219
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

An extensive review of studies on mycobacterium cell wall polysaccharide-related oligosaccharides – part II: Synthetic studies on complex arabinofuranosyl oligosaccharides carrying other functional motifs and related derivatives and analogs

, ORCID Icon & ORCID Icon
Pages 335-382 | Received 09 Mar 2019, Accepted 09 Jun 2019, Published online: 24 Jun 2019

References

  • Chatterjee, D.; Bozic, C. M.; Mcneil, M.; Brennan, P. J. Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J. Biol. Chem. 1991, 266, 9652–9660.
  • Chatterjee, D.; Roberts, A. D.; Lowell, K.; Brennan, P. J.; Orme, I. M. Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect. Immun. 1992, 60, 1249–1253.
  • Briken, V.; Porcelli, S. A.; Besra, G. S.; Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: From biogenesis to modulation of the immune response. Mol. Microbiol. 2004, 53, 391–403. DOI: 10.1111/j.1365-2958.2004.04183.x.
  • Chan, J.; Fan, X. D.; Hunter, S. W.; Brennan, P. J.; Bloom, B. R. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect. Immun. 1991, 59, 1755–1761.
  • Sibley, L. D.; Hunter, S. W.; Brennan, P. J.; Krahenbuhl, J. L. Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infect. Immun. 1988, 56, 1232–1236.
  • Kaplan, G.; Gandhi, R. R.; Weinstein, D. E.; Levis, W. R.; Patarroyo, M. E.; Brennan, P. J.; Cohn, Z. A. Mycobacterium leprae antigen-induced suppression of T Cell proliferation in vitro. J. Immunol. 1987, 138, 3028–3034.
  • Spencer, J. S.; Kim, H. J.; Wheat, W. H.; Chatterjee, D.; Balagon, M. V.; Cellona, R. V.; Tan, E. V.; Gelber, R.; Saunderson, P.; Duthie, M. S.; et al. Analysis of antibody responses to mycobacterium leprae phenolic glycolipid i, lipoarabinomannan, and recombinant proteins to define disease subtype-specific antigenic profiles in leprosy. Clin. Vaccine Immunol. 2011, 18, 260–267. DOI: 10.1128/CVI.00472-10.
  • Fenton, M. J.; Vermeulen, M. W. Immunopathology of tuberculosis: Roles of macrophages and monocytes. Infect. Immun. 1996, 64, 683–690.
  • Schlesinger, L.S. Entry of Mycobacterium tuberculosis into mononuclear phagocytes. In: Tuberculosis, Vol. 215; Shinnick, T. M., Ed. Berlin, Heidelberg: Springer Berlin Heidelberg; 1996. pp. 71–96.
  • Turner, J.; Torrelles, J. B. Mannose-capped lipoarabinomannan in Mycobacterium tuberculosis pathogenesis. Pathog. Dis. 2018, 76, fty026–fty026.
  • Guérardel, Y.; Maes, E.; Briken, V.; Chirat, F.; Leroy, Y.; Locht, C.; Strecker, G.; Kremer, L. Lipomannan and lipoarabinomannan from a clinical isolate of mycobacterium kansasii: Novel structural features and apoptosis-inducing properties. J. Biol. Chem. 2003, 278, 36637–36651. DOI: 10.1074/jbc.M305427200.
  • Gilleron, M.; Himoudi, N.; Adam, O.; Constant, P.; Venisse, A.; Rivière, M.; Puzo, G. Mycobacterium smegmatis phosphoinositols-glyceroarabinomannans: Structure and localization of alkali-labile and alkali-stable phosphoinositides. J. Biol. Chem. 1997, 272, 117–124. DOI: 10.1074/jbc.272.1.117.
  • Hölemann, A.; Stocker, B. L.; Seeberger, P. H. Synthesis of a core arabinomannan oligosaccharide of Mycobacterium tuberculosis. J. Org. Chem. 2006, 71, 8071–8088. DOI: 10.1021/jo061233x.
  • Duus, J. Ø.; Gotfredsen, C. H.; Bock, K. Carbohydrate structural determination by NMR spectroscopy: Modern methods and limitations. Chem. Rev. 2000, 100, 4589–4614. DOI: 10.1021/cr990302n.
  • Bock, K.; Pedersen, C. A study of 13CH coupling constants in hexopyranoses. J. Chem. Soc, Perkin Trans. 2. 1974, 3, 293–297. DOI: 10.1039/p29740000293.
  • Teumelsan, N.; Huang, X. Synthesis of branched man5 oligosaccharides and an unusual stereochemical observation. J. Org. Chem. 2007, 72, 8976–8979. DOI: 10.1021/jo7013824.
  • Mishra, B.; Neralkar, M.; Hotha, S. Stable alkynyl glycosyl carbonates: Catalytic anomeric activation and synthesis of a tridecasaccharide reminiscent of Mycobacterium tuberculosis cell wall lipoarabinomannan. Angew. Chem. 2016, 128, 7917–7922. DOI: 10.1002/ange.201511695.
