632
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Proton transfer and hydrogen bonding in glycosylation reactions

&
Pages 59-99 | Received 04 Aug 2017, Accepted 06 Aug 2017, Published online: 06 Oct 2017

References

  • (a) Bohé, L.; Crich, D. A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydr. Res. 2015, 403, 48–59. (b) Satoh, H.; Nukada, T. Computational Chemistry on Chemical Glycosylations. Trends Glycosci. Glycotechnol. 2014, 26, 11–27. (c) Whitfield, D. M. Computational studies of the role of glycopyranosyl oxacarbenium ions in glycobiology and glycochemistry. Adv. Carbohydr. Chem. Biochem., Ed. Derek Horton. 2009, 62, 83–159.
  • (a) Whitfield, D. M.; Douglas, S. P. Glycosylation reactions–present status future directions. Glycoconjugate J. 1996, 13, 5–17. (b) Paulsen, H. Advances in Selective Chemical Syntheses of Complex Oligosaccharides. Angew, Chem. Int. Ed. 1982, 21, 155–175. (c) Kochetkov, N. K. Recent Developments in the Synthesis of Polysaccharides and Stereospecificity of Glycosylation Reactions. Studies in Natural Products Chemistry. Ed. Rahman, A. 1994, 14, 201–266.
  • Dewar, M. J. S.; Dougherty, R. C. The PMO Theory of Organic Chemistry. New York: Plenum Pub. Corp.; 1975, p263.
  • (a) Danishefsky, S. J.; Shue, Y.-K.; Chang, M. N.; Wong, C.-H. Development of Globo-H cancer vaccine. Acc. Chem. Res. 2015, 48, 643–652. (b) Shu, P.; Yao, W.; Xiao, X.; Sun, J.; Zhao, X.; Zhao, Y.; Xu, Y.; Tao, J.; Yao, G.; Zeng, J.; Wan, Q. Glycosylation via remote activation of anomeric leaving groups: development of 1235 2-(2-propylsulfinyl)benzyl glycosides as novel glycosyl donors. Org. Chem. Front. 2016 3, 177–183. (c) Ranade, S. C.; Demchenko, A. V. A Comparative Study of Glycosyl Thioimidates as Building Blocks for Chemical Glycosylation. J. Carbohydr. Chem. 2013, 32, 1–43. (d) Chen, X.; Shen, D.; Wang, Q.; Yang, Y.; Yu, B. Ortho-(Methyltosylaminoethynyl)benzyl Glycosides as New Glycosyl Donors for Latent-Active Glycosylation. Chem. Commun. 2015, 51, 13957–13960. (e) Das, R.; Mukhopadhyay, B. Chemical O-Glycosylations: An Overview. Chem. Open. 2016, 5, 401–433. (f) St-Pierre, G.; Hanessian, S. Solution and Solid-Phase Stereocontrolled Synthesis of 1,2-cis-Glycopyranosides with Minimally Protected Glycopyranosyl Donors Catalyzed by BF3-N,N-Dimethylformamide Complex. Org. Lett. 2016, 18, 3106–3109. (g) Mao, R.-Z.; Xiong, D.-C.; Guo, F.; Li, Q.; Duan, J.; Ye, X.-S. Light-driven highly efficient glycosylation reactions. Org. Chem. Front. 2016, 3, 737–743. (h) Xu, Y.; Zhang, Q.; Xiao, Y.; Wu, P.; Chen, W.; Song, Z.; Xiao, X.; Meng, L.; Zeng, J.; Wan, Q. Practical synthesis of latent disarmed S-2-(2-propylthio)benzyl glycosides for interrupted Pummerer reaction mediated glycosylation. Tetrahedron Lett. 2017, 58, 2381–2384.
  • Mulani, S. K.; Hung, W.-C.; Ingle, A. B.; Shiau, K.-S.; Mong, K.-K. T. Modulating glycosylation with exogenous nucleophiles: an overview. Org. Biomol. Chem. 2014, 12, 1184–1197.
  • (a) Koeller, K. M.; Wong, C.-H. Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem. Rev. 2000, 100, 4465–4494. (b) Premathilake, H. D.; Demchenko, A. V. Superarmed and Superdisarmed Building Blocks in Expeditious Oligosaccharide Synthesis. Top. Curr. Chem. 2011, 301, 189–222. (c) Hsu, C.-H.; Hung, S.-C.; Wu, C.-Y.; Wong, C.-H. Toward automated oligosaccharide synthesis. Angew. Chem. Int. Ed. 2011, 50, 11872–11923. (d) Guo, J.; Ye, X.-S. Protecting groups in carbohydrate chemistry: influence on stereoselectivity of glycosylations. Molecules. 2010, 15, 7235–7265. (e) Codee, J. D. C.; Ali, A.; Overkleeft, H. S.; van der Marel, G.A. Novel protecting groups in carbohydrate chemistry. Comptes Rendus Chimie. 2011, 14, 178–193. (f) Heuckendorff, M.; Poulsen, L. T.; Jensen, H. H. Remote Electronic Effects by Ether Protecting Groups Fine-Tune Glycosyl Donor Reactivity. J. Org. Chem. 2016, 81, 4988–5006. (g) Watson, A. J. A.; Alexander, S. R.; Cox, D. J.; Fairbanks, A. J. Protecting Group Dependence of Stereochemical Outcome of Glycosylation of 2-O-(Thiophen-2-yl)methyl Ether Protected Glycosyl Donors. Eur. J. Org. Chem. 2016, 1520–1532. (h) Hsu, Y.; Lu, X.-A.; Zulueta, M. M. L.; Tsai, C.-M.; Lin, K.-I.; Hung, S.-C.; Wong, C.-H. Acyl and silyl group effects in reactivity-based one-pot glycosylation: synthesis of embryonic stem cell surface carbohydrates Lc4 and IV(2)Fuc-Lc4. J. Am. Chem. Soc. 2012, 134, 4549–4552.
  • (a) Demchenko, A. V. Stereoselective Chemical 1,2-cis O-Glycosylation: From ‘Sugar Ray’ to Modern Techniques of the 21st Century. Synlett. 2003, 9, 1225–1240. (b) Huang, W.; Gao, Q.; Boons, G.-J. Assembly of a Complex Branched Oligosaccharide by Combining Fluorous Supported Synthesis and Stereoselective Glycosylations using Anomeric Sulfonium Ions. Chem. Eur. J. 2015, 21, 12920–12926. (c) McKay, M. J.; Park, N. H.; Nguyen, H. M. Investigations of scope and mechanism of nickel-catalyzed transformations of glycosyl trichloroacetimidates to glycosyl trichloroacetamides and subsequent, atom-economical, one-step conversion to α-urea-glycosides. Chem. Eur. J. 2014, 20, 8691–8701.
