302
Views
15
CrossRef citations to date
0
Altmetric
Reviews

In Situ Preactivation Strategies for the Expeditious Synthesis of Oligosaccharides: A Review

&
Pages 347-367 | Received 15 Apr 2014, Accepted 03 Jun 2014, Published online: 14 Jul 2014

REFERENCES

  • Dwek, R.A.; Butters, T.D.; Platt, F.M.; Zitzmann, N. Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug Discovery 2002, 1, 65.
  • Kilcoyne, M.; Joshi, L. Carbohydrates in therapeutics. Cardiovasc. Hematol. Agents Med. Chem. 2007, 5, 186.
  • Nogueira, C.M.; Parmanhan, B.R.; Farias, P.P.; Correa, A.G. The increasing importance of carbohydrates in medicinal chemistry. Rev. Virtual Quim. 2009, 1, 149.
  • Cipolla, L.; Araujo, A.C.; Bini, D.; Gabrielli, L.; Russo, L.; Shaikh, N. Discovery and design of carbohydrate-based therapeutics. Expert Opin. Drug Discovery 2010, 5, 721.
  • Bertran-Vicente, J.; Hackenberger, C.P. R. A supramolecular peptide synthesizer. Angew. Chem., Int. Ed. 2013, 52, 6140.
  • Tanaka, T.; Letsinger, R.L. Syringe method for stepwise chemical synthesis of oligonucleotides. Nucleic Acids Research 1982, 10, 3249.
  • Smoot, J.T.; Demchenko, A.V., Oligosaccharide synthesis: From conventional methods to modern expeditious strategies. In Advances in Carbohydrate Chemistry and Biochemistry, Derek, H., Ed. Academic Press: Washington, DC, 2009; Vol. 62, pp. 161.
  • Huang, X.; Wang, Z., Strategies in oligosaccharide synthesis. In Comprehensive Glycoscience, Kamerling, H., Ed. Elsevier: Oxford, 2007; pp 379–413.
  • Aoki, S.; Kondo, H.; Wong, C.-H. Glycosyl phosphites as glycosylation reagents. Methods Enzymol. 1994, 247, 193.
  • Backinowsky, L.V.; Abronina, P.I.; Shashkov, A.S.; Grachev, A.A.; Kochetkov, N.K.; Nepogodiev, S.A.; Stoddart, J.F. An efficient approach towards the convergent synthesis of “fully-carbohydrate” mannodendrimers. Chem. - Eur. J. 2002, 8, 4412.
  • Fraser-Reid, B.; Udodong, U.E.; Wu, Z.; Ottosson, H.; Merritt, J.R.; Rao, C.S.; Roberts, C.; Madsen, R. n-Pentenyl glycosides in organic chemistry: A contemporary example of serendipity. Synlett 1992, 927.
  • Demchenko, A.; Boons, G.-J. A highly convergent synthesis of a hexasaccharide derived from the oligosaccharide of group B type III Streptococcus. Tetrahedron Lett. 1997, 38, 1629.
  • Demchenko, A.V.; Boons, G.-J. A highly convergent synthesis of a complex oligosaccharide derived from group B type III Streptococcus. J. Org. Chem. 2001, 66, 2547.
  • Plante, O.J.; Palmacci, E.R.; Seeberger, P.H. Automated solid-phase synthesis of oligosaccharides. Science 2001, 291, 1523.
  • Yamago, S.; Yamada, T.; Hara, O.; Ito, H.; Mino, Y.; Yoshida, J.-i. A new, iterative strategy of oligosaccharide synthesis based on highly reactive β-bromoglycosides derived from selenoglycosides. Org. Lett. 2001, 3, 3867.
  • Mehta, S.; Pinto, B.M. Novel glycosidation methodology. The use of phenyl selenoglycosides as glycosyl donors and acceptors in oligosaccharide synthesis. J. Org. Chem. 1993, 58, 3269.
  • Mehta, S.; Pinto, B.M. Phenylselenoglycosides as novel, versatile glycosyl donors. Selective activation over thioglycosides. Tetrahedron Lett. 1991, 32, 4435.
  • Zuurmond, H.M.; van der Meer, P.H.; van der Klein, P.A. M.; van der Marel, G.A.; van Boom, J.H. Iodonium-promoted glycosylations with phenyl selenoglycosides. J. Carbohydr. Chem. 1993, 12, 1091.
  • Baeschlin, D.K.; Chaperon, A.R.; Charbonneau, V.; Green, L.G.; Ley, S.V.; Lucking, U.; Walther, E. Rapid assembly of oligosaccharides: total synthesis of a glycosylphosphatidylinositol anchor of Trypanosoma brucei. Angew. Chem., Int. Ed. 1999, 37, 3423.