  • Imamura, A.; Lowary, T. L. β-Selective arabinofuranosylation using a 2,3-O-xylylene-protected donor. Org. Lett. 2010, 12, 3686–3689. DOI: 10.1021/ol101520q.
  • Liu, Q.-W.; Bin, H.-C.; Yang, J.-S. β-Arabinofuranosylation using 5-O-(2-quinolinecarbonyl) substituted ethyl thioglycoside donors. Org. Lett. 2013, 15, 3974–3977. DOI: 10.1021/ol401755e.
  • Ishiwata, A.; Lee, Y. J.; Ito, Y. Recent advances in stereoselective glycosylation through intramolecular aglycon delivery. Org. Biomol. Chem. 2010, 8, 3596–3608. DOI: 10.1039/c004281a.
  • Yasomanee, J. P.; Demchenko, A. V. Effect of remote picolinyl and picoloyl substituents on the stereoselectivity of chemical glycosylation. J. Am. Chem. Soc. 2012, 134, 20097–20102. DOI: 10.1021/ja307355n.
  • Bamhaoud, T.; Sanchez, S.; Prandi, J. 1,2,5-Ortho esters of D-arabinose as versatile arabinofuranosidic building blocks. Concise synthesis of the tetrasaccharidic cap of the lipoarabinomannan of Mycobacterium tuberculosis. Chem. Commun. 2000, 8, 659–660. DOI: 10.1039/b000873g.
  • Marotte, K.; Sanchez, S.; Bamhaoud, T.; Prandi, J. Synthesis of oligoarabinofuranosides from the mycobacterial cell wall. Eur. J. Org. Chem. 2003, 35, 3587–3598. DOI: 10.1002/ejoc.200300303.
  • Wang, L.; Feng, S.; An, L.; Gu, G.; Guo, Z. Synthetic and immunological studies of mycobacterial lipoarabinomannan oligosaccharides and their protein conjugates. J. Org. Chem. 2015, 80, 10060–10075. DOI: 10.1021/acs.joc.5b01686.
  • Islam, M.; Shinde, G. P.; Hotha, S. Expedient synthesis of the heneicosasaccharyl mannose capped arabinomannan of the Mycobacterium tuberculosis cellular envelope by glycosyl carbonate donors. Chem. Sci. 2017, 8, 2033–2038. DOI: 10.1039/C6SC04866H.
  • Subramaniam, V.; Lowary, T. L. Synthesis of oligosaccharide fragments of mannosylated lipoarabinomannan from Mycobacterium tuberculosis. Tetrahedron. 1999, 55, 5965–5976. DOI: 10.1016/S0040-4020(99)00260-4.
  • Gadikota, R. R.; Callam, C. S.; Appelmelk, B. J.; Lowary, T. L. Synthesis of oligosaccharide fragments of mannosylated lipoarabinomannan appropriately functionalized for neoglycoconjugate preparation. J. Carbohyd. Chem. 2003, 22, 149–170. DOI: 10.1081/CAR-120021696.
  • Mandal, P. K.; Chheda, P. R. Synthesis and biotinylation of oligosaccharide fragments of mannosylated and 5-deoxy-5-methylthio-xylofuranosylated lipoarabinomannan from Mycobacterium tuberculosis. Carbohydr. Res. 2015, 407, 104–110. DOI: 10.1016/j.carres.2015.01.003.
  • Venisse, A.; Fournié, J.-J.; Puzo, G. Mannosylated lipoarabinomannan interacts with phagocytes. Eur. J. Biochem. 1995, 231, 440–447. DOI: 10.1111/j.1432-1033.1995.0440e.x.
  • Shimkus, M.; Levy, J.; Herman, T. A chemically cleavable biotinylated nucleotide: Usefulness in the recovery of protein-DNA complexes from avidin affinity columns. PNAS. 1985, 82, 2593–2597. DOI: 10.1073/pnas.82.9.2593.
  • Treumann, A.; Xidong, F.; McDonnell, L.; Derrick, P. J.; Ashcroft, A. E.; Chatterjee, D.; Homans, S. W. 5-Methylthiopentose: A new substituent on lipoarabinomannan in Mycobacterium tuberculosis. J. Mol. Biol. 2002, 316, 89–100. DOI: 10.1006/jmbi.2001.5317.
  • Ludwiczak, P.; Gilleron, M.; Bordat, Y.; Martin, C.; Gicquel, B.; Puzo, G. Mycobacterium tuberculosis phoP mutant: Lipoarabinomannan molecular structure. Microbiology. 2002, 148, 3029–3037. DOI: 10.1099/00221287-148-10-3029.
  • Turnbull, W. B.; Stalford, S. A. Methylthioxylose – a jewel in the mycobacterial crown?. Org. Biomol. Chem. 2012, 10, 5698–5706. DOI: 10.1039/c2ob25630d.
  • Joe, M.; Sun, D.; Taha, H.; Completo, G. C.; Croudace, J. E.; Lammas, D. A.; Besra, G. S.; Lowary, T. L. The 5-deoxy-5-methylthio-xylofuranose residue in mycobacterial lipoarabinomannan. Absolute stereochemistry, linkage position, conformation, