801
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Recent Progress in Enzymatic Synthesis of Sugar Nucleotides

Pages 535-552 | Received 19 Jan 2012, Accepted 17 Apr 2012, Published online: 30 Aug 2012

REFERENCES

  • Bertozzi , C. R. and Kiessling , L. L. 2001 . Chemical glycobiology . Science , 291 : 2357 – 2364 .
  • Seeberger , P. H. and Werz , D. B. 2005 . Automated synthesis of oligosaccharides as a basis for drug discovery . Nat. Rev. Drug Discovery , 4 : 751 – 763 .
  • Lopez-Prados , J. and Martin-Lomas , M. 2005 . Inositolphosphoglycan mediators: an effective synthesis of the conserved linear GPI anchor structure . J. Carbohydr. Chem. , 24 : 393 – 414 .
  • Werz , D. B. , Ranzinger , R. , Herget , S. , Adibekian , A. , von der Lieth , C. W. and Seeberger , P. H. 2007 . Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis . ACS Chem. Biol. , 2 : 685 – 691 .
  • Palcic , M. M. 1999 . Biocatalytic synthesis of oligosaccharides . Curr. Opin. Biotechnol. , 10 : 616 – 624 .
  • Boltje , T. J. , Kim , J. H. , Park , J. and Boons , G. J. 2010 . Chiral-auxiliary-mediated 1,2-cis-glycosylations for the solid-supported synthesis of a biologically important branched alpha-glucan . Nat. Chem , 2 : 552 – 557 .
  • Chokhawala , H. A. , Huang , S. , Lau , K. , Yu , H. , Cheng , J. , Thon , V. , Hurtado-Ziola , N. , Guerrero , J. A. , Varki , A. and Chen , X. 2008 . Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides . ACS Chem. Biol. , 3 : 567 – 576 .
  • Chokhawala , H. A. , Cao , H. , Yu , H. and Chen , X. 2007 . Enzymatic synthesis of fluorinated mechanistic probes for sialidases and sialyltransferases . J. Am. Chem. Soc. , 129 : 10630 – 10631 .
  • Thibodeaux , C. J. , Melancon , C. E., 3rd and Liu , H. W. 2008 . Natural-product sugar biosynthesis and enzymatic glycodiversification . Angew. Chem., Int. Ed. , 47 : 9814 – 9859 .
  • Varki , A. 1999 . Essentials of Glycobiology , New York : Cold Spring Harbor Laboratory Press .
  • Wagner , G. K. , Pesnot , T. and Field , R. A. 2009 . A survey of chemical methods for sugar-nucleotide synthesis . Nat. Prod. Rep , 26 : 1172 – 1194 .
  • Bulter , T. and Elling , L. 1999 . Enzymatic synthesis of nucleotide sugars . Glycoconjugate J. , 16 : 147 – 159 .
  • Tan , A. W.H . 1979 . A simplified method for the preparation of pure UDP[14C]glucose . Biochim. Biophys. Acta , 582 : 543 – 547 .
  • Chen , X. , Fang , J. W. , Zhang , J. B. , Liu , Z. Y. , Shao , J. , Kowal , P. , Andreana , P. and Wang , P. G. 2001 . Sugar nucleotide regeneration beads (superbeads): a versatile tool for the practical synthesis of oligosaccharides . J. Am. Chem. Soc. , 123 : 2081 – 2082 .
  • Zervosen , A. , Stein , A. , Adrian , H. and Elling , L. 1996 . Combined enzymatic synthesis of nucleotide (deoxy) sugars from sucrose and nucleoside monophosphates . Tetrahedron , 52 : 2395 – 2404 .
  • Chen , X. , Zhang , J. B. , Kowal , P. , Liu , Z. , Andreana , P. R. , Lu , Y. Q. and Wang , P. G. 2001 . Transferring a biosynthetic cycle into a productive Escherichia coli strain: large-scale synthesis of galactosides . J. Am. Chem. Soc. , 123 : 8866 – 8867 .