  • (a) Nakagawa, A.; Tanaka, M.; Hanamura, S.; Takahashi, D.; Toshima, K. Regioselective and 1,2-cis-α-Stereoselective Glycosylation Utilizing Glycosyl-Acceptor-Derived Boronic Ester Catalyst. Angew. Chem. Int. Ed. 2015, 54, 10935–10939. (b) Huang, W.; Qi Gao, Q.; Boons, G.-J. Assembly of a Complex Branched Oligosaccharide by Combining Fluorous-Supported Synthesis and Stereoselective Glycosylations using Anomeric Sulfonium Ions. Chem. Eur. J. 2015, 21, 12920–12926. (c) Komarova, B. S.; Tsvetkov, Y. E.; Nifantiev, N. E. Design of α-Selective Glycopyranosyl Donors Relying on Remote Anchimeric Assistance. Chem. Rec. 2016, 16, 488–506.
  • Abronina, P. I.; Zinin, A. I.; Romashin, D. A.; Malysheva, N. N.; Chizhov, A. O.; Kononov, L. O. Novel Benzyl-Free Glycosyl Donors for Highly Stereoselective 1,2-cis-Fucosylation. Synlett. 2015, 26, 2267–2271.
  • Miljkovic, M. Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry Springer Science New York 2014.
  • (a) Mydock, L. K.; Demchenko, A. V. Mechanism of chemical O-glycosylation: from early studies to recent discoveries. Org. Biomol. Chem. 2010, 8, 497–510. (b) Rencurosi, A.; Lay, L.; Russo, G.; Caneva, E.; Poletti, L. NMR evidence for the participation of triflated ionic liquids in glycosylation reaction mechanisms. Carbohydr. Res. 2006, 341, 903–908. (c) Satoh, H.; Manabe, S. Design of chemical glycosyl donors: does changing ring conformation influence selectivity/reactivity? Chem. Soc. Rev. 2013, 42, 4297–4309.
  • (a) Dejter-Juszynski, M.; Flowers, H. M. Studies on the Koenigs-Knorr reaction : Part II. Synthesis of an α-L-linked disaccharide from tri-O-benzyl-α-L-fucopyranosyl bromide. Carbohydr. Res. 1971, 18, 219–226. (b) Lemieux, R. U.; Hendriks, K. B.; Stick, R. V.; James, K. Halide Ion Catalyzed Glycosidation Reactions. Syntheses of α -Linked Disaccharides. J. Am. Chem. Soc. 1975, 97, 4056–4062.
  • (a) Bouhall, S. K.; Sucheck, S. J. In situ preactivation strategies for the expeditious synthesis of oligosaccharides: A review. J. Carbohydr. Chem. 2014, 33, 347–367. (b) Kaeothip, S.; Yasomanee, J. P.; Demchenko, A. V. Glycosidation of thioglycosides in the presence of bromine: mechanism, reactivity, and stereoselectivity. J. Org. Chem. 2012, 77, 291–299.
  • (a) Saito, K.; Ueoka, K.; Matsumoto, K.; Suga, S.; Nokami, T.; Yoshida, J. Indirect cation-flow method: flash generation of alkoxycarbenium ions and studies on the stability of glycosyl cations. Angew. Chem. Int. Ed. 2011, 50, 5153–5156. (b) Walvoort, M. T. C.; van der Marel, G. A.; Overkleeft, H. S.; Codee, J. D. C. On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology: trapped covalent intermediates. Chem. Sci. 2013, 4, 897–906. (c) van Rijssel, E. R.; van Delft, P.; Lodder, G.; Overkleeft, H. S.; van der Marel, G. A.; Filippov, D. V.; Codee, J. D. C. Furanosyl oxocarbenium ion stability and stereoselectivity. Angew. Chem. Int. Ed. 2014, 53, 10381–10385. (d) Kumar, R.; Whitfield, D. M. Could diastereoselectivity in the presence of O-2 chiral nonparticipating groups be an indicator of glycopyranosyl oxacarbenium ions in glycosylation reactions? J. Org. Chem. 2012, 77, 3724–3739. (e) Kovér, A.; Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S. Tuning the stereoelectronic properties of 1-sulfanylhex-1-enitols for the sequential stereoselective synthesis of 2-deoxy-2-iodo-β-D-allopyranosides. J. Org. Chem. 2014, 79, 3060–3068. (f) Bohé, L.; Crich, D. A propos of glycosyl cations and the mechanism of chemical glycosylation. Comptes Rendus Chim. 2011, 14, 3–16.
  • (a) Olah, G. A. 100 years of carbocations and their significance in chemistry. J. Org. Chem.2001, 66, 5943–5957. (b) Forsyth, D. A.; Osterman, V. M.; DeMember, J. R. NMR chemical shift and NMR isotope shift evidence for the influence of nonbonded interactions on charge distribution in alpha, beta-unsaturated methoxycarbenium ions. J. Am. Chem. Soc.1985, 107, 818–822.
  • Frihed, T. G.; Bols, M.; Pedersen, C. M. Mechanisms of glycosylation reactions studied by low-temperature nuclear magnetic resonance. Chem. Rev. 2015, 115, 4963–5013.
  • Martin, A.; Arda, A.; Désiré, J.; Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau, S.; Blériot, Y. Catching elusive glycosyl cations in a condensed phase with HF/SbF₅ superacid. Nature Chem. 2016, 8, 186–191.
  • Williams, I. H.; Pernía, J. J. R.; Tuñón, I. Does glycosyl transfer involve an oxacarbenium intermediate? Computational simulation of the lifetime of the methoxymethyl cation in water. Pure Appl. Chem. 2011, 83, 1507–1514.
  • Amyes, T. L.; Jencks, W. P. Lifetimes of Oxocarbenium Ions in Aqueous Solution from Common Ion Inhibition of the Solvolysis of α-Azido Ethers by Added Azide Ion. J. Am. Chem. Soc. 1989, 111, 7888–7900.
  • Simón, L.; Paton, R. S. QM/MM study on the enantioselectivity of spiroacetalization catalysed by an imidodiphosphoric acid catalyst: how confinement works. Org. Biomol. Chem. 2016, 14, 3031–3039.
