105
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical investigation on the binding specificity of fluorinated sialyldisaccharides Neu5Acα(2–3)Gal and Neu5Acα(2–6)Gal with influenza hemagglutinin H1 – A Molecular Dynamics Study

, , , , &
Pages 111-128 | Received 02 Apr 2017, Accepted 03 Aug 2017, Published online: 17 Oct 2017

References

  • Thomas, P. G.; Keating, R.; Hulse-Post, D. J.; Doherty, P. C. Cell-mediated protection in influenza infection. Emerging infectious diseases. 2006, 12, 48.
  • Julkunen, I.; Sareneva, T.; Pirhonen, J.; Ronni, T.; Melén, K.; Matikainen, S. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine & growth factor reviews. 2001, 12, 171–180.
  • Nicholson, K. G.; Webster, R. G.; Hay, A. J. Textbook of influenza, Oxford, UK, Blackwell Science Ltd., 1998.
  • Varghese, J.; Laver, W.; Colman, P. M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature. 1983, 303, 35–40.
  • Cheung, T. K.; Poon, L. L. Biology of influenza a virus. Annals of the New York Academy of Sciences. 2007, 1102, 1–25.
  • Fouchier, R. A.; Munster, V.; Wallensten, A.; Bestebroer, T. M.; Herfst, S.; Smith, D.; Rimmelzwaan, G. F.; Olsen, B.; Osterhaus, A. D. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. Journal of virology. 2005, 79, 2814–2822.
  • Laver, W.; Colman, P.; Webster, R.; Hinshaw, V.; Air, G. Influenza virus neuraminidase with hemagglutinin activity. Virology. 1984, 137, 314–323.
  • Tong, S.; Li, Y.; Rivailler, P.; Conrardy, C.; Castillo, D. A. A.; Chen, L.-M.; Recuenco, S.; Ellison, J. A.; Davis, C. T.; York, I. A. A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences. 2012, 109, 4269–4274.
  • Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013, 9, e1003657.
  • Olsen, B.; Munster, V. J.; Wallensten, A.; Waldenström, J.; Osterhaus, A. D.; Fouchier, R. A. Global patterns of influenza A virus in wild birds. science. 2006, 312, 384–388.
  • Stallknecht, D. E.; Brown, J. D. Wild birds and the epidemiology of avian influenza. Journal of wildlife diseases. 2007, 43
  • Webster, R. G.; Bean, W. J.; Gorman, O. T.; Chambers, T. M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiological reviews. 1992, 56, 152–179.
  • Johnson, N. P.; Mueller, J. Updating the accounts: global mortality of the 1918–1920" Spanish" influenza pandemic. Bulletin of the History of Medicine. 2002, 76, 105–115.
  • Taubenberger, J. K.; Morens, D. M. 1918 Influenza: the mother of all pandemics. Rev Biomed. 2006, 17, 69–79.
  • Ha, Y.; Stevens, D. J.; Skehel, J. J.; Wiley, D. C. H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. The EMBO journal. 2002, 21, 865–875.
  • Kawaoka, Y.; Krauss, S.; Webster, R. G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. Journal of virology. 1989, 63, 4603–4608.
  • Krug, R.; Lamb, R. Orthomyxoviridae: the viruses and their replication. Fields Virology. 2001, 1487–1503.
  • Claas, E. C.; Osterhaus, A. D.; Van Beek, R.; De Jong, J. C.; Rimmelzwaan, G. F.; Senne, D. A.; Krauss, S.; Shortridge, K. F.; Webster, R. G. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. The Lancet. 1998, 351, 472–477.
  • Fouchier, R. A.; Schneeberger, P. M.; Rozendaal, F. W.; Broekman, J. M.; Kemink, S. A.; Munster, V.; Kuiken, T.; Rimmelzwaan, G. F.; Schutten, M.; van Doornum, G. J. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of sciences of the United States of América. 2004, 101, 1356–1361.
  • Guan, Y.; Shortridge, K. F.; Krauss, S.; Webster, R. G. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proceedings of the National Academy of Sciences. 1999, 96, 9363–9367.
  • Guan, Y.; Peiris, J. S. M.; Poon, L. L. M.; Dyrting, K.; Ellis, T.; Sims, L.; Webster, R.; Shortridge, K. Reassortants of H5N1 influenza viruses recently isolated from aquatic poultry in Hong Kong SAR. Avian diseases. 2003, 47, 911–913.
  • Subbarao, K.; Klimov, A.; Katz, J.; Regnery, H.; Lim, W.; Hall, H.; Perdue, M.; Swayne, D.; Bender, C.; Huang, J. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. science. 1998, 279, 393–396.
  • Yuen, K.; Chan, P.; Peiris, M.; Tsang, D.; Que, T.; Shortridge, K.; Cheung, P.; To, W.; Ho, E.; Sung, R. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. The Lancet. 1998, 351, 467–471.