  • Drake , R. R. , Evans , R. K. , Wolf , M. J. and Haley , B. E. 1989 . Synthesis and properties of 5-azido-UDP-glucose - development of photoaffinity probes for nucleotide diphosphate sugar binding-sites . J. Biol. Chem. , 264 : 11928 – 11933 .
  • Drake , R. R. , Evans , R. K. and Haley , B. E. 1988 . Synthesis and properties of 5-azido-UDP-glucose, an active-site directed photoaffinity probe . FASEB J. , 2 : A1025 – A1025 .
  • Ma , X. Y. and Stockigt , J. 2001 . High yielding one-pot enzyme-catalyzed synthesis of UDP-glucose in gram scales . Carbohydr. Res. , 333 : 159 – 163 .
  • Lee , H. C. , Lee , S. D. , Sohng , J. K. and Liou , K. 2004 . One-pot enzymatic synthesis of UDP-D-glucose from UMP and glucose-1-phosphate using an ATP regeneration system . J. Biochem. Mol. Biol , 37 : 503 – 506 .
  • Bulter , T. and Elling , L. 2000 . Enzymatic synthesis of UDP-galactose on a gram scale . J. Mol. Catal. B: Enzym. , 8 : 281 – 284 .
  • Zhang , J. B. , Kowal , P. , Chen , X. and Wang , P. G. 2003 . Large-scale synthesis of globotriose derivatives through recombinant E. coli . Org. Biomol. Chem , 1 : 3048 – 3053 .
  • Chen , X. , Liu , Z. Y. , Zhang , J. B. , Zhang , W. , Kowal , P. and Wang , P. G. 2002 . Reassembled biosynthetic pathway for large-scale carbohydrate synthesis: alpha-Gal epitope producing “superbug” . ChemBioChem , 3 : 47 – 53 .
  • Liu , Z. Y. , Zhang , J. B. , Chen , X. and Wang , P. G. 2002 . Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose beads . ChemBioChem , 3 : 348 – 355 .
  • Hoffmeister , D. , Yang , J. , Liu , L. and Thorson , J. S. 2003 . Creation of the first anomeric D/L-sugar kinase by means of directed evolution . Proc. Natl. Acad. Sci. U. S. A. , 100 : 13184 – 13189 .
  • Yang , J. , Fu , X. , Jia , Q. , Shen , J. , Biggins , J. B. , Jiang , J. , Zhao , J. , Schmidt , J. J. , Wang , P. G. and Thorson , J. S. 2003 . Studies on the substrate specificity of Escherichia coli galactokinase . Org. Lett. , 5 : 2223 – 2226 .
  • Yang , J. , Liu , L. and Thorson , J. S. 2004 . Structure-based enhancement of the first anomeric glucokinase . ChemBioChem , 5 : 992 – 996 .
  • Yang , J. , Fu , X. , Liao , J. , Liu , L. and Thorson , J. S. 2005 . Structure-based engineering of E. coli galactokinase as a first step toward in vivo glycorandomization . Chem. Biol , 12 : 657 – 664 .
  • Moretti , R. , Chang , A. , Peltier-Pain , P. , Bingman , C. A. , Phillips , G. N. and Thorson , J. S. 2011 . Expanding the nucleotide and sugar-1-phosphate promiscuity of nucleotidyltransferase RmlA via directed evolution . J. Biol. Chem. , 286 : 13235 – 13243 .
  • Wehrli , S. , Reynolds , R. and Segal , S. 2007 . Evidence for function of UDP galactose pyrophosphorylase in mice with absent galactose-l-phosphate uridyltransferase . Mol. Genet. Metab. , 91 : 191 – 194 .
  • Fang , J. W. , Li , J. , Chen , X. , Zhang , Y. N. , Wang , J. Q. , Guo , Z. M. , Zhang , W. , Yu , L. B. , Brew , K. and Wang , P. G. 1998 . Highly efficient chemoenzymatic synthesis of alpha-galactosyl epitopes with a recombinant alpha(1→3)-galactosyltransferase . J. Am. Chem. Soc. , 120 : 6635 – 6638 .