  • (a) Huang, M.; Garrett, G. E.; Birlirakis, N.; Bohé, L.; Pratt, D. A.; Crich, D. Dissecting the mechanisms of a class of chemical glycosylation using primary ¹³C kinetic isotope effects. Nature Chem. 2012, 4, 663–667. (b) Huang, M.; Retailleau, P.; Bohé, L.; Crich, D. Cation clock permits distinction between the mechanisms of α- and β-O- and β-C-glycosylation in the mannopyranose series: evidence for the existence of a mannopyranosyl oxocarbenium ion. J. Am. Chem. Soc. 2012, 134, 14746–14749. (c) Huang, M.; Furukawa, T.; Retailleau, P.; Crich, D.; Bohé, L. Further studies on cation clock reactions in glycosylation: observation of a configuration specific intramolecular sulfenyl transfer and isolation and characterization of a tricyclic acetal. Carbohydr. Res. 2016, 427, 21–28.
  • Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Stereocontrolled Photoinduced Glycosylation Using an Aryl Thiourea as an Organo photoacid. Org. Lett. 2016, 18, 3190–3193.
  • Kwan, E. E.; Park, Y.; Besser, H. A.; Anderson, T. L.; Eric, N.; Jacobsen, E. N. Sensitive and Accurate 13C Kinetic Isotope Effect Measurements Enabled by Polarization Transfer. J. Am. Chem. Soc. 2017, 139, 43–46.
  • van der Vorm, S.; Hansen, T.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C. The influence of acceptor nucleophilicity on the glycosylation reaction mechanism. Chem. Sci. 2017, 8, 1867–1875.
  • Nukada, T.; Bérces, A.; Zgierski, M.; Whitfield, D. M. Exploring the Mechanism of Neighboring Group Assisted Glycosylation Reactions. J. Am. Chem. Soc. 1998, 120, 13291–13295.
  • (a) Morales-Serna, J. A.; Díaz, Y.; Matheu, M. I; Castillón, S. Efficient Synthesis of β-Glycosphingolipids by Reaction of Stannylceramides with Glycosyl Iodides Promoted by TBAI/AW 300 Molecular Sieves. Eur. J. Org. Chem. 2009, 3849–3852. (b) Spassova, M. K.; Bornmann, W. G.; Ragupathi, G.; Sukenick, G.; Livingston, P. O.; Danishefsky, S. J. Synthesis of selected LeY and KH-1 analogues: a medicinal chemistry approach to vaccine optimization. J. Org. Chem. 2005, 70, 3383–3395. (c) Hodosi, G.; Kováč, P. Glycosylation via locked anomeric configuration: stereospecific synthesis of oligosaccharides containing the beta-D-mannopyranosyl and beta-L-rhamnopyranosyl linkage. Carbohydr. Res. 1998, 308, 63–75.
  • (a) Oshima, K.; Aoyama, Y. Regiospecific Glycosidation of Unprotected Sugars via Arylboronic Activation. J. Am. Chem. Soc. 1999, 121, 2315–2316. (b) Tanaka, M.; Takahashi, D.; Toshima, K. 1,2-cis-α-Stereoselective Glycosylation Utilizing a Glycosyl-Acceptor-Derived Borinic Ester and Its Application to the Total Synthesis of Natural Glycosphingolipids. Org. Lett. 2016, 18, 5030–5033. (c) D'Angelo, K. A.; Taylor, M. S. Borinic Acid Catalyzed Stereo- and Regioselective Couplings of Glycosyl Methanesulfonates. J. Am. Chem. Soc. 2016, 138, 11058–11066. (d) Mancini, R. S.; McClary, C. A.; Anthonipillai, S.; Taylor, M. S. Organoboron-Promoted Regioselective Glycosylations in the Synthesis of a Saponin-Derived Pentasaccharide from Spergularia ramosa. J. Org. Chem. 2015, 80, 8501–8510. (e) Nishi, N.; Nashida, J.; Kaji, E.; Takahashi, D.; Toshima, K. Regio- and stereoselective β-mannosylation using a boronic acid catalyst and its application in the synthesis of a tetrasaccharide repeating unit of lipopolysaccharide derived from E. coli O75. Chem. Commun. 2017, 53, 3018–3021.
  • (a) Cao, S.; Meunier, S. J.; Anderson, F. O.; Letellier, M.; Roy, R. Mild stereoselective syntheses of thioglycosides under PTC conditions and their use as active and latent glycosyl donors. Tetrahedron Asymm. 1994, 5, 2303–2312. (b) Lewis, P.; Kaltia, S.; Wähälä, K. The phase transfer catalysed synthesis of isoflavone-O-glucosides. J. Chem. Soc. Perkin Tran. 1. 1998, 2481–2484.
  • (a) Toshima, K. Novel glycosylation methods and their application to natural products synthesis. Carbohydr. Res. 2006, 341, 1282–1297.
  • (a) Beaver, M. G.; Woerpel, K. A. Erosion of stereochemical control with increasing nucleophilicity: O-glycosylation at the diffusion limit. J. Org. Chem. 2010, 75, 1107–1118. (b) Richard, J. P.; Williams, K. B.; Amyes, T. L. Intrinsic Barriers for the Reactions of an Oxocarbenium Ion in Water. J. Am. Chem. Soc. 1999, 121, 8403–8404. (c) Richard, J. P.; Tsuji, Y. Dynamics for Reaction of an Ion Pair in Aqueous Solution:  The Rate Constant for Ion Pair Reorganization. J. Am. Chem. Soc. 2000, 122, 3963–3964.
  • Cumpstey, I. On a so-called “kinetic anomeric effect” in chemical glycosylation. Org. Biomol. Chem. 2012, 10, 2503–2508.
  • (a) Smith, D. M.; Woerpel, K. A. Electrostatic interactions in cations and their importance in biology and chemistry. Org. Biomol. Chem. 2006, 4, 1195–1201. (b) Lucero, C. G.; Woerpel, K. A. Stereoselective C-glycosylation reactions of pyranoses: the conformational preference and reactions of the mannosyl cation. J. Org. Chem. 2006, 71, 2641–2647. (c) Shenoy, S. R.; Smith, D. M.; Woerpel, K. A. Nucleophilic additions of trimethylsilyl cyanide to cyclic oxocarbenium ions: evidence for the loss of stereoselectivity at the limits of diffusion control. J. Am. Chem. Soc. 2006, 128, 8671–8677.
  • Yamabe, S.; Tsuchida, N. A computational study of the role of hydrogen bonds in SN1 and E1 reactions. J. Comput. Chem. 2004, 25, 598–608.
  • (a) Lopez, C. S.; Faza, O. N.; De Proft, F.; Kolocouris, A. Assessing the attractive/repulsive force balance in axial cyclohexane C-Hax ···Yax contacts: A combined computational analysis in monosubstituted cyclohexanes. J. Comput. Chem. 2016, 37, 2647–2658. (b) Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154.
