683
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Inhibitory Effect of Excessive Glucose on Its Biochemical Pathway and the Growth of Chinese Hamster Ovary (CHO) Cells

, , , &
Pages 1-11 | Received 13 Jul 2014, Accepted 14 Oct 2014, Published online: 03 Feb 2015

REFERENCES

  • Tsao, Y.S.; Cardoso, A.G.; Condon, R.G.; Voloch, M.; Lio, P.; Lagos, J.C.; Kearns, B.G.; Liu, Z. Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism. J. Biotechnol. 2005, 118, 316–327.
  • Busti, S.; Coccetti, P.; Alberghina, L.; Vanoni, M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors (Basel) 2010, 10, 6195–6240.
  • Kubohara, Y.; Kikuchi, H.; Oshima, Y. Exploitation of the derivatives of Dictyostelium differentiation-inducing factor-1, which promote glucose consumption in mammalian cells. Life Sci. 2008, 83, 608–612.
  • Meuwly, F.; Papp, F.; Ruffieux, P.A.; Bernard, A.R.; Kadouri, A.; von Stockar, U. Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J. Biotechnol. 2006, 122, 122–129.
  • Lao, M.S.; Toth, D. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol. Prog. 1997, 13, 688–691.
  • Ahn, W.S.; Antoniewicz, M.R. Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism. Metab. Eng. 2013, 15, 34–47.
  • Chen, N.; Koumpouras, G.C.; Polizzi, K.M.; Kontoravdi, C. Genome-based kinetic modeling of cytosolic glucose metabolism in industrially relevant cell lines: Saccharomyces cerevisiae and Chinese hamster ovary cells. Bioprocess Biosyst. Eng. 2012, 35, 1023–1033.
  • Ahn, W.S.; Antoniewicz, M.R. Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol. J. 2012, 7, 61–74.
  • Sengupta, N.; Rose, S.T.; Morgan, J.A. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol. Bioeng. 2011, 108, 82–92.
  • Burleigh, S.C.; van de Laar, T.; Stroop, C.J.; van Grunsven, W.M.; O’Donoghue, N.; Rudd, P.M.; Davey, G.P. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells. BMC Biotechnol. 2011, 11, 95–111.
  • Ahn, W.S.; Antoniewicz, M.R. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab. Eng. 2011, 13, 598–609.
  • Brand, K. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem. J. 1985, 228, 353–361.
  • Cosio, F.G. Effects of high glucose concentrations on human mesangial cell proliferation. J. Am. Soc. Nephrol. 1995, 5, 1600–1609.
  • Zanetti, M.; Stocca, A.; Dapas, B.; Farra, R.; Uxa, L.; Bosutti, A.; Barazzoni, R.; Bossi, F.; Giansante, C.; Tedesco, F.; Cattin, L.; Guarnieri, G.; Grassi, G. Inhibitory effects of fenofibrate on apoptosis and cell proliferation in human endothelial cells in high glucose. J. Mol. Med. (Berl.) 2008, 86, 185–195.
  • Wlaschin, K.F.; Hu, W.S. Engineering cell metabolism for high-density cell culture via manipulation of sugar transport. J. Biotechnol. 2007, 131, 168–176.
  • Omasa, T.; Onitsuka, M.; Kim, W.D. Cell engineering and cultivation of Chinese hamster ovary (CHO) cells. Curr. Pharm. Biotechnol. 2010, 11, 233–240.
  • Mulukutla, B.C.; Khan, S.; Lange, A.; Hu, W.S. Glucose metabolism in mammalian cell culture: new insights for tweaking vintage pathways. Trends Biotechnol. 2010, 28, 476–484.
  • Yeo, R.W.; Yang, K.; Li, G.; Lim, S.K. High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton. PLoS One 2012, 7, e44988.
  • Wang, W.; Zhang, X.; Zheng, J.; Yang, J. High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway. Mol. Cell Biochem. 2010, 338, 115–122.
  • Gutmann, I.; Bernt, E. Pyruvate Kinase: Assay in Serum and Erythrocytes. Academic Press: New York, 1974, 774–778.
  • Bergmeyer, H.U.; Bernt, E. Malate Dehydrogenase. Academic Press: New York, 1974, 613–617.
  • Bergmeyer, H.U.; Gawehn, K.; Grassl, M. Enzymes as Biological Reagents. Academic Press: New York, 1974, 423–522.
  • Li, J.; Wong, C.L.; Vijayasankaran, N.; Hudson, T.; Amanullah, A. Feeding lactate for CHO cell culture processes: impact on culture metabolism and performance. Biotechnol. Bioeng. 2012, 109, 1173–1186.
  • Parra-Bonilla, G.; Alvarez, D.F.; Al-Mehdi, A.B.; Alexeyev, M.; Stevens, T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 299, L513–L522.
  • Martínez, V.S.; Dietmair, S.; Quek, L.E.; Hodson, M.P.; Gray, P.; Nielsen, L.K. Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol. Bioeng. 2013, 110, 660–666.
  • Luo, J.; Vijayasankaran, N.; Autsen, J.; Santuray, R.; Hudson, T.; Amanullah, A.; Li, F. Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol. Bioeng. 2012, 109, 146–156.
  • Takagi, M.; Moriyama, T.; Yoshida, T. Effects of shifts up and down in osmotic pressure on production of tissue plasminogen activator by Chinese hamster ovary cells in suspension. J. Biosci. Bioeng. 2001, 91, 509–514.
  • Yaromina, A.; Meyer, S.; Fabian, C.; Zaleska, K.; Sattler, U.G.; Kunz-Schughart, L.A.; Mueller-Klieser, W.; Zips, D.; Baumann, M. Effects of three modifiers of glycolysis on ATP, lactate, hypoxia, and growth in human tumor cell lines in vivo. Strahlenther. Onkol. 2012, 188, 431–437.
  • Fan, J.; Hitosugi, T.; Chung, T.W.; Xie, J.; Ge, Q.; Gu, T.L.; Polakiewicz, R.D.; Chen, G.Z.; Boggon, T.J.; Lonial, S.; Khuri, F.R.; Kang, S.; Chen, J. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol. Cell Biol. 2011, 31, 4938–4950.
  • Grüning, N.M.; Lehrach, H.; Ralser, M. Regulatory crosstalk of the metabolic network. Trends Biochem. Sci. 2010, 35, 220–227.
  • Stueland, C.S.; Gorden, K.; LaPorte, D.C. The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step. J. Biol. Chem. 1988, 263, 19475–19479.
  • Zhao, M.; Qu, H. Human liver rate-limiting enzymes influence metabolic flux via branch points and inhibitors. BMC Genomics 2009, 10, S31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.