  • Fang , J. W. , Chen , X. , Zhang , W. , Janczuk , A. and Wang , P. G. 2000 . Synthesis of alpha-Gal epitope derivatives with a galactosyltransferase-epimerase fusion enzyme . Carbohydr. Res. , 329 : 873 – 878 .
  • Chen , X. , Liu , Z. , Wang , J. Q. , Fang , J. W. , Fan , H. N. and Wang , P. G. 2000 . Changing the donor cofactor bovine alpha1,3-galactosyltransferase by fusion with UDP-galactose 4-epimerase - more efficient biocatalysis for synthesis of alpha-Gal epitopes . J. Biol. Chem. , 275 : 31594 – 31600 .
  • Barreteau , H. , Kovac , A. , Boniface , A. , Sova , M. , Gobec , S. and Blanot , D. 2008 . Cytoplasmic steps of peptidoglycan biosynthesis . FEMS Microbiol. Rev. , 32 : 168 – 207 .
  • Milewski , S. , Gabriel , L. and Olchowy , J. 2006 . Enzymes of UDP-GlcNAc biosynthesis in yeast . Yeast , 23 : 1 – 14 .
  • Ullrich , J. and Vanputten , J. P.M. 1995 . Identification of the gonococcal glmu gene encoding the enzyme N-acetylglucosamine 1-phosphate uridyltransferase involved in the synthesis of UDP-GlcNAc . J. Bacteriol. , 177 : 6902 – 6909 .
  • Mengin-Lecreulx , D. and van Heijenoort , J. 1993 . Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli . J. Bacteriol. , 175 : 6150 – 6157 .
  • Feng , F. , Okuyama , K. , Niikura , K. , Ohta , T. , Sadamoto , R. , Monde , K. , Noguchi , T. and Nishimura , S. I. 2004 . Chemo-enzymatic synthesis of fluorinated 2-N-acetamidosugar nucleotides using UDP-GlcNAc pyrophosphorylase . Org. Biomol. Chem , 2 : 1617 – 1623 .
  • Guan , W. , Cai , L. , Fang , J. , Wu , B. and Wang , P. G. 2009 . Enzymic synthesis of UDP-GlcNAc/UDP-GalNAc analogs using N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) . Chem. Commun. , : 6976 – 6978 .
  • Zhao , G. , Guan , W. , Cai , L. and Wang , P. G. 2010 . Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose . Nat. Protoc. , 5 : 636 – 646 .
  • Nishimoto , M. and Kitaoka , M. 2007 . Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum . Appl. Environ. Microbiol , 73 : 6444 – 6449 .
  • Cai , L. , Guan , W. , Kitaoka , M. , Shen , J. , Xia , C. , Chen , W. and Wang , P. G. 2009 . A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase . Chem. Commun , : 2944 – 2946 .
  • Cai , L. , Guan , W. , Wang , W. , Zhao , W. , Kitaoka , M. , Shen , J. , O’Neil , C. and Wang , P. G. 2009 . Substrate specificity of N-acetylhexosamine kinase towards N-acetylgalactosamine derivatives . Bioorg. Med. Chem. Lett. , 19 : 5433 – 5435 .
  • Cai , L. , Ban , L. , Guan , W. , Mrksich , M. and Wang , P. G. 2011 . Enzymatic synthesis and properties of uridine-5’-O-(2-thiodiphospho)-N-acetylglucosamine . Carbohydr. Res. , 346 : 1576 – 1580 .
  • Chen , Y. , Thon , V. , Li , Y. H. , Yu , H. , Ding , L. , Lau , K. , Qu , J. Y. , Hie , L. and Chen , X. 2011 . One-pot three-enzyme synthesis of UDP-GlcNAc derivatives . Chem. Commun , 47 : 10815 – 10817 .
  • Shao , J. , Zhang , J. B. , Kowal , P. and Wang , P. G. 2002 . Donor substrate regeneration for efficient synthesis of globotetraose and isoglobotetraose . Appl. Environ. Microbiol. , 68 : 5634 – 5640 .