  • (a) Hosoya, T.; Kosma, P.; Rosenau, T. Theoretical study on the effects of a 4,6-O-diacetal protecting group on the stability of ion pairs from D-mannopyranosyl and D-glucopyranosyl triflates. Carbohydr. Res. 2015, 411, 64–69. (b) Hosoya, T.; Takano, T.; Kosma, P.; Rosenau, T. Theoretical foundation for the presence of oxacarbenium ions in chemical glycoside synthesis. J. Org. Chem. 2014, 79, 7889–7894. (c) Hosoya, T.; Kosma, P.; Rosenau, T. Contact ion pairs and solvent-separated ion pairs from D-mannopyranosyl and D-glucopyranosyl triflates. Carbohydr. Res. 2015, 401, 127–131.
  • Whitfield, D. M. Plausible transition states for glycosylation reactions. Carbohydr. Res. 2012, 356, 180–190.
  • Nukada, T.; Bérces, A.; Whitfield, D. M. Can the stereochemical outcome of glycosylation reactions be controlled by the conformational preferences of the glycosyl donor? Carbohydr. Res. 2002, 337, 765–774.
  • (a) Loerbroks, C.; Rinaldi, R.; Thiel, W. The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry. Chem. Eur. J. 2013, 19, 16282–16294. (b) Bennet, A. J.; Sinnott, M. L. Complete Kinetic Isotope Effect Description of Transition States for Acid-Catalyzed Hydrolyses of Methyl α- and β-Glucopyranosides. J. Am. Chem. Soc. 1986, 108, 7287–7294. (c) Assary, R. S.; Kim, T.; Low, J. J.; Greeley, J.; Curtiss, L. A. Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods. Phys. Chem. Chem. Phys. 2012, 14, 16603–16611.
  • Perst, H. Oxonium Ions in Organic Chemistry , Verlag Chemie Academic Press Weinheim, 1971.
  • Park, S.-Y.; Lee, Y. M.; Kwac, K.; Jung, Y.; Kwon, O.-H. Alcohol Dimer is Requisite to Form an Alkyl Oxonium Ion in the Proton Transfer of a Strong (Photo)Acid to Alcohol. Chem. Eur. J. 2016, 22, 4340–4344.
  • (a) Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. Glycosylation of Unreactive Substrates. J. Am. Chem. Soc. 1989, 111, 6881–6882. (b) Yan, L.; Kahne, D. Generalizing Glycosylation:  Synthesis of the Blood Group Antigens Lea, Leb, and Lex Using a Standard Set of Reaction Conditions. J. Am. Chem. Soc. 1996, 118, 9239–9248. (c) Whitfield, D. M.; Ruzicka, C. J.; Carver, J. P.; Krepinsky, J. J. Syntheses of model oligosaccharides of biological significance. 9. Syntheses of trideuteriomethyl di-3,6-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-β-D-galactopyranoside: the I antigen branch-point trisaccharide and related disaccharides. Can. J. Chem. 1987, 65, 693–703. (d) Crich, D.; Smith, M.; Yao, Q.; Picione, J. 2,4,6-Tri-tert-butylpyrimidine (TTBP): A Cost Effective, Readily Available Alternative to the Hindered Base 2,6-Di-tert-butylpyridine and its 4-Substituted Derivatives in Glycosylation and Other Reactions. Synthesis. 2001, 323–326.
  • Whitfield, D. M. Progress in the synthesis of complex carbohydrate chains of plant and microbial polysaccharides. Transworld Research Network, Kerala, India, Ed. Nikolay E. Nifantiev, 2009, 431–463.
  • Adinolfi, M.; Barone, G.; Iadonisi, A.; Schiattarella, M. Activation of glycoyl trihaloacetimidates with acid-washed molecular sieves in the glycosidation reaction. Org. Lett. 2003, 5, 987–989.
  • (a) Broussard, L.; Shoemaker, D. P. The Structures of Synthetic Molecular Sieves. J. Am. Chem. Soc. 1960, 82, 1041–1051. (b) Matsuo, J.-I.; Shirahata, T.; Omura, S. Catalytic and stereoselective glycosylation with glycosyl N-trichloroacetylcarbamate. Tet. Lett. 2006, 47, 267–271. (c) Shirahata, T.; Kojima, A.; Teruya, S.; Matsuo, J.-I.; Yokoyama, M.; Unagiike, S.; Sunazuka, T.; Makino, K.; Kaji, E.; Omura, S.; Kobayashi, Y. Sequential one-pot glycosylation with glycosyl N-trichloroacetylcarbamate and trichloroacetate including dehydrative approach using 1-hydroxy sugars. Tetrahedron. 2011, 67, 6482–6496.
  • (a) Gunbas, G.; Sheppard, W. L.; Fettinger, J. C.; Olmstead, M. M.; Mascal, M. Extreme oxatriquinanes: structural characterization of α-oxyoxonium species with extraordinarily long carbon-oxygen bonds. J. Am. Chem. Soc. 2013, 135, 8173–8176. (b) Gunbas, G.; Hafezi, N.; Sheppard, W. L.; Olmstead, M. M.; Stoyanova, I. V.; Tham, F. S.; Meyer, M. P.; Mascal, M. Extreme oxatriquinanes and a record C-O bond length. Nature Chem. 2012, 4, 1018–1023.
  • Banait, N. S.; Jencks, W. P. Reactions of anionic nucleophiles with α-D-glucopyranosyl fluoride in aqueous solution through a concerted, ANDN (SN2) mechanism. J. Am. Chem. Soc. 1991, 113, 7951–7958.
  • Chan, J.; Tang, A.; Bennet, A. J. A stepwise solvent-promoted SNi reaction of α-D-glucopyranosyl fluoride: mechanistic implications for retaining glycosyltransferases. J. Am. Chem. Soc. 2012, 134, 1212–1220.
  • (a) Lee, S. S.; Hong, S. Y.; Errey, J. C.; Izumi, A.; Davies, G. J.; Davis, B. G. Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase. Nature Chem. Biol. 2011, 7, 631–638. (b) Gómez, H.; Polyak, I.; Thiel, W.; Lluch, J. M.; Masgrau, L. Retaining glycosyltransferase mechanism studied by QM/MM methods: lipopolysaccharyl-α-1,4-galactosyltransferase C transfers α-galactose via an oxocarbenium ion-like transition state. J. Am. Chem. Soc. 2012, 134, 4743–4752. (c) Ardevol, A.; Rovira, C. Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations. J. Am. Chem. Soc. 2015, 137, 7528–7547.
  • Sorgenfrei, N.; Hioe, J.; Greindl, J.; Rothermel, K.; Morana, F.; Lokesh, N.; Gschwind, R.M. NMR Spectroscopic Characterization of Charge Assisted Strong Hydrogen Bonds in Brønsted Acid Catalysis. J. Am. Chem. Soc. 2016, 138, 16345–16354.
