synthesis of α-linked thioglycosides allows structural investigation of the parent enzyme/substrate complex . J. Am. Chem. Soc. , 128 : 2202 – 2203 .
  • Kim , Y. W. , Chen , H. , Kim , J. H. and Withers , S. G. 2006 . Catalytic properties of a mutant β-galactosidase from Xanthomonas manihotis engineered to synthesize galactosyl-thio-β-1,3 and -β-1,4-glycosides . FEBS Lett. , 580 : 4377 – 4381 .
  • Müllegger , J. , Chen , H.-M. , Warren , R. A. and Withers , S. G. 2006 . Glycosylation of a neoglycoprotein by using glycosynthase and thioglycoligase approaches: the generation of a thioglycoprotein . Angew. Chem. Int. Ed. Engl. , 45 : 2585 – 2588 .
  • Kim , Y. W. , Chen , H.-M. , Kim , J. H. , Müllegger , J. , Mahuran , D. and Withers , S. G. 2007 . Thioglycoligase-based assembly of thiodisaccharides: Screening as β-galactosidase inhibitors . ChemBioChem , 8 : 1495 – 1499 .
  • Armstrong , Z. , Reitinger , S. , Kantner , T. and Withers , S. G. 2010 . Enzymatic thioxyloside synthesis: characterization of thioglycoligase variants identified from a site-saturation mutagenesis library of Bacillus circulans xylanase . ChemBioChem , 11 : 533 – 538 .
  • Jahn , M. , Chen , H. , Müllegger , J. , Marles , J. , Warren , R. A. and Withers , S. G. 2004 . Thioglycosynthases: double mutant glycosidases that serve as scaffolds for thioglycoside synthesis . Chem. Commun. , : 274 – 275 .
  • Kim , Y. W. , Zhang , R. , Chen , H. and Withers , S. G. 2010 . O-glycoligases, a new category of glycoside bond-forming mutant glycosidases, catalyse facile syntheses of isoprimeverosides . Chem. Commun. , : 8725 – 8727 .
  • Arnold , F. H. and Volkov , A. A. 1999 . Directed evolution of biocatalysts . Curr. Opin. Chem. Biol. , 3 : 54 – 59 .
  • Arnold , F. H. 2001 . Combinatorial and computational challenges for biocatalyst design . Nature , 409 : 253 – 257 .
  • Kittl , R. and Withers , S. G. 2010 . New approaches to enzymatic glycoside synthesis through directed evolution . Carb. Res. , 345 : 1272 – 1279 .
  • Koné , F. M. , Le Béchec , M. , Sine , J. P. , Dion , M. and Tellier , C. 2009 . Digital screening methodology for the directed evolution of transglycosidases . Protein Eng. Des. Sel. , 22 : 37 – 44 .
  • Mayer , C. , Jakeman , D. L. , Mah , M. , Karjala , G. , Gal , L. , Warren , R. A.J. and Withers , S. G. 2001 . Directed evolution of new glycosynthases from Agrobacterium β-glucosidase: a general screen to detect enzymes for oligosaccharide synthesis . Chem. Biol. , 8 : 437 – 443 .
  • Kim , Y.-W. , Lee , S. S. , Warren , R. A.J. and Withers , S. G. 2004 . Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire . J. Biol. Chem. , 279 ( 41 ) : 42787 – 42793 .
  • Kempton , J. B. and Withers , S. G. 1992 . Mechanism of Agrobacterium β-glucosidase: kinetic studies . Biochemistry , 31 : 9961 – 9969 .
  • Kwan , D. H. , Chen , H.-M. , Ratananikom , H. , Hancock , S. M. , Watanabe , Y. , Kongsaeree , P. T. , Samuels , A. L. and Withers , S. G. 2011 . Self-immobilizing fluorogenic imaging agents of enzyme activity . Angew. Chem. Int. Ed. Engl. , 50 : 300 – 303 .
  • Yang , G. and Withers , S. G. 2009 . Ultrahigh-throughput FACS-based screening for directed enzyme evolution . ChemBioChem , 10 : 2704 – 2715 .
  • Hancock , S. M. , Tarling , C. A. and Withers , S. G. 2008 . High-throughput screening of cell lysates for ganglioside synthesis . Anal. Biochem. , 382 : 48 – 54 .
  • Hoetzl , S. , Sprong , H. and van Meer , G. 2007 . The way we view cellular (glyco)sphingolipids . J. Neurochem. , 103 : 3 – 13 .
  • Mishra , S. and Joshi , P. G. 2007 . Lipid raft heterogeneity: an enigma . J. Neurochem. , 103 : 135 – 142 .
  • Wyman , M. P. and Schneiter , R. 2008 . Lipid signalling in disease . Nat. Rev. Mol. Cell Biol. , 9 : 162 – 176 .
  • De Rosa , M. , Park , H.-J. , Myvaganum , M. , Binnington , B. , Lund , N. , Branch , D. R. and Lingwood , C. A. 2008 . The medium is the message: glycosphingolipids and their soluble analogues . Biochim. Biophys. Acta. , 1780 : 347 – 352 .