  • Shao , J. , Zhang , J. B. , Nahalka , J. and Wang , P. G. 2002 . Biocatalytic synthesis of uridine 5’-diphosphate N-acetylglucosamine by multiple enzymes co-immobilized on agarose beads . Chem. Commun. , : 2586 – 2587 .
  • Szumilo , T. , Zeng , Y. C. , Pastuszak , I. , Drake , R. , Szumilo , H. and Elbein , A. D. 1996 . Purification to homogeneity and properties of UDP-GlcNAc (GalNAc) pyrophosphorylase . J. Biol. Chem. , 271 : 13147 – 13154 .
  • Peneff , C. , Ferrari , P. , Charrier , V. , Taburet , Y. , Monnier , C. , Zamboni , V. , Winter , J. , Harnois , M. , Fassy , F. and Bourne , Y. 2001 . Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture . EMBO J. , 20 : 6191 – 6202 .
  • Guan , W. , Cai , L. and Wang , P. G. 2010 . Highly efficient synthesis of UDP-GalNAc/GlcNAc analogues with promiscuous recombinant human UDP-GalNAc pyrophosphorylase AGX1 . Chem.-Eur. J. , 16 : 13343 – 13345 .
  • Bernatchez , S. , Szymanski , C. M. , Ishiyama , N. , Li , J. J. , Jarrell , H. C. , Lau , P. C. , Berghuis , A. M. , Young , N. M. and Wakarchuk , W. W. 2005 . Single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in . Campylobacter jejuni , 280 : 4792 – 4802 . J. Biol. Chem.
  • Roper , J. R. , Guther , M. L.S. , Milne , K. G. and Ferguson , M. A.J. 2002 . Galactose metabolism is essential for the African sleeping sickness parasite Trypanosoma brucei . Proc. Natl. Acad. Sci. U. S. A. , 99 : 5884 – 5889 .
  • Thoden , J. B. , Wohlers , T. M. , Fridovich-Keil , J. L. and Holden , H. M. 2001 . Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site . J. Biol. Chem. , 276 : 15131 – 15136 .
  • B , W. D. and Hogness , D. 1964 . The enzymes of the galactose operon in Escherichia coli. I. Purification and characterization of uridine diphosphogalactose 4-epimerase . J. Biol. Chem. , 239 : 2469 – 2481 .
  • Ishiyama , N. , Creuzenet , C. , Lam , J. S. and Berghuis , A. M. 2004 . Crystal structure of WbpP, a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa: substrate specificity in UDP-hexose 4-epimerases . J. Biol. Chem. , 279 : 22635 – 22642 .
  • Piller , F. , Eckhardt , A. E. and Hill , R. L. 1982 . The preparation of UDP-N-acetylgalactosamine from UDP-N-acetylglucosamine employing UDP-N-acetylglucosamine-4-epimerase . Anal. Biochem. , 127 : 171 – 177 .
  • Bulter , T. , Wandrey , C. and Elling , L. 1997 . Chemoenzymatic synthesis of UDP-N-acetyl-alpha-D-galactosamine . Carbohydr. Res. , 305 : 469 – 473 .
  • Sunthankar , P. , Pastuszak , I. , Rooke , A. , Elbein , A. D. , van de Rijn , I. , Canfield , W. M. and Drake , R. R. 1998 . Synthesis of 5-azido-UDP-N-acetylhexosamine photoaffinity analogs and radiolabeled UDP-N-acetylhexosamines . Anal. Biochem. , 258 : 195 – 201 .
  • Bourgeaux , V. , Piller , F. and Piller , V. 2005 . Two-step enzymatic synthesis of UDP-N-acetylgalactosamine . Bioorg. Med. Chem. Lett. , 15 : 5459 – 5462 .
  • Campbell , R. E. , Sala , R. F. , vandeRijn , I. V. and Tanner , M. E. 1997 . Properties and kinetic analysis of UDP-glucose dehydrogenase from group a streptococci - irreversible inhibition by UDP-chloroacetol . J. Biol. Chem. , 272 : 3416 – 3422 .