  • Lu, Y.; Li, Z.; Ma, C.; Wang, H.; Zheng, J.; Cui, L.; He, W. The interaction of influenza H5N1 viral hemagglutinin with sialic acid receptors leads to the activation of human γδ T cells. Cellular and Molecular Immunology. 2013, 10, 463.
  • Shriver, Z.; Raman, R.; Viswanathan, K.; Sasisekharan, R. Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions. Chemistry & biology. 2009, 16, 803–814
  • Daniels, R.; Douglas, A.; Skehel, J.; Wiley, D.; Naeve, C.; Webster, R.; Rogers, G.; Paulson, J. Antigenic analyses of influenza virus haemagglutinins with different receptor-binding specificities. Virology. 1984, 138, 174–177.
  • Weis, W.; Brown, J.; Cusack, S.; Paulson, J.; Skehel, J.; Wiley, D. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988, 333, 426–431.
  • Chen, J.; Lee, K. H.; Steinhauer, D. A.; Stevens, D. J.; Skehel, J. J.; Wiley, D. C. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell. 1998, 95, 409–417.
  • Hirst, G. K. The quantitative determination of influenza virus and antibodies by means of red cell agglutination. The Journal of experimental medicine. 1942, 75, 49–64.
  • Gottschalk, A. Neuraminic acid: the functional group of some biologically active mucoproteins. The Yale journal of biology and medicine. 1956, 28, 525.
  • Palese, P.; Tobita, K.; Ueda, M.; Compans, R. W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology. 1974, 61, 397–410.
  • Liu, C.; Eichelberger, M. C.; Compans, R. W.; Air, G. M. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. Journal of virology. 1995, 69, 1099–1106.
  • Baigent, S. J.; McCauley, J. W. Influenza type A in humans, mammals and birds: Determinants of virus virulence, host‐range and interspecies transmission. Bioessays. 2003, 25, 657–671.
  • Hulse, D. J.; Webster, R. G.; Russell, R. J.; Perez, D. R. Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens. Journal of virology. 2004, 78, 9954–9964.
  • Brossmer, R.; Isecke, R.; Herrler, G. A sialic acid analogue acting as a receptor determinant for binding but not for infection by influenza C virus. FEBS letters. 1993, 323, 96–98.
  • Guo, C.-T.; Takahashi, N.; Yagi, H.; Kato, K.; Takahashi, T.; Yi, S.-Q.; Chen, Y.; Ito, T.; Otsuki, K.; Kida, H. The quail and chicken intestine have sialyl-galactose sugar chains responsible for the binding of influenza A viruses to human type receptors. Glycobiology. 2007, 17, 713–724.
  • Stevens, J.; Blixt, O.; Glaser, L.; Taubenberger, J. K.; Palese, P.; Paulson, J. C.; Wilson, I. A. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. Journal of molecular biology. 2006, 355, 1143–1155.
  • Matrosovich, M.; Tuzikov, A.; Bovin, N.; Gambaryan, A.; Klimov, A.; Castrucci, M. R.; Donatelli, I.; Kawaoka, Y. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. Journal of virology. 2000, 74, 8502–8512.
  • Baum, L.; Paulson, J. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta histochemica. Supplementband. 1989, 40, 35–38.
  • Ito, T.; Suzuki, Y.; Suzuki, T.; Takada, A.; Horimoto, T.; Wells, K.; Kida, H.; Otsuki, K.; Kiso, M.; Ishida, H. Recognition of N-glycolylneuraminic acid linked to galactose by the α2, 3 linkage is associated with intestinal replication of influenza A virus in ducks. Journal of virology. 2000, 74, 9300–9305.
  • Suzuki, Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biological and Pharmaceutical Bulletin. 2005, 28, 399–408.
  • Ito, T.; Suzuki, Y.; Takada, A.; Kawamoto, A.; Otsuki, K.; Masuda, H.; Yamada, M.; Suzuki, T.; Kida, H.; Kawaoka, Y. Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. Journal of virology. 1997, 71, 3357–3362.
  • Ryan-Poirier, K.; Suzuki, Y.; Bean, W. J.; Kobasa, D.; Takada, A.; Ito, T.; Kawaoka, Y. Changes in H3 influenza A virus receptor specificity during replication in humans. Virus research. 1998, 56, 169–176.
  • Murugan, V.; Parasuraman, P.; Selvin, J. F.; Priyadarzini, T. R.; Gromiha, M. M.; Fukui, K.; Veluraja, K. Geometry Optimization of Carbohydrate Binding Sites of Influenza: A Quantum Mechanical Approach. Journal of Carbohydrate Chemistry. 2015, 34, 409–429.