  • (a) Zapata, A.; Bernet, B.; Vasella, A. Regioselective glycosidation of deoxy- and fluorodeoxy-myo-inositol derivatives. Helvetica Chimica Acta.1996, 79, 1169–1191. (b) Crich, D.; Dudkin, V. Why are the hydroxy groups of partially protected N-acetylglucosamine derivatives such poor glycosyl acceptors, and what can be done about it? A comparative study of the reactivity of N-acetyl-, N-phthalimido-, and 2-azido-2-deoxy-glucosamine derivatives in glycosylation. 2-Picolinyl ethers as reactivity-enhancing replacements for benzyl ethers. J. Am. Chem. Soc. 2001, 123, 6819–6825.
  • (a) Whitfield, D. M.; Douglas, S. P.; Tang, T.-H.; Csizmadia, I. G.; Pang, H. Y. S.; Moolten, F. L.; Krepinsky, J. J. Differential reactivity of carbohydrate hydroxyls in glycosylations. II. The likely role of intramolecular hydrogen bonding on glycosylation reactions. Galactosylation of nucleoside 5′-hydroxyls for the syntheses of novel potential anticancer agents. Can. J. Chem. 1994, 72, 2225–2238. (b) Whitfield, D. M.; Meah, M. Y.; Krepinsky, J. J. Ultrasonic Agitation Accelerates cis-Glycosylation with Heterogeneous Promoters. Collect. Czech. Chem. Comm. 1993, 58, 159–172.
  • Gervay-Hague, J. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation. Acc. Chem. Res. 2016, 49, 35–47.
  • (a) Kuczynska, K.; Cmoch, P.; Rarova, L.; Okleštk̓ova, J.; Korda, A.; Pakulski, Z.; Strnad, M. Influence of intramolecular hydrogen bonds on regioselectivity of glycosylation. Synthesis of lupane-type saponins bearing the OSW-1 saponin disaccharide unit and its isomers. Carbohydr. Res. 2016, 423, 49–69. (b) Liao, J.-X.; Fan, N.-L.; Liu, H.; Tu, Y.-H.; Sun, J.-S. Highly efficient synthesis of flavonol 5-O-glycosides with glycosyl ortho-alkynylbenzoates as donors. Org. Biomol. Chem. 2016, 14, 1221–1225.
  • (a) Fréchet, J. M.; Scheurch, C. Solid-phase synthesis of oligosaccharides. II. Steric control by C-6 substituents in glucoside syntheses. J. Am. Chem. Soc. 1972, 94, 604–609. (b) Lucas, T. J.; Scheurch, C. Methanolysis as a model reaction for oligosaccharide synthesis of some 6-substituted 2,3,4-tri-O-benzyl-D-galactopyranosyl derivatives. Carbohydr. Res. 1975, 39, 39–45. (c) Eby, R.; Scheurch, C. The use of positively charged leaving-groups in the synthesis of α-D-linked glucosides. Synthesis of methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside. Carbohydr. Res. 1975, 39, 33–38. (d) Marousěk, V.; Lucas, T. J.; Wheat, P. E.; Scheurch, C. The influence of reactant structure and solvent on galactoside syntheses from galactosyl sulfonates. Carbohydr. Res. 1978, 60, 85–96.
  • (a) Tokimoto, H.; Fujimoto, Y.; Fukase, K.; Kusumoto, S. Stereoselective glycosylation using the long-range effect of a [2-(4-phenylbenzyl)oxycarbonyl]benzoyl group. Tetrahedron Asymm. 2005, 16, 441–447. (b) Houdier, S.; Vottero, P. J. A. Steric efffect of a bulky 6-subsituent in the I+-promoted glycosylation with pent-4-enyl and thioethyl glycosides. Carbohydr. Res. 1992, 232, 349–352.
  • (a) Braccini, I.; Derouet, C.; Esnault, J.; du Penhoat, C. H.; Mallet, J.-M.; Michon, V.; Sinaÿ, P. Conformational analysis of nitrilium intermediates in glycosylation reactions. Carbohydr. Res. 1993, 246, 23–41. (b) Ratcliffe, A. J.; Fraser-Reid, B. Generation of α-D-Glucopyranosylacetonitrilium Ions. Concerning the Reverse Anomeric Effect. J. Chem. Soc. Perkin Tran. 1. 1990, 747–750.
  • (a) Richard, J. P.; Toteva, M. M.; Amyes, T. L. What is the stabilizing interaction with nucleophilic solvents in the transition state for solvolysis of tertiary derivatives: nucleophilic solvent participation or nucleophilic solvation? Org. Lett. 2001, 3, 2225–2228. (b) Fraschetti, C.; Novara, F. R.; Filippi, A.; Trout, N. A.; Adcock, W.; Sorensen, T. S.; Speranza, M. Gas-phase diastereoselectivity of secondary 5-substituted (X)-adamant-2-yl (X = F, Si(CH(3))(3)) cations. J. Org. Chem. 2007, 72, 4077–4083.
  • (a) Crich, D.; Xu, H. D. Direct Stereocontrolled Synthesis of 3-Amino-3-deoxy-β-Mannopyranosides:  Importance of the Nitrogen Protecting Group on Stereoselectivity. J. Org. Chem. 2007, 72, 5183–5192. (b) Schmidt, T. H.; Madsen, R. Glycosylations Directed by the Armed-Disarmed Effect with Acceptors Containing a Single Ester Group. Eur. J. Org. Chem. 2007, 3935–3941.
  • Satoh, H.; Hansen, H. S.; Manabe, S.; van Gunsteren, W. F.; Hunenberger, P. H. Theoretical Investigation of Solvent Effects on Glycosylation Reactions: Stereoselectivity Controlled by Preferential Conformations of the Intermediate Oxacarbenium-Counterion Complex. J. Chem. Theor. Comput. 2010, 6, 1783–1797.
  • Crich, D.; Li, M. Revisiting the armed-disarmed concept: the importance of anomeric configuration in the activation of S-benzoxazolyl glycosides. Org. Lett. 2007, 9, 4115–4118.
  • Christensen, H. M.; Oscarson, S.; Jensen, H. H. Common side reactions of the glycosyl donor in chemical glycosylation. Carbohydr. Res. 2015, 408, 51–95.
  • Kochetkov, N. K.; Khorlin, A. J.; Bochkov, A. F. A new method of glycosylation. Tetrahedron. 1967, 23, 693–707.
  • Yang, Y.; Lin, W.; Yu, B. Rearrangement of sugar 1,2-orthoesters to glycosidic products: a mechanistic implication. Carbohydr. Res. 2000, 329, 879–884.
