127
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics study on the influence of C-terminal sugar substitution on dynamics and conformation of vancomycin derivatives

, , &
Pages 45-58 | Received 09 May 2017, Accepted 23 Jun 2017, Published online: 13 Sep 2017

References

  • Sheldrick, G.M.; Jones, P.G.; Kennard, O.; Williams, D.H.; Smith, G.A. Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine. Nature 1978, 271, 223–225.
  • Nicolaou, K.C.; Boddy, C.N.C.; Bräse, S.; Winssinger, N. Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew. Chem. Int. Ed. 1999, 38, 2096–2152.
  • Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C. Glycopeptide and lipoglycopeptide antibiotics. Chem. Rev. 2005, 105, 425–448.
  • Kern, T.; Giffard, M.; Hediger, S.; Amoroso, A.; Giustini, C.; Bui, N.K.; Joris, B.; Bougault, C.; Vollmer, W.; Simorre, J.-P. Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions. J. Am. Chem. Soc. 2010, 132, 10911–10919.
  • Vollmer, W.; Seligman, S.J. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 2010, 18, 59–66.
  • Cabeen, M.T.; Jacobs-Wagner, C. Bacterial cell shape. Nat. Rev. Microbiol. 2005, 3, 601–610.
  • Uttley, A.H.; Collins, C.H.; Naidoo, J.; George, R.C. Vancomycin-resistant enterococci. Lancet 1988, 1, 57–58.
  • Reynolds, P.E.; Courvalin, P. Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob. Agents Chemother. 2004, 49, 21–25.
  • Perichon, B.; Courvalin, P. VanA-type vancomycin-resistant staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 4580–4587.
  • Loll, P.J.; Axelsen, P.H. The structural biology of molecular recognition by vancomycin. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 265–289.
  • Ślusarz, R.; Ślusarz, M.J.; Samaszko, J.; Madaj, J. Conformational changes of peptidoglycan fragments during their interactions with vancomycin. Cent. Eur. J. Chem. 2011, 9, 422–431.
  • Eliopoulos, G.M. Microbiology of drugs for treating multiply drug-resistant Gram-positive bacteria. J. Infect. 2009, 59 (Suppl 1), S17–S24.
  • Culos, K.A.; Cannon, J.P.; Grim, S.A. Alternative agents to vancomycin for the treatment of methicillin-resistant staphylococcus aureus infections. Am. J. Ther. 2011, 20, 200–212.
  • Chang, M.H.; Kish, T.D.; Fung, H.B. Telavancin: a lipoglycopeptide antimicrobial for the treatment of complicated skin and skin structure infections caused by gram-positive bacteria in adults. Clin. Ther. 2010, 32, 2160–2185.
  • Case, D.A.; Darden, T.A.; Cheatham, III, T.E.; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; et al. AMBER 12. University of California: San Francisco, 2012.
  • Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003, 24, 1999–2012.
  • Kirschner, K.N.; Yongye, A.B.; Tschampel, S.M.; González-Outeiriño, J.; Daniels, C.R.; Foley, B.L.; Woods, R.J. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655.
  • Cieplak, P.; Cornell, W.D.; Bayly, C.; Kollman, P.A. Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA, and proteins. J. Comput. Chem. 1995, 16, 1357–1377.
  • Snowden, M.A.; Perkins, H.R. Peptidoglycan cross-linking in Staphylococcus aureus. An apparent random polymerisation process. Eur. J. Biochem. 1990, 191, 373–377.
  • Van Dam, V.; Olrichs, N.; Breukink, E. Specific labeling of peptidoglycan precursors as a tool for bacterial cell wall studies. Chembiochem 2009, 10, 617–624.
  • Williams, D.H.; Bardsley, B. The vancomycin group of antibiotics and the fight against resistant Bacteria. Angew. Chem. Int. Ed. 1999, 38, 1172–1193.
  • Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926.
  • Nitanai, Y.; Kikuchi, T.; Kakoi, K.; Hanamaki, S.; Fujisawa, I.; Aoki, K. Crystal structures of the complexes between vancomycin and cell-wall precursor analogs. J. Mol. Biol. 2009, 385, 1422–1432.
  • Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341.
  • Berendsen, H.J.C.; Postma, J.P.M.; Gunsteren, W.F. van; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.
  • Ewald, P.P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287.
  • Darden, T.; Perera, L.; Li, L.; Pedersen, L. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 1999, 7, R55–R60.
  • Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888.
  • Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897.
  • Reyes, C.M.; Kollman, P.A. Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change. J. Mol. Biol. 2000, 297, 1145–1158.
  • Jayaram, B.; Sprous, D.; Beveridge, D.L. Solvation free energy of biomacromolecules:  parameters for a modified generalized born model consistent with the AMBER force field. J. Phys. Chem. B 1998, 102, 9571–9576.
  • De Paris, R.; Quevedo, C.V.; Ruiz, D.D.; Norberto de Souza, O.; Barros, R.C. Clustering molecular dynamics trajectories for optimizing docking experiments. Comput. Intell. Neurosci. 2015, 2015:916240, 1–9.
  • Mackay, J.P.; Gerhard, U.; Beauregard, D.A.; Williams, D.H.; Westwell, M.S.; Searle, M.S. Glycopeptide antibiotic activity and the possible role of dimerization: a model for biological signaling. J. Am. Chem. Soc. 1994, 116, 4581–4590.
  • Sharman, G.J.; Try, A.C.; Dancer, R.J.; Cho, Y.R.; Staroske, T.; Bardsley, B.; Maguire, A.J.; Cooper, M.A.; O'Brie, D.P.; Williams, D.H. The roles of dimerization and membrane anchoring in activity of glycopeptide antibiotics against vancomycin-resistant bacteria. J. Am. Chem. Soc. 1997, 119, 12041–12047.
  • Jia, Z.; O'Mara, M.L.; Zuegg, J.; Cooper, M.A.; Mark, A.E. Vancomycin: ligand recognition, dimerization and super-complex formation. FEBS J. 2013, 280, 1294–1307.
  • Treviño, J.; Bayón, C.; Ardá, A.; Marinelli, F.; Gandolfi, R.; Molinari, F.; Jimenez-Barbero, J.; Hernáiz, M.J. New insights into glycopeptide antibiotic binding to cell wall precursors using SPR and NMR spectroscopy. Chemistry 2014, 20, 7363–7372.
  • Münch, D.; Engels, I.; Müller, A.; Reder-Christ, K.; Falkenstein-Paul, H.; Bierbaum, G.; Grein, F.; Bendas, G.; Sahl, H.-G.; Schneider, T. Structural variations of the cell wall precursor lipid II and their influence on binding and activity of the lipoglycopeptide antibiotic oritavancin. Antimicrob Agents Chemother. 2014, 59, 772–781.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.