  • Campbell , R. E. and Tanner , M. E. 1997 . Uridine diphospho-alpha-D-gluco-hexodialdose: synthesis and kinetic competence in the reaction catalyzed by UDP-glucose dehydrogenase . Angew. Chem., Int. Ed. , 36 : 1520 – 1522 .
  • Sommer , B. J. , Barycki , J. J. and Simpson , M. A. 2004 . Characterization of human UDP-glucose dehydrogenase: Cys-276 is required for the second of two successive oxidations . J. Biol. Chem. , 279 : 23590 – 23596 .
  • Maxwell , E. S. , Kalckar , H. M. and Strominger , J. L. 1956 . Some properties of uridine diphosphoglucose dehydrogenase . Arch. Biochem. Biophys. , 65 : 2 – 10 .
  • Strominger , J. L. , Maxwell , E. S. , Axelrod , J. and Kalckar , H. M. 1956 . Enzymatic formation of urindine diphosphoglucuronic acid . J. Biol. Chem. , 224 : 79 – 90 .
  • Druzhinina , T. N. , Kusov , Y. Y. , Shibaev , V. N. and Kochetkov , N. K. 1975 . Interaction of uridine-diphosphate glucose with calf liver uridine-diphosphate glucose dehydrogenase: significance of hydroxyl groups at C-3, C-4 and C-6 of hexosyl residue . Biochim. Biophys. Acta. , 403 : 1 – 8 .
  • Druzhinina , T. N. , Kusov , Y. Y. , Shibaev , V. N. , Kochetkov , N. K. , Biely , P. , Kucar , S. and Bauer , S. 1975 . Uridine-diphosphate 2-deoxyglucose: chemical synthesis, enzymic oxidation and epimerization . Biochim. Biophys. Acta. , 381 : 301 – 307 .
  • Drake , R. R. , Zimniak , P. , Haley , B. E. , Lester , R. , Elbein , A. D. and Radominska , A. 1991 . Synthesis and characterization of 5-azido-UDP-glucuronic acid - a new photoaffinity probe for UDP-glucuronic acid-utilizing proteins . J. Biol. Chem. , 266 : 23257 – 23260 .
  • Ordman , A. B. and Kirkwood , S. 1977 . Mechanism of action of uridine diphosphoglucose dehydrogenase - evidence for an essential lysine residue at active-site . J. Biol. Chem. , 252 : 1320 – 1326 .
  • Ordman , A. B. and Kirkwood , S. 1977 . UDPglucose dehydrogenase kinetics and their mechanistic implications . Biochim. Biophys. Acta. , 481 : 25 – 32 .
  • Maor , B. P. , Griffith , C. L. , Ory , J. J. and Doering , T. L. 2004 . Biosynthesis of UDP-GlcA, a key metabolite for capsular polysaccharide synthesis in the pathogenic fungus . Cryptococcus neoformans , 381 : 131 – 136 . Biochem. J.
  • Oka , T. and Jigami , Y. 2006 . Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae . FEBS J. , 273 : 2645 – 2657 .
  • Harper , A. D. and Bar-Peled , M. 2002 . Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms . Plant Physiol. , 130 : 2188 – 2198 .
  • Bar-Peled , M. , Griffith , C. L. and Doering , T. L. 2001 . Functional cloning and characterization of a UDP-glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis . Proc. Natl. Acad. Sci. U.S.A. , 98 : 12003 – 12008 .
  • Gu , X. G. , Lee , S. G. and Bar-Peled , M. 2011 . Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase . Microbiology , 157 : 260 – 269 .
  • Sousa , S. A. , Moreira , L. M. , Wopperer , J. , Eberl , L. , Sa-Correia , I. and Leitao , J. H. 2007 . The Burkholderia cepacia bceA gene encodes a protein with phosphomannose isomerase and GDP-D-mannose pyrophosphorylase activities . Biochem. Biophys. Res. Commun. , 353 : 200 – 206 .
  • Mizanur , R. M. and Pohl , N. L.B. 2009 . Phosphomannose isomerase/GDP-mannose pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the synthesis of guanidinediphosphate-activated and mannose-containing sugar nucleotides . Org. Biomol. Chem. , 7 : 2135 – 2139 .
