429
Views
3
CrossRef citations to date
0
Altmetric
Articles

α-Selective synthesis of 2-deoxy-glycosides and disaccharides

, , , , , , , & show all
Pages 128-152 | Received 14 Nov 2017, Accepted 07 Feb 2018, Published online: 19 Mar 2018

References

  • de Lederkremer, R. M.; Marino, C. Deoxy sugars: occurrence and synthesis. Adv. Carbohydr. Chem. Biochem. 2007, 61, 143–216.
  • Kirschning, A.; Bechthold, A. F. W.; Rohr, J. Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides. Top. Curr. Chem. 1997, 188, 1–84.
  • Weymouth-Wilson, A. C. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 1997, 14, 99–110.
  • Butler, M. S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153.
  • Carriga-Canut, M.; Schoenike, B.; Qozi, R.; Bergendahl, K.; Daley, T. J.; Pfender, R. M.; Morrison, J. F.; Ockuly, J.; Stafstrom, C.; Sutula, T.; Roopra, A. 2-Deoxy-D-glucose reduces epilepsy progression by NSF-CtBP-dependent metabolic regulation of chromatin structure. Nat. Neurosci. 2006, 9, 1382–1387.
  • Simons, A. L.; Ahmad, I. M.; Mattson, D. M.; Dornfeld, K. J.; Spitz, D. R. 2-deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res. 2007, 67, 3364–3370.
  • Lin, X.; Zhang, F.; Bradbury, M.; Kaushal, A.; Li, L.; Spitz, D. R.; Aft, R. L.; Gius, D. 2-deoxy-d-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res. 2003, 63, 3413–3417.
  • Krol, E.; Wandzik, I.; Szeja, W.; Grynkiewica, G.; Szewczyk, B. In vitro antiviral activity of some uridine derivatives of 2-deoxy sugars against classical swine fever virus. Antiviral Res. 2010, 86, 154–162.
  • Krol, E.; Wandzik, I.; Gromadzka, B.; Nidzworski, D.; Rychlowska, M. Anti-influenza A virus activity of uridine derivatives of 2-deoxy sugars. Antiviral Res. 2013, 100, 90–97.
  • Kren, V.; Rezanka, T. Sweet antibiotics-the role of glycosidic residues in antibiotic and antitumor activity and their randomization. FEMS Microbiol. Rev. 2008, 32, 858–889.
  • Langenhan, J. M.; Griffith, B. R.; Thorson, J. S. Neoglycorandomization and chemoenzymatic glycorandomization: two complementary tools for natural product diversification. J. Nat. Prod. 2005, 68, 1696–1711.
  • Castro-Palomino, J. C.; Schmidt, R. R. Convenient synthesis of α-and β-2-deoxyglycosides. Synlett 1998, 5, 501–503.
  • Marzabadi, H.; Franck, R. W. The synthesis of 2-deoxyglycosides: 1988–1999. Tetrahedron. 2000, 56, 8385–8417.
  • Kirschning, A.; Jesberger, M.; Schöning, K.-U. Concepts for the total synthesis of deoxy sugars. Synthesis 2001, 4, 507–540.
  • Hou, D. J.; Lowary, T. L. Recent advances in the synthesis of 2-deoxy-glycosides. Carbohydr. Res. 2009, 344, 1911–1940.
  • P. P.; Geng, Y. Q.; Schnetmann, I. G.; Schmidt, R. R. 2-nitro-thioglycosides: α- and β-selective generation and their potential as β-selective glycosyl donors. Org. Lett. 2015, 17, 1421–1424.
  • Sherry, B. D.; Loy, R. N.; Toste, F. D. Rhenium(V)-catalyzed synthesis of 2-deoxy-α- glycosides. J. Am. Chem. Soc. 2004, 126, 4510–4511.
  • Pachamuthu, K.; Vankar, Y. D. Ceric ammonium nitrate-catalyzed tetrahydropyranylation of alcohols and synthesis of 2-deoxy-o-glycosides. J. Org. Chem. 2001, 66, 7511–7513.
  • Mcdonald, F. E.; Reddy, K. S. Convergent synthesis of digitoxin: stereoselective synthesis and glycosylation of the digoxin trisaccharide glycal. Angew. Chem. Int. Ed. 2001, 40, 3653–3655.
  • Balmond, E.; Benito-Alifonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M. C. A 3,4-trans-fused cyclic protecting group facilitates α-selective catalytic synthesis of 2-deoxyglycosides. Angew. Chem. Int. Ed. 2014, 53, 8190–8194.
  • Hsu, M.-Y.; Liu, Y.-P.; Lam, S.; Lin, S.-C.; Wang, C.-C. TMSBr-mediated solvent- and work-up-free synthesis of α-2-deoxyglycosides from glycals. Beilstein J. Org. Chem. 2016, 12, 1758–1764.
  • Yuan, W.; Liu, Y. L.; Li, C. B. A rapid and diastereoselective synthesis of 2-deoxy-2-iodo-α-glycosides and its mechanism for diastereoselectivity. Synlett 2017, 15, 1975–1978.
  • Kim, K. S.; Park, J.; Lee, Y. J.; Seo, Y. S. Dual stereoselectivity of 1-(2'-carboxy) benzyl 2-deoxyglycosides as glycosyl donors in the direct construction of 2-deoxyglycosyl linkages. Angew. Chem. Int. Ed. 2003, 42, 459–462.
  • Toshima, K.; Nagai, H.; Kasumi, K.; Kawahara, K.; Matsumura, S. Stereocontrolled glycosidations using a heterogeneous solid acid, sulfated zirconia, for the direct syntheses of α- and β-manno- and 2-deoxyglucopyranosides. Tetrahedron 2004, 60, 5331–5339.
  • Jaunzems, J.; Sourkouni-Argirusi, G.; Jesberger, M.; Kirschning, A. Anomeric activation of thioglycosides and preparation of deoxyglycosides using polymer-bound iodate(I) complexes. Tetrahedron Lett. 2003, 44, 637–639.
  • Lear, M. J.; Yoshimura, F.; Hirama, M. A direct and efficient α-selective glycosylation protocol for the kedarcidin sugar, L-mycarose: AgPF6 as a remarkable activator of 2-deoxythioglycosides. Angew. Chem. Int. Ed. 2001, 40, 946–949.
  • Qiu, S. F.; Zhang, W.; Sun, G. S.; Wang, Z. F.; Zhang, J. B. A facile and direct glycosidation method for the synthesis of 2-deoxy α-rhamnosides catalyzed by ferric chloride. ChemistrySelect. 2016, 1, 4840–4844.
  • Hou, D. J.; Lowary, T. L. 2,3-Anhydrosugars in glycoside bond synthesis. Application to 2,6-dideoxypyranosides. J. Org. Chem. 2009, 74, 2278–2289.
  • Lu, Y. S.; Li, Q.; Zhang, L. H.; Ye, X.-S. Highly direct α-selective glycosylations of 3,4-O-carbonate-protected 2-deoxy- and 2,6-dideoxythioglycosides by preactivation protocol. Org. Lett. 2008, 10, 3445–3448.
  • Chen, J.-H.; Ruei, J.-H.; Mong, K.-K. T. Iterative α-glycosylation strategy for 2-deoxy- and 2,6-dideoxysugars: application to the one-pot synthesis of deoxysugar-containing oligosaccharides. Eur. J .Org. Chem. 2014, 2014, 1827–1831.
  • Zeng, J.; Sun, G.; Yao, W.; Zhu, Y.; Wang, R.; Cai, L.; Liu, K.; Zhang, Q.; Liu, X. W.; Wan, Q. A Metallaanthracene and derived metallaanthraquinone. Angew. Chem., Int. Ed. 2017, 56, 1–6.
  • Li, X.; Zhu, J. Glycosylation via transition-metal catalysis: challenges and opportunities. Eur. J. Org. Chem. 2016, 4724–4767.
  • McKay, M. J.; Nguyen, H. M. Recent advances in transition metal-catalyzed glycosylation. ACS Catal. 2012, 2, 1563–1595.
  • Yang, G. F.; Wang, Q. B.; Luo, X. S.; Zhang, J. B.; Tang, J. Facile TMSOTf-catalyzed preparation of 2-deoxy α-O-aryl-D-glycosides from glycosyl acetates. Glycoconj. J. 2012, 29, 453–456.
  • Zhou, J. F.; Chen, H. S.; Shan, J. J.; Li, J.; Yang, G. F.; Chen, X.; Xin, K. Y.; Zhang, J. B.; Tang, J. FeCl3·6H2O/C: An efficient and recyclable catalyst for the synthesis of 2,3-unsaturated O- and S-glycosides. J. Carbohydr. Chem. 2014, 33, 313–325.
  • Paul, S.; Jayaraman, N. Synthesis of aryl-2-deoxy-D-lyxo/arabino-hexopyranosides from 2-deoxy-1-thioglycosides. Carbohydr. Res. 2007, 342, 1305–1314.
  • Yang, X.; Fu, B.; Yu, B. Total synthesis of landomycin A, a potent antitumor angucycline antibiotic. J. Am. Chem. Soc. 2011, 133, 12433–12435.
  • Hatch, R. P.; Shringarpure, J. S.; Weinreb, M. Studies on total synthesis of the olivomycins. J. Org. Chem. 1978, 43, 4172–4177.
  • Thayer, D. A.; Wong, C. H. Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic Glycosylation and chemical diversification strategy. Chem. Asian J. 2006, 1, 445–452.
  • Zhang, S.; Liu, X. B.; Bawa-Khalfe, T.; Lu, L.-S.; Lyu, Y. L.; Liu, L. F.; Yeh, E. T. H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Med. 2012, 18, 1639–1642.
  • Wang, D.-D.; Li, X.-S.; Bao, Y.-Z.; Liu, J.; Zhang, X.-K.; Yao, X.-S.; Sun, X.-L.; Tang, J.-S. Synthesis of MeON-neoglycosides of digoxigenin with 6-deoxy- and 2,6-dideoxy-D-glucose derivatives and their anticancer activity. Bioorg. & Med. Chem. Lett. 2017, 27, 3359–3364.
  • Kuroda, M.; Mimaki, Y.; Sashida, Y.; Hirano, T.; Oka, K.; Dobashi, A.; Li, H.; Harada, N. Novel cholestane glycosides from the bulbs of ornithogalum saundersiae and their cytostatic activity on leukemia HL-60 and MOLT-4 cells. Tetrahedron 1997, 53, 11549–11562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.