  • (a) Nukada, T.; Bérces, A.; Whitfield, D. M. Acyl Transfer as a Problematic Side Reaction in Polymer-Supported Oligosaccharide Synthesis. J. Org. Chem. 1999, 64, 9030–9045. (b) Joosten, A.; Boultadakis-Arapinis, M.; Gandon, V.; Micouin, L.; Lecourt, T. Substitution of the Participating Group of Glycosyl Donors by a Halogen Atom: Influence on the Rearrangement of Transient Orthoesters Formed during Glycosylation Reactions. J. Org. Chem. 2017, 82, 3291–3297.
  • Whitfield, D. M.; Nukada, T. DFT studies of the role of C-2-O-2 bond rotation in neighboring-group glycosylation reactions. Carbohydr. Res. 2007, 342, 1291–1304.
  • Bérces, A.; Whitfield, D. M.; Nukada, T.; do Santos, I. Z.; Obuchowska, A.; Krepinsky, J. J. Is acyl migration to the aglycon avoidable in 2-acyl assisted glycosylation reactions? Can. J. Chem. 2004, 82, 1157–1171.
  • Mehta, S.; Gilbert, M.; Wakarchuk, W. W.; Whitfield, D. M. Ready access to sialylated oligosaccharide donors. Org. Lett. 2000, 2, 751–753.
  • Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry. 1983, Pergamon Press, New York.
  • Whitfield, D. M. DFT Studies of the Ionization of Alpha and Beta Glycopyranosyl Donors. Carbohydr. Res. 2007, 342, 1726–1740.
  • Whitfield, D. M. In a glycosylation reaction how does a hydroxylic nucleophile find the activated anomeric carbon? Carbohydr. Res. 2015, 403, 69–89.
  • (a) Barresi, F.; Hindsgaul, O. Synthesis of β-Mannopyranosides by Intramolecular Aglycon Delivery. J. Am. Chem. Soc. 1991, 113, 9376–9377. (b) Stork, G; Kim, G. Stereocontrolled Synthesis of Disaccharides via the Temporary Silicon Connection. J. Am. Chem. Soc. 1992, 114, 1087–1088. (c) Bols, M. Stereocontrolled Synthesis of α-Glucosides by Intramolecular Glycosidation. J. Chem. Soc., Chem. Commun. 1992, 913–914. (d) Cox, D. J.; Fairbanks, A. J. Stereoselective synthesis of α-glucosides by neighbouring group participation via an intermediate thiophenium ion. Tetrahedron: Asymm. 2009, 20, 773–780. (e) Singh, G. P.; Watson, A. J. A.; Fairbanks, A. J. Achiral 2-Hydroxy Protecting Group for the Stereocontrolled Synthesis of 1,2-cis-α-Glycosides by Six-Ring Neighboring Group Participation. Org. Lett. 2015, 17, 4376–4379. (f) Fascione, M.; Adshead, S. J.; Stalford, S. A.; Kilner, C. A.; Leach, A. G.; Turnbull, W. B. Stereoselective glycosylation using oxathiane glycosyl donors. Chem. Commun. 2009, 5841–5843. (g) Fascione, M. A.; Turnbull, W. B. Benzyne arylation of oxathiane glycosyl donors. Beilstein J. Org. Chem.2010, 6, No. 19. doi:10.3762/bjoc.6.19.
  • (a) Elferink, H.; Mensink, R. A.; White, P. B.; Boltje, T. J. Stereoselective β-Mannosylation by Neighboring-Group Participation. Angew. Chem. Int. Ed. 2016, 55, 11217–11220. (b) Mensink, R. A.; Elferink, H.; White, P. B.; Pers, N.; Rutjes, F. P. J. T.; Boltje, T. J. A Study on Stereoselective Glycosylations via Sulfonium Ion Intermediates. Eur. J. Org. Chem. 2016, 27, 4656–4667.
  • (a) Boltje, T. J.; Kim, J.-H.; Park, J.; Boons, G.-J. Stereoelectronic effects determine oxacarbenium vs β-sulfonium ion mediated glycosylations. Org. Lett. 2011, 13, 284–287. (b) Gola, G.; Gallo-Rodriguez, C. Synthesis of α-D-Glcp-(1→3)-α-D-Galf-(1→2)-α-L-Rhap constituent of the CPS of Streptococcus pneumoniae 22F. Effect of 3-O-substitution in 1,2-cis α-D-galactofuranosylation. R.S.C. Adv. 2014, 4, 3368–3382. (c) Kim, J.-H.; Yang, H.; Khot, V.; Whitfield, D.; Boons, G.-J. Stereoselective Glycosylations Using (R)- or (S)-(Ethoxycarbonyl)benzyl Chiral Auxiliaries at C-2 of Glycopyranosyl Donors. Eur. J. Org. Chem. 2006, 5007–5028.
  • Fang, T.; Gu, Y.; Huan, W.; Boons, G.-J. Mechanism of Glycosylation of Anomeric Sulfonium Ions. J. Am. Chem. Soc. 2016, 138, 3002–3011.
  • Zhou, J.; Lv, S.; Zhang, D.; Xia, F.; Hu, W. Deactivating Influence of 3-O-Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis. J. Org. Chem. 2017, 82, 2599–2621.
  • Wen, P.; Crich, D. Absence of Stereodirecting Participation by 2-O-Alkoxycarbonylmethyl Ethers in 4,6-O-Benzylidene-Directed Mannosylation. J. Org. Chem. 2015, 80, 12300–12310.
  • Demchenko, A. V.; Rousson, E.; Boons, G.-J. Stereoselective 1,2-cis-galactosylation assisted by remote neighboring group participation and solvent effects. Tetrahedron Lett. 1999, 40, 6523–6526.
  • (a) Baek, J. Y.; Lee, B-Y.; Jo, M. G.; Kim, K. S. β-directing effect of electron-withdrawing groups at O-3, O-4, and O-6 positions and α-directing effect by remote participation of 3-O-acyl and 6-O-acetyl groups of donors in mannopyranosylations. J. Am. Chem. Soc. 2009, 131, 17705–17713. (b) Kim, K. S.; Suk, D. H. Effect of electron-withdrawing protecting groups at remote positions of donors on glycosylation stereochemistry. Reactivity Tuning in Oligosaccharide Assembly. Fraser-Reid, B., López, J.C. Eds. Top. Curr. Chem. 2011, 301, 109–140. (c) Crich, D.; Hu, T. S.; Cai, F. Does neighboring group participation by non-vicinal esters play a role in glycosylation reactions? Effective probes for the detection of bridging intermediates. J. Org. Chem. 2008, 73, 8942–8953.