  • Preiss , J. and Greenber , E. 1967 . Enzymic synthesis of GDP-mannose-14C from mannose-14C . Anal. Biochem. , 18 : 464 – 471 .
  • Preiss , J. and Wood , E. 1964 . Sugar nucleotide reactions in arthrobacter. I. Guanosine diphosphate mannose pyrophosphorylase: purification and properties . J. Biol. Chem. , 239 : 3119 – 3126 .
  • Huang , G. L. , Liu , X. , Zhang , H. C. and Wang , P. G. 2006 . A facile two-step chemo-enzymatic synthesis of GDP-mannose . Lett. Org. Chem. , 3 : 668 – 669 .
  • Klaffke , W . 1995 . Synthesis of GDP-3-acetamido-3-deoxy-alpha-D-mannose and GDP-3-azido-3-deoxy-alpha-D-mannose . Carbohydr. Res. , 266 : 285 – 292 .
  • Jia , H. H. , Lu , F. P. , Li , Y. , Liu , X. G. , Liu , Y. H. , Wang , H. B. , Li , J. and Cao , Y. T. 2011 . Synthesis of GDP-mannose using coupling fermentation of recombinant Escherichia coli . Biotechnol. Lett. , 33 : 1145 – 1150 .
  • Sampaio , M. M. , Santos , H. and Boos , W. 2003 . Synthesis of GDP-mannose and mannosylglycerate from labeled mannose by genetically engineered Escherichia coli without loss of specific isotopic enrichment . Appl. Environ. Microbiol. , 69 : 233 – 240 .
  • Ma , B. , Simala-Grant , J. L. and Taylor , D. E. 2006 . Fucosylation in prokaryotes and eukaryotes . Glycobiology , 16 : 158r – 184r .
  • Tonetti , M. , Sturla , L. , Bisso , A. , Benatti , U. and DeFlora , A. 1996 . Synthesis of GDP-L-fucose by the human FX protein . J. Biol. Chem. , 271 : 27274 – 27279 .
  • Ren , Y. , Perepelov , A. V. , Wang , H. Y. , Zhang , H. , Knirel , Y. A. , Wang , L. and Chen , W. 2010 . Biochemical characterization of GDP-L-fucose de novo synthesis pathway in fungus Mortierella alpina . Biochem. Biophys. Res. Commun. , 391 : 1663 – 1669 .
  • Yi , W. , Liu , X. W. , Li , Y. H. , Li , J. J. , Xia , C. F. , Zhou , G. Y. , Zhang , W. P. , Zhao , W. , Chen , X. and Wang , P. G. 2009 . Remodeling bacterial polysaccharides by metabolic pathway engineering . Proc. Natl. Acad. Sci. U. S. A. , 106 : 4207 – 4212 .
  • Albermann , C. , Distler , J. and Piepersberg , W. 2000 . Preparative synthesis of GDP-beta-L-fucose by recombinant enzymes from enterobacterial sources . Glycobiology , 10 : 875 – 881 .
  • Byun , S. G. , Kim , M. D. , Lee , W. H. , Lee , K. J. , Han , N. S. and Seo , J. H. 2007 . Production of GDP-L-fucose, L-fucose donor for fucosyloligosaccharide synthesis, in recombinant Escherichia coli . Appl. Microbiol. Biotechnol. , 74 : 768 – 775 .
  • Mengeling , B. J. and Turco , S. J. 1999 . A high-yield, enzymatic synthesis of GDP-D-[H-3]Arabinose and GDP-L–[H-3]fucose . Anal. Biochem , 267 : 227 – 233 .
  • Coyne , M. J. , Reinap , B. , Lee , M. M. and Comstock , L. E. 2005 . Human symbionts use a host-like pathway for surface fucosylation . Science , 307 : 1778 – 1781 .