  • Demchenko, A.V.; Kamat, M.N.; De Meo, C. S-benzoxazolyl (SBox) glycosides in oligosaccharide synthesis: Novel glycosylation approach to the synthesis of β-D-glucosides, β-D-galactosides, and α-D-mannosides. Synlett 2003, 1287.
  • Demchenko, A.V.; Malysheva, N.N.; De Meo, C. S-Benzoxazolyl (SBox) glycosides as novel, versatile glycosyl donors for stereoselective 1,2-cis glycosylation. Org. Lett. 2003, 5, 455.
  • Demchenko, A.V.; Pornsuriyasak, P.; De Meo, C.; Malysheva, N.N. Potent, versatile, and stable: thiazolyl thioglycosides as glycosyl donors. Angew. Chem., Int. Ed. 2004, 43, 3069.
  • Pornsuriyasak, P.; Demchenko, A.V. Glycosyl thioimidates in a highly convergent one-pot strategy for oligosaccharide synthesis. Tetrahedron: Asymmetry 2005, 16, 433.
  • Kochetkov, N.K.; Malysheva, N.N.; Klimov, E.M.; Demchenko, A.V. Synthesis of polysaccharides with 1,2-cis-glycosidic linkages by trityl-thiocyanate polycondensation. Stereoregular α-(1→6)-D-glucan. Tetrahedron Lett. 1992, 33, 381.
  • Codée, J.D. C.; van den Bos, L.J.; Litjens, R.E. J. N.; Overkleeft, H.S.; Van Boom, J.H.; van der Marel, G.A. Sequential one-pot glycosylations using 1-hydroxyl and 1-thiodonors. Org. Lett. 2003, 5, 1947.
  • Codée, J.D. C.; Litjens, R.E. J. N.; den Heeten, R.; Overkleeft, H.S.; van Boom, J.H.; van derMarel, G.A. Ph2SO/Tf2O: A powerful promotor system in chemoselective glycosylations using thioglycosides. Org. Lett. 2003, 5, 1519.
  • Hanessian, S.; Huynh, H.K.; Reddy, G.V.; Duthaler, R.O.; Katopodis, A.; Streiff, M.B.; Kinzy, W.; Oehrlein, R. Synthesis of Gal determinant epitopes, their glycomimetic variants, and trimeric clusters-relevance to tumor associated antigens and to discordant xenografts. Tetrahedron 2001, 57, 3281.
  • Lou, B.; Eckhardt, E.; Hanessian, S. Oligosaccharide synthesis by selective anomeric activation with MOP- and TOPCAT-leaving groups. In Preparative Carbohydrate Chemistry, Dekker: New York, 1997; pp 449.
  • Lou, B.; Reddy, G.V.; Wang, H.; Hanessian, S. Glycoside and oligosaccharide synthesis with unprotected glycosyl donors based on the remote activation concept. In Preparative Carbohydrate Chemistry, Dekker: New York, 1997; pp 389.
  • Nitz, M.; Bundle, D.R. Glycosyl halides in oligosaccharides synthesis. In Glycoscience: Chemistry and Chemical Biology I-III. Springer-Verlag: Berlin, 2001; pp 1497.
  • Igarashi, K. The Koenigs-Knorr reaction. Adv. Carbohydr. Chem. Biochem. 1977, 34, 243.
  • Schmidt, R.R.; Jung, K.-H. Trichloroacetimidates. In Carbohydrates in Chemistry and Biology, Wiley-VCH Verlag GmbH: Weinheim, 2000; pp 5.
  • Ziegler, T.; Eckhardt, E.; Birault, V. Synthetic studies toward pyruvate acetal containing saccharides. Synthesis of the carbohydrate part of the Mycobacterium smegmatis pentasaccharide glycolipid and fragments thereof for the preparation of neoantigens. J. Org. Chem. 1993, 58, 1090.
  • Yamada, H.; Harada, T.; Takahashi, T. Synthesis of an Elicitor-active hexaglucoside analog by a one-pot, two-step glycosidation procedure. J. Am. Chem. Soc. 1994, 116, 7919.
  • Nicolaou, K.C.; Ueno, H. Oligosaccharide synthesis from glycosyl fluorides and sulfides. In Preparative Carbohydrate Chemistry, Dekker: New York, 1997; pp 313.
  • Mukaiyama, T. Explorations into new reaction chemistry. Angew. Chem., Int. Ed. 2004, 43, 5590.