  • (a) Ma, Y.; Lian, G.; Li, Y.; Yu, B. Identification of 3,6-di-O-acetyl-1,2,4-O-orthoacetyl-α-D-glucopyranose as a direct evidence for the 4-O-acyl group participation in glycosylation. Chem. Commun. 2011, 47, 7515–7517. (b) Kafle, A.; Liu, J.; Cui, L. Controlling the stereoselectivity of glycosylation via solvent effects. Can. J. Chem. 2016, 94, 894–901. (c) Yao, D.; Liu, Y.; Yan, S.; Li, Y.; Hu, C.; Ding, N. Evidence of robust participation by an equatorial 4-O group in glycosylation on a 2-azido-2-deoxy-glucopyranosyl donor. Chem. Commun. 2017, 53, 2986–2989.
  • Gerbst, A. G.; Ustuzhanina, N. E.; Grachev, A. A.; Khatuntseva, E. A.; Tsvetkov, D. E.; Whitfield, D. M.; Bérces, A.; Nifantiev. N. E. Synthesis, NMR, and conformational studies of fucoidan fragments. III. Effect of benzoyl group at O-3 on stereoselectivity of glycosylation by 3-O- and 3,4-Di-O-benzoylated 2-O-benzylfucosyl bromides. J. Carbohydr. Chem. 2001, 20, 821–831.
  • (a) Pistorio, S. G.; Yasomanee, J. P.; Demchenko, A. V. Hydrogen-bond-mediated aglycone delivery: focus on β-mannosylation. Org. Lett. 2014, 16, 716–719. (b) Yasomanee, J. P.; Demchenko, A. V. Effect of remote picolinyl and picoloyl substituents on the stereoselectivity of chemical glycosylation. J. Am. Chem. Soc. 2012, 44, 20097–20102. (c) Liu, Q.-W.; Bin, H.-C.; Yang, J.-S. β-Arabinofuranosylation using 5-O-(2-quinolinecarbonyl) substituted ethyl thioglycoside donors. Org. Lett. 2013, 15, 3974–3977. (d) Yasomanee, J. P.; Parameswar, A. R.; Pornsuriyasak, P.; Rath, N. P.; Demchenko, A. V. 2,3-Di-O-picolinyl building blocks as glycosyl donors with switchable stereoselectivity. Org. Biomol. Chem. 2016, 14, 3159–3169. (e) Yasomanee, J.; Demchenko, A. V. Hydrogen-bond-mediated aglycone delivery (HAD): a highly stereoselective synthesis of 1,2-cis α-D-glucosides from common glycosyl donors in the presence of bromine. Chem. A Eur. J. 2015, 21, 6572–6581. (f) Ruei, J.-H.; Venukumar, P.; Ingle, A. B.; Mong, K. T. C6 picoloyl protection: a remote stereodirecting group for 2-deoxy-β-glycoside formation. Chem. Commun. 2015, 51, 5394–5397. (g) Xu, Y.; Bin, H.-C.; Su, F.; Yang, J.-S. Stereoselective synthesis of aryl 1,2-cis-furanosides and its application to the synthesis of the carbohydrate portion of antibiotic hygromycin A. Tetrahedron Lett. 2017, 58, 1548–1552.
  • Nigudkar, S. S.; Demchenko, A. V. Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem. Sci. 2015, 6, 2687–2704.
  • Kayastha, A. K.; Jia, X. G.; Yasomanee, J. P.; Demchenko, A. V. 6-O-Picolinyl and 6-O-Picoloyl Building Blocks As Glycosyl Donors with Switchable Stereoselectivity. Org. Lett. 2015, 17, 4448–4451.
  • Ionescu, A. R.; Whitfield, D. M.; Zgierski, M. Z.; Nukada, T. Investigations into the role of oxacarbenium ions in glycosylation reactions by ab initio molecular dynamics. Carbohydr. Res. 2006, 341, 2912–2920.
  • (a) Peverati, R.; Truhlar, D. G. Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil. Trans. R. Soc. A. 2014, 372: 20120476. (b) Lage-Estebanez, I.; del Olmo, L.; Lopez, R. L.; de la Vega, M. G. The role of errors related to DFT methods in calculations involving ion pairs of ionic liquids. J. Comput. Chem. 2017, 38, 530–540.
  • Thorsheim, K.; Siegbahn, A.; Johnsson, R. E.; Stålbrand, H.; Manner, S.; Widmalm, G.; Ellervik, U. Chemistry of xylopyranosides. Carbohydr. Res. 2015, 418, 65–88.
  • Heuckendorff, M.; Poulsen, L. T.; Jensen, H. H. Remote Electronic Effects by Ether Protecting Groups Fine-Tune Glycosyl Donor Reactivity. J. Org. Chem. 2016, 81, 4988–5006.
  • (a) Chamberland, S.; Ziller, J. W.; Woerpel, K. A. Structural evidence that alkoxy substituents adopt electronically preferred pseudoaxial orientations in six-membered ring dioxocarbenium ions. J. Am. Chem. Soc. 2005, 127, 5322–5323. (b) Garcia, A.; Otte, D. A. L.; Salamant, W. A.; Sanzone, J. R.; Woerpel, K. A. Influence of Alkoxy Groups on Rates of Acetal Hydrolysis and Tosylate Solvolysis: Electrostatic Stabilization of Developing Oxocarbenium Ion Intermediates and Neighboring-Group Participation to Form Oxonium Ions. J. Org. Chem. 2015, 80, 4470–4480.
  • Garcia, A.; Sanzone, J. R.; Woerpel, K. A. Participation of alkoxy groups in reactions of acetals: violation of the reactivity/selectivity principle in a Curtin-Hammett kinetic scenario. Angew. Chem. Int. Ed. 2015, 54, 12087–12090.
  • (a) Ref. 66. (b) Ref. 65 (c) Bérces, A.; Enright, G.; Nukada, T.; Whitfield, D. M. The conformational origin of the barrier to the formation of neighboring group assistance in glycosylation reactions: a dynamical density functional theory study. J. Am. Chem. Soc. 2001, 123, 5460–5464.
  • Ionescu, A. R.; Bérces, A.; Zgierski, M. Z.; Whitfield, D. M.; Nukada, T. Conformational pathways of saturated six-membered rings. A static and dynamical density functional study. J. Phys. Chem. A. 2005, 109, 8096–8105.
  • (a) Dharuman, S.; Crich, D. Determination of the Influence of Side-Chain Conformation on Glycosylation Selectivity using Conformationally Restricted Donors. Chem. Eur. J. 2016, 22, 4535–4542. (b) Heuckendorff, M.; Jensen, H. H. On the Gluco/Manno Paradox: Practical α-Glucosylations by NIS/TfOH Activation of 4,6-O-Tethered Thioglucoside Donors. Eur. J. Org. Chem. 2016, 5136–5145. (c) Nukada, T.; Bérces, A.; Wang, L. J.; Zgierski, M. Z.; Whitfield, D. M. The two-conformer hypothesis: 2,3,4,6-tetra-O-methyl-mannopyranosyl and -glucopyranosyl oxacarbenium ions. Carbohydr. Res. 2005, 340, 841–852.