  • Ledesma, J.; Pozo, F.; Ruiz, M. P.; Navarro, J. M.; Pineiro, L.; Montes, M.; Castro, S. P.; Fernández, J. S.; Costa, J. G.; Fernández, M. Substitutions in position 222 of haemagglutinin of pandemic influenza A (H1N1) 2009 viruses in Spain. Journal of Clinical Virology. 2011, 51, 75–78.
  • Rogers, G.; Paulson, J.; Daniels, R.; Skehel, J.; Wilson, I.; Wiley, D. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983, 304, 76–78.
  • Kelm, S.; Paulson, J. C.; Rose, U.; Brossmer, R.; Schmid, W.; Bandgar, B. P.; Schreiner, E.; Hartmann, M.; Zbiral, E. Use of sialic acid analogues to define functional groups involved in binding to the influenza virus hemagglutinin. European Journal of Biochemistry. 1992, 205, 147–153.
  • Varki, A. Sialic acids as ligands in recognition phenomena. The FASEB Journal. 1997, 11, 248–255.
  • Keppler, O. T.; Herrmann, M.; Claus, W.; Stehling, P.; Reutter, W.; Pawlita, M. Elongation of theN-Acyl Side Chain of Sialic Acids in MDCK II Cells Inhibits Influenza A Virus Infection. Biochemical and biophysical research communications. 1998, 253, 437–442.
  • Brandley, B. K.; Kiso, M.; Abbas, S.; Nikrad, P.; Srivasatava, O.; Foxall, C.; Oda, Y.; Hasegawa, A. Structure—function studies on selectin carbohydrate ligands. Modifications to fucose, sialic acid and sulphate as a sialic acid replacement. Glycobiology. 1993, 3, 633–641.
  • Wicki, J.; Rose, D. R.; Withers, S. G. Trapping covalent intermediates on β-glycosidases. Methods in enzymology. 2002, 354, 84–105.
  • McCarter, J. D.; Withers, S. G. 5-Fluoro glycosides: a new class of mechanism-based inhibitors of both α-and β-glucosidases. Journal of the American Chemical Society. 1996, 118, 241–242.
  • Zechel, D. L.; Withers, S. G. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Accounts of Chemical Research. 2000, 33, 11–18.
  • Watts, A. G.; Oppezzo, P.; Withers, S. G.; Alzari, P. M.; Buschiazzo, A. Structural and kinetic analysis of two covalent sialosyl-enzyme intermediates on Trypanosoma rangeli sialidase. Journal of Biological Chemistry. 2006, 281, 4149–4155.
  • Guo, C.-T.; Sun, X.-L.; Kanie, O.; Shortridge, K. F.; Suzuki, T.; Miyamoto, D.; Kazuya, I.-P.; Wong, C.-H.; Suzuki, Y. An O-glycoside of sialic acid derivative that inhibits both hemagglutinin and sialidase activities of influenza viruses. Glycobiology. 2002, 12, 183–190.
  • Büll, C.; Boltje, T. J.; Wassink, M.; de Graaf, A. M.; van Delft, F. L.; den Brok, M. H.; Adema, G. J. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Molecular cancer therapeutics. 2013, 12, 1935–1946.
  • Hader, S. (2011) Synthesis and evaluation of fluorinated sialic acid derivatives as novel'mechanism-based'neuraminidase inhibitors, University of Bath.
  • Dafik, L.; d'Alarcao, M.; Kumar, K. Modulation of cellular adhesion by glycoengineering. Journal of medicinal chemistry. 2010, 53, 4277–4284.
  • Kim, J.-H.; Resende, R.; Wennekes, T.; Chen, H.-M.; Bance, N.; Buchini, S.; Watts, A. G.; Pilling, P.; Streltsov, V. A.; Petric, M. Mechanism-based covalent neuraminidase inhibitors with broad-spectrum influenza antiviral activity. Science. 2013, 340, 71–75.
  • Veluraja, K.; Selvin, J. F.; Venkateshwari, S.; Priyadarzini, T. R. 3DSDSCAR—a three dimensional structural database for sialic acid-containing carbohydrates through molecular dynamics simulation. Carbohydrate research. 2010, 345, 2030–2037.
  • Veluraja, K.; Rao, V. Theoretical studies on the conformation of β-DN-acetyl neuraminic acid (sialic acid). Biochimica et Biophysica Acta (BBA)-General Subjects. 1980, 630, 442–446.
  • Priyadarzini, T. R.; Subashini, B.; Selvin, J. F.; Veluraja, K. Molecular dynamics simulation and quantum mechanical calculations on α-d-N-acetylneuraminic acid. Carbohydrate research. 2012, 351, 93–97.
  • Vasudevan, S. V.; Balaji, P. V. Molecular dynamics simulations of α2→ 8‐linked disialoside: Conformational analysis and implications for binding to proteins. Biopolymers. 2002, 63, 168–180.