  • Garegg, P.J. Thioglycosides as glycosyl donors in oligosaccharide synthesis. Adv. Carbohydr. Chem. Biochem. 1997, 52, 179.
  • Oscarson, S.Thioglycosides. In Carbohydrates in Chemistry and Biology, Wiley-VCH Verlag GmbH: Weinheim, 2000; pp 93.
  • Lopez, J.C.; Uriel, C.; Guillamon-Martin, A.; Valverde, S.; Gomez, A.M. IPy2BF4-mediated transformation of n-pentenyl glycosides to glycosyl fluorides: A new pair of semiorthogonal glycosyl donors. Org. Lett. 2007, 9, 2759.
  • Fraser-Reid, B.; Madsen, R. Oligosaccharide synthesis by n-pentenyl glycosides. In Preparative Carbohydrate Chemistry, Dekker: New York, 1997; pp 339.
  • Fraser-Reid, B.; Anilkumar, G.; Gilbert, M.R.; Joshi, S.; Kraehmer, R. Glycosylation methods: Use of n-pentenyl glycosides. In Carbohydrates in Chemistry and Biology, Wiley-VCH Verlag GmbH: Weinheim, 2000; pp 135.
  • Williams, L.J.; Garbaccio, R.M.; Danishefsky, S.J. Iterative assembly of glycals and glycal derivatives: The synthesis of glycosylated natural products and complex oligosaccharides. In Carbohydrates in Chemistry and Biology, Wiley-VCH Verlag GmbH: Weinheim, 2000; pp 61.
  • Kiso, M.; Anderson, L. Protected glycosides and disaccharides of 2-amino-2-deoxy-D-glucopyranose by ferric chloride-catalyzed coupling. Carbohydr. Res. 1985, 136, 309.
  • Marra, A.; Gauffeny, F.; Sinay, P. A novel class of glycosyl donors: Anomeric S-xanthates of 2-azido-2-deoxy-D-galactopyranosyl derivatives. Tetrahedron 1991, 47, 5149.
  • Chenault, H.K.; Castro, A. Glycosyl transfer by isopropenyl glycosides: Trisaccharide synthesis in one pot by selective coupling of isopropenyl and n-pentenyl glycopyranosides. Tetrahedron Lett. 1994, 35, 9145.
  • Stick, R.V.; Tilbrook, D.M. G.; Williams, S.J. The selective activation of telluro- over seleno-β-D-glucopyranosides as glycosyl donors: A reactivity scale for various telluro, seleno and thio sugars. Aust. J. Chem. 1997, 50, 237.
  • Takeuchi, K.; Tamura, T.; Mukaiyama, T. The trityl tetrakis(pentafluorophenyl)borate catalyzed stereoselective glycosylation using new glycosyl donor, 3,4,6-tri-O-benzyl-2-O-p-toluoyl-β-D-glucopyranosyl phenylcarbonate. Chem. Lett. 2000, 122.
  • Bogusiak, J.; Szeja, W. Block synthesis of oligosaccharides. Part 1: Preparation of furanosyl-1-thiopyranosides. Tetrahedron Lett. 2001, 42, 2221.
  • Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Iterative one-pot synthesis of oligosaccharides. Angew. Chem. Int. Ed. 2004, 43, 5221.
  • Romero, J.A. C.; Tabacco, S.A.; Woerpel, K.A. Stereochemical reversal of nucleophilic substitution reactions depending upon substituent: Reactions of heteroatom-substituted six-membered-ring oxocarbenium ions through pseudoaxial conformers. J. Am. Chem. Soc. 1999, 122, 168.
  • Nicolaou, K.C.; Dolle, R.E.; Papahatjis, D.P. Practical synthesis of oligosaccharides. Partial synthesis of avermectin B1a. J. Am. Chem. Soc. 1984, 106, 4189.
  • Halcomb, R.L.; Danishefsky, S.J. On the direct epoxidation of glycals: Application of a reiterative strategy for the synthesis of β-linked oligosaccharides. J. Am. Chem. Soc. 1989, 111, 6661.
  • Friesen, R.W.; Danishefsky, S.J. On the controlled oxidative coupling of glycals: A new strategy for the rapid assembly of oligosaccharides. J. Am. Chem. Soc. 1989, 111, 6656.
  • Codée, J.D. C.; Litjens, R.E. J. N.; van den Bos, L.J.; Overkleeft, H.S.; van der Marel, G.A. Thioglycosides in sequential glycosylation strategies. Chem. Soc. Rev. 2005, 34, 769.
  • Gin, D. Dehydrative glycosylation with 1-hydroxy donors. J. Carbohydr. Chem. 2002, 21, 645.