  • Ito , M. and Yamagata , T. 1986 . A novel glycosphingolipid-degrading enzyme cleaves the linkage between the oligosaccharide and ceramide of neutral and acidic glycosphingolipids . J. Biol. Chem. , 261 : 14278 – 14282 .
  • Hancock , S. M. , Rich , J. R. , Caines , M. E. , Strynadka , N. C. and Withers , S. G. 2009 . Designer enzymes for glycosphingolipid synthesis by directed evolution . Nat. Chem. Biol. , 5 : 508 – 514 .
  • Baker , K. , Bleczinski , C. , Lin , H. , Salazar-Jimenez , G. , Sengupta , D. , Krane , S. and Cornish , V. W. 2002 . Chemical complementation: a reaction-independent genetic assay for enzyme catalysis . Proc. Natl. Acad. Sci. USA , 99 : 16537 – 16542 .
  • Lin , H. , Tao , H. and Cornish , V. W. 2004 . Directed evolution of a glycosynthase via chemical complementation . J. Am. Chem. Soc. , 126 : 15051 – 15059 .
  • Lin , H. , Abida , W. M. , Sauer , R. T. and Cornish , V. W. 2000 . Dexamethasone–methotrexate: an efficient chemical inducer of protein dimerization in vivo . J. Am. Chem. Soc. , 122 : 4247 – 4248 .
  • Ben-David , A. , Shoham , G. and Shoham , Y. 2008 . A universal screening assay for glycosynthases: directed evolution of glycosynthase XynB2(E335G) suggests a general path to enhance activity . Chem. Biol. , 15 : 546 – 551 .
  • Ben-David , A. , Bravman , T. , Balazs , Y. S. , Czjzek , M. , Schomburg , D. , Shoham , G. and Shoham , Y. 2007 . Glycosynthase activity of Geobacillus stearothermophilus GH52 β-xylosidase: efficient synthesis of xylooligosaccharides from α-D-xylopyranosyl fluoride through a conjugated reaction . ChemBioChem , 8 : 2145 – 2151 .
  • Williams , G. J. , Zhang , C. and Thorson , J. S. 2007 . Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution . Nat. Chem. Biol. , 3 : 657 – 662 .
  • Salas , M. and Méndez , C. 2007 . Engineering the glycosylation of natural products in actinomycetes . Trends Microbiol. , 15 : 219 – 232 .
  • Griffith , B. R. , Langenhan , J. M. and Thorson , J. S. 2005 . ‘Sweetening’ natural products via glycorandomization . Curr. Opin. Biotechnol. , 16 : 622 – 630 .
  • Yang , M. , Proctor , M. R. , Bolam , D. N. , Errey , J. C. , Field , R. A. , Gilbert , H. J. and Davis , B. G. 2005 . Probing the breadth of macrolide glycosyltransferases: in vitro remodeling of a polyketide antibiotic creates active bacterial uptake and enhances potency . J. Am. Chem. Soc. , 127 : 9336 – 9337 .
  • Collier , A. C. , Tingle , M. D. , Keelan , J. A. , Paxton , J. W. and Mitchell , M. D. 2000 . A highly sensitive fluorescent microplate method for the determination of UDP-glucuronosyl transferase activity in tissues and placental cell lines . Drug Metab. Dispos. , 28 : 1184 – 1186 .
  • Aharoni , A. , Thieme , K. , Chiu , C. P.C. , Buchini , S. , Lairson , L. L. , Chen , H. , Strynadka , N. C.J. , Wakarchuk , W. W. and Withers , S. G. 2006 . High-throughput screening methodology for the directed evolution of glycosyltransferases . Nat. Methods , 3 : 609 – 614 .
  • Harduin-Lepers , A. , Vallejo-Ruiz , V. , Krzewinski-Recchi , M. A. , Samyn-Petit , B. , Julien , S. and Delannoy , P. 2001 . The human sialyltransferase family . Biochimie , 83 : 727 – 737 .
  • Chiu , C. P. , Watts , A. G. , Lairson , L. L. , Gilbert , M. , Lim , D. , Wakarchuk , W. W. , Withers , S. G. and Strynadka , N. C. 2004 . Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog . Nat. Struct. Mol. Biol. , 11 : 163 – 170 .
  • Audry , M. , Jeanneau , C. , Imberty , A. , Harduin-Lepers , A. , Delannoy , P. and Breton , C. 2011 . Current trends in the structure–activity relationships of sialyltransferases . Glycobiology , 21 : 716 – 726 .
  • Schmidt-Dannert , C. and Arnold , F. H. 1999 . Directed evolution of industrial enzymes . Trends Biotechnol. , 17 : 135 – 136 .
  • Yang , G. , Rich , J. R. , Gilbert , M. , Wakarchuk , W. W. , Feng , Y. and Withers , S. G. 2010 . Fluorescence activated cell sorting as a general ultra-high-throughput screening method for directed evolution of glycosyltransferases . J. Am. Chem. Soc. , 132 : 10570 – 10577 .
  • Gilbert , M. , Brisson , J. R. , Karwaski , M. F. , Michiewicz , J. , Cunningham , A. M. , Wu , Y. , Young , N. M. and Wakarchuk , W. W. 2000 . Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H and 13C NMR analysis . J. Biol. Chem. , 27 : 3896 – 3906 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.