  • Veluraja, K.; Seethalakshmi, A. N. Dynamics of sialyl Lewis a in aqueous solution and prediction of the structure of the sialyl Lewis a–SelectinE complex. Journal of theoretical biology. 2008, 252, 15–23.
  • Parasuraman, P.; Murugan, V.; Selvin, J. F.; Gromiha, M. M.; Fukui, K.; Veluraja, K. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα (2‐3) Gal: a study by in silico mutations and molecular dynamics simulations. Journal of Molecular Recognition. 2014, 27, 482–492.
  • Parasuraman, P.; Murugan, V.; Selvin, J. F.; Gromiha, M. M.; Fukui, K.; Veluraja, K. Theoretical investigation on the glycan‐binding specificity of Agrocybe cylindracea galectin using molecular modeling and molecular dynamics simulation studies. Journal of Molecular Recognition. 2015, 28, 528–538.
  • Sieben, C.; Kappel, C.; Zhu, R.; Wozniak, A.; Rankl, C.; Hinterdorfer, P.; Grubmüller, H.; Herrmann, A. Influenza virus binds its host cell using multiple dynamic interactions. Proceedings of the National Academy of Sciences. 2012, 109, 13626–13631.
  • Priyadarzini, T. R.; Selvin, J. F.; Gromiha, M. M.; Fukui, K.; Veluraja, K. Theoretical investigation on the binding specificity of sialyldisaccharides with hemagglutinins of influenza A virus by molecular dynamics simulations. Journal of Biological Chemistry. 2012, 287, 34547–34557.
  • Case, D.; Darden, T.; Cheatham III, T. E.; Simmerling, C.; Wang, J.; Duke, R.; Luo, R.; Walker, R.; Zhang, W.; Merz, K. AMBER 12. University of California, San Francisco. 2012, 142
  • Jorgensen, W. L. Revised TIPS for simulations of liquid water and aqueous solutions. The Journal of chemical physics. 1982, 77, 4156–4163.
  • Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The Amber biomolecular simulation programs. Journal of computational chemistry. 2005, 26, 1668–1688.
  • Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. Journal of molecular graphics. 1996, 14, 33–38.
  • Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. Journal of computational chemistry. 2005, 26, 1781–1802.
  • Miller III, B. R.; McGee Jr, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. MMPBSA. py: an efficient program for end-state free energy calculations. Journal of chemical theory and computation. 2012, 8, 3314–3321.
  • Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry. 2004, 25, 1605–1612.
  • Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. Journal of Applied Crystallography. 1991, 24, 946–950.
  • Veluraja, K.; Rao, V. Studies on the conformations of sialyloligosaccharides and implications. Journal of Biosciences. 1984, 6, 625–634.
  • Suresh, M. X.; Veluraja, K. Conformations of terminal sialyloligosaccharide fragments—a molecular dynamics study. Journal of theoretical biology. 2003, 222, 389–402.
  • Selvin, J. F.; Priyadarzini, T. R.; Veluraja, K. Sialyldisaccharide conformations: a molecular dynamics perspective. Journal of computer-aided molecular design. 2012, 26, 375–385.
  • Rajagopal, S.; Vishveshwara, S. Short hydrogen bonds in proteins. FEBS Journal. 2005, 272, 1819–1832.
  • Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and applied chemistry. 2011, 83, 1637–1641.
  • Glaser, L.; Stevens, J.; Zamarin, D.; Wilson, I. A.; García-Sastre, A.; Tumpey, T. M.; Basler, C. F.; Taubenberger, J. K.; Palese, P. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. Journal of virology. 2005, 79, 11533–11536.
  • Nobusawa, E.; Ishihara, H.; Morishita, T.; Sato, K.; Nakajima, K. Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. Virology. 2000, 278, 587–596.
  • Stevens, J.; Blixt, O.; Tumpey, T. M.; Taubenberger, J. K.; Paulson, J. C.; Wilson, I. A. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. science. 2006, 312, 404–410.
  • Marrone, T. J.; Briggs, A.; James M.; McCammon, J. A. Structure-based drug design: computational advances. Annual review of pharmacology and toxicology. 1997, 37, 71–90.
  • Chen, C.-Y.; Chang, Y.-H.; Bau, D.-T.; Huang, H.-J.; Tsai, F.-J.; Tsai, C.-H.; Chen, C. Y.-C. Ligand-based dual target drug design for H1N1: swine flu-A preliminary first study. Journal of Biomolecular Structure and Dynamics. 2009, 27, 171–178.
  • Yarema, K. J.; Bertozzi, C. R. Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Current opinion in chemical biology. 1998, 2, 49–61.
  • von Itzstein, M.; Colman, P. Design and synthesis of carbohydrate-based inhibitors of protein—carbohydrate interactions. Current opinion in structural biology. 1996, 6, 703–709.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.