  • Crich, D.; Cai, W. Chemistry of 4,6-O-benzylidene-d-glycopyranosyl triflates: Contrasting behavior between the gluco and manno series. J. Org. Chem. 1999, 64, 4926.
  • Crich, D.; Sun, S. Direct chemical synthesis of β-mannopyranosides and other glycosides via glycosyl triflates. Tetrahedron 1998, 54, 8321.
  • Heuckendorff, M.; Bendix, J.; Pedersen, C.M.; Bols, M. β-Selective mannosylation with a 4,6-silylene-tethered thiomannosyl donor. Org. Lett. 2014, 16, 1116.
  • Kim, J.-H.; Yang, H.; Park, J.; Boons, G.-J. A general strategy for stereoselective glycosylations. J. Am. Chem. Soc. 2005, 1272090.
  • Ranade, S.C.; Demchenko, A.V. Mechanism of chemical glycosylation: Focus on the mode of activation and departure of anomeric leaving groups. J. Carbohydr. Chem. 2013, 32, 1.
  • Yan, L.; Kahne, D. Generalizing glycosylation: Synthesis of the blood group antigens Lea, Leb, and Lex using a standard set of reaction conditions. J. Am. Chem. Soc. 1996, 118, 9239.
  • Nukada, T.; Bérces, A.; Whitfield, D.M. Can the stereochemical outcome of glycosylation reactions be controlled by the conformational preferences of the glycosyl donor? Carbohydr. Res. 2002, 337, 765.
  • Whitfield, D.M.; Douglas, S.P.; Tang, T.-H.; Csizmadia, I.G.; Pang, H.Y. S.; Moolten, F.L.; Krepinsky, J.J. Differential reactivity of carbohydrate hydroxyls in glycosylations. II. The likely role of intramolecular hydrogen bonding on glycosylation reactions. Galactosylation of nucleoside 5′-hydroxyls for the syntheses of novel potential anticancer agents. Can. J. Chem 1994, 72, 2225.
  • Dasgupta, F.; Garegg, P.J. Alkyl sulfenyl triflate as activator in the thioglycoside-mediated formation of β-glycosidic linkages during oligosaccharide synthesis. Carbohydr. Res. 1988, 177, c13.
  • Martichonok, V.; Whitesides, G.M. Stereoselective α-sialylation with sialyl xanthate and phenylsulfenyl triflate as a promotor. J. Org. Chem. 1996, 61, 1702.
  • Crich, D.; Sun, S. Direct formation of β-mannopyranosides and other hindered glycosides from thioglycosides. J. Am. Chem. Soc. 1998, 120, 435.
  • Lu, X.; Kamat, M.N.; Huang, L.; Huang, X. Chemical synthesis of a hyaluronic acid decasaccharide. J. Org. Chem. 2009, 74, 7608.
  • Dinkelaar, J.; Gold, H.; Overkleeft, H.S.; Codée, J.D. C.A.; van der Marel, G.A. Synthesis of hyaluronic acid oligomers using chemoselective and one-pot strategies. J. Org. Chem. 2009, 74, 4208.
  • Blatter, G.; Jacquinet, J.-C. The use of 2-deoxy-2-trichloroacetamido-D-glucopyranose derivatives in syntheses of hyaluronic acid-related tetra-, hexa-, and octa-saccharides having a methyl β-D-glucopyranosiduronic acid at the reducing end. Carbohydr. Res. 1996, 288, 109.
  • Sun, B.; Srinivasan, B.; Huang, X. Pre-activation-based one-pot synthesis of an α-(2,3)-sialylated core-fucosylated complex type bi-antennary N-glycan dodecasaccharide. Chem. – Eur. J. 2008, 14, 7072.
  • Gao, J.; Guo, Z. Synthesis of a tristearoyl lipomannan via preactivation-based iterative one-pot glycosylation. J. Org. Chem. 2013, 78, 12717.
  • Nokami, T.; Hayashi, R.; Saigusa, Y.; Shimizu, A.; Liu, C.-Y.; Mong, K.-K. T.; Yoshida, J.-i. Automated solution-phase synthesis of oligosaccharides via iterative electrochemical assembly of thioglycosides. Org. Lett. 2013, 15, 4520.
  • Seeberger, P.H. Automated carbohydrate synthesis as platform to address fundamental aspects of glycobiology—Current status and future challenges. Carbohydr. Res. 2008, 343, 1889.
  • Peng, P.; Xiong, D.-C.; Ye, X.-S. Ortho-Methylphenylthioglycosides as glycosyl building blocks for preactivation-based oligosaccharide synthesis. Carbohydr. Res. 2014, 384, 1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.