  • Whitfield, D. M. Complications of modeling glycosylation reactions: can the anomeric conformation of a donor determine the glycopyranosyl oxacarbenium ring conformation? Carbohydr. Res. 2012, 356, 191–195.
  • Kulkarni, S. S.; Liu, Y.-H.; Hung, S.-C. Neighboring group participation of 9-anthracenylmethyl group in glycosylation: preparation of unusual C-glycosides. J. Org. Chem. 2005, 70, 2808–2811.
  • Ionescu, A. R.; Whitfield, D. M.; Zgierski, M. Z. O-2 Substituted pyranosyl oxacarbenium ions are C-2-O-2 2-fold rotors with a strong syn preference. Carbohydr. Res. 2007, 342, 2793–2800.
  • Totani, K.; Shinoda, Y.; Shiba, M.; Iwamoto, S.; Koizumi, A.; Matsuzaki, Y.; Hirano, M. Silyl-assisted 1,2-cis-α-glucosylation for the synthesis of a triglucoside moiety in high-mannose-type oligosaccharides. R.S.C. Adv. 2015, 5, 75918–75922.
  • Morita, M.; Matsuda, Y.; Endo, T.; Mikami, N.; Fujii, A.; Takahashi, K. Hyperconjugation in diethyl ether cation versus diethyl sulfide cation. Phys. Chem. Chem. Phys. 2015, 17, 23602–23612.
  • Whitfield, D. M. “RN01720 1-Cyclopropylethyl Trichloroacetimidate” in The Encyclopedia of Reagents for Organic Synthesis e-EROS. 2015, John Wiley & Sons Ltd.
  • Yuan, J.; Frauenrath, H. Synthesis and 13C NMR Spectroscopy of Model Compounds for the Microstructure Analysis of Poly(Vinyl Glycoside)s. Eur. J. Org. Chem. 2009, 43–52.
  • Yu, S.-H.; Sprott, G. D.; Dicaire, C. J.; Whitfield, D. M. Development of new glycosylation methodologies for the synthesis of archaeal-derived glycolipid adjuvants. Carbohydr. Res. 2010, 345, 214–229.
  • (a) Hasty, S. J.; Ranade, S. C.; Demchenko, A. V. A study of silver (I) perchlorate as an effective promoter for chemical glycosylation with thioimidates and thioglycosides. Rep. Org. Chem. 2014, 4, 1–10. (b) Mukaiyama, T.; Matsubara, K. Stereoselective Glycosylation Reaction Starting from 1-O-Trimethylsilyl Sugars by Using Diphenyltin Sulfide and a Catalytic Amount of Active Acidic Species. Chem. Lett. 1992, 1041–1044. (c) Fukase, K.; Hasuoka, A.; Kinoshita, I.; Aoki, Y.; Kusumoto, S. A stereoselective glycosidation using thioglycosides, activation by combination of N-bromosuccinimide and strong acid salts. Tetrahedron. 1995, 51, 4923–4932. (d) Kitov, P. L.; Tsvetkov, Y. E.; Backinowsky, L. V.; Kochetkov, N. K. Linear dependence of the glycosylation stereoselectivity of O-trityl ethers by carbohydrate 1,2-O-cyanoalkylidene derivatives on anion concentrations. Effect of substituents in the glycosyl acceptor and a new mechanism of 1,2-cis-glycosides formation. Rus. Chem. Bul. 1995, 44, 1119–1124.
  • Pike, S. J.; Hutchinson, J. J.; Hunter, C. A. H-Bond Acceptor Parameters for Anions. J. Am. Chem. Soc. 2017, 139, 6700–6706.
  • Prakash, G. K. S.; Mathew, T.; Marinez, E. R.; Esteves, P. M.; Rasul, G.; Olah, G. A. BF3.2CF3CH2OH (BF3.2TFE), an efficient superacidic catalyst for some organic synthetic transformations. J. Org. Chem. 2006, 71, 3952–3958.
  • Kumar, A.; Kumar, V.; Dere, R. T.; Schmidt, R. R. Glycoside bond formation via acid-base catalysis. Org. Lett. 2011, 13, 3612–3615.
  • Chang, S.-S.; Shih, C.-H.; Lai, K.-C.; Mong, K. K. T. Rate-dependent inverse-addition β-selective mannosylation and contiguous sequential glycosylation involving β-mannosidic bond formation. Chem. Asian J. 2010, 5, 1152–1162.
  • Peng, P.; Schmidt. R. R. An Alternative Reaction Course in O-Glycosidation with O-Glycosyl Trichloroacetimidates as Glycosyl Donors and Lewis Acidic Metal Salts as Catalyst: Acid-Base Catalysis with Gold Chloride-Glycosyl Acceptor Adducts. J. Am. Chem. Soc. 2015, 137, 12653–12659.
  • Peng, P.; Schmidt, R. R. Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology. Acc. Chem. Res. 2017, 50, 1171–1183.
  • Sun, L.; Wu, X.; Xiong, D.-C.; Ye, X.-S. Stereoselective Koenigs-Knorr Glycosylation Catalyzed by Urea. Angew. Chem. Int. Ed. 2016, 55, 8041–8044.
  • Asprion, N.; Hasse, H.; Maurer, G. FT-IR spectroscopic investigations of hydrogen bonding in alcohol–hydrocarbon solutions. Fluid Phase Equil. 2001, 186, 1–25.
  • Kononov, L. O.; Malysheva, N. M.; Orlova, A. V. Stereoselectivity of Glycosylation May Change During the Reaction Course: Highly α-Stereoselective Sialylation Achieved by Supramer Approach. Eur. J. Org. Chem. 2009, 611–616. 1
  • Kononov, L. O.; Fedina, K. G.; Orlova, A. V.; Kondakov, N. N.; Abronina, P. I.; Podvalnyy, N. M.; Chizhov, A. O. Bimodal concentration-dependent reactivity pattern of a glycosyl donor: Is the solution structure involved? Carbohydr. Res. 2017, 437, 28–35.
  • (a) Laloo, J. Z. A.; Rhyman, L.; Ramasami, P.; Bickelhaupt, F. M.; de Cûzar, A. Ion-Pair SN2 Substitution: Activation Strain Analyses of Counter-Ion and Solvent Effects. Chem. Eur. J. 2016, 22, 4431–4439. (b) Fernández, I.; Bickelhaupt, F. M. The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem. Soc. Rev. 2014, 43, 4953–4967.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.