  • Wang , W. , Hu , T. S. , Frantom , P. A. , Zheng , T. Q. , Gerwe , B. , del Amo , D. S. , Garret , S. , Seidel , R. D. and Wu , P. 2009 . Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives . Proc. Natl. Acad. Sci. U. S. A. , 106 : 16096 – 16101 .
  • Karwaski , M. F. , Wakarchuk , W. W. and Gilbert , M. 2002 . High-level expression of recombinant Neisseria CMP-sialic acid synthetase in Escherichia coli . Protein Expression Purif , 25 : 237 – 240 .
  • Munster , A. K. , Eckhardt , M. , Potvin , B. , Muhlenhoff , M. , Stanley , P. and Gerardy-Schahn , R. 1998 . Mammalian cytidine 5’-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs . Proc. Natl. Acad. Sci. U. S. A. , 95 : 9140 – 9145 .
  • Yu , H. , Ryan , W. , Yu , H. and Chen , X. 2006 . Characterization of a bifunctional cytidine 5’-monophosphate N-acetylneuraminic acid synthetase cloned from Streptococcus agalactiae . Biotechnol. Lett , 28 : 107 – 113 .
  • Li , Y. H. , Yu , H. , Cao , H. Z. , Lau , K. , Muthana , S. , Tiwari , V. K. , Son , B. and Chen , X. 2008 . Pasteurella multocida sialic acid aldolase: a promising biocatalyst . Appl. Microbiol. Biotechnol. , 79 : 963 – 970 .
  • Gilbert , M. , Bayer , R. , Cunningham , A. M. , Defrees , S. , Gao , Y. H. , Watson , D. C. , Young , N. M. and Wakarchuk , W. W. 1998 . The synthesis of sialylated oligosaccharides using a CMP-Neu5Ac synthetase/sialyltransferase fusion . Nat. Biotechnol. , 16 : 769 – 772 .
  • Li , Y. , Yu , H. , Cao , H. , Muthana , S. and Chen , X. 2012 . Pasteurella multocida CMP-sialic acid synthetase and mutants of Neisseria meningitidis CMP-sialic acid synthetase with improved substrate promiscuity . Appl. Microbiol. Biotechnol. , 93 : 2411 – 2423 .
  • Yu , H. , Yu , H. , Karpel , R. and Chen , X. 2004 . Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases . Bioorg. Med. Chem. , 12 : 6427 – 6435 .
  • Chen , X. , Yu , H. , Yu , H. and Karpel , R. 2004 . Chemoenzymatic synthesis of CMP-sialic acid analogs and sialates using microbial enzymes . Glycobiology , 14 : 1086 – 1086 .
  • Yu , H. , Chokhawala , H. A. , Huang , S. S. and Chen , X. 2006 . One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities . Nat. Protoc , 1 : 2485 – 2492 .
  • Yu , H. , Huang , S. S. , Chokhawala , H. , Sun , M. C. , Zheng , H. J. and Chen , X. 2006 . Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity . Angew. Chem., Int. Ed. , 45 : 3938 – 3944 .
  • Yu , H. , Cao , H. Z. , Tiwari , V. K. , Li , Y. H. and Chen , X. 2011 . Chemoenzymatic synthesis of C8-modified sialic acids and related alpha 2-3- and alpha 2-6-linked sialosides . Bioorg. Med. Chem. Lett. , 21 : 5037 – 5040 .
  • Ding , L. , Yu , H. , Lau , K. , Li , Y. H. , Muthana , S. , Wang , J. R. and Chen , X. 2011 . Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives . Chem. Commun. , 47 : 8691 – 8693 .
  • Lau , K. , Yu , H. , Thon , V. , Khedri , Z. , Leon , M. E. , Tran , B. K. and Chen , X. 2011 . Sequential two-step multienzyme synthesis of tumor-associated sialyl T-antigens and derivatives . Org. Biomol. Chem. , 9 : 2784 – 2789 .
  • Muthana , M. M. , Qu , J. , Li , Y. , Zhang , L. , Yu , H. , Ding , L. , Malekan , H. and Chen , X. 2012 . Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP) . Chem. Commun. , 48 : 2728 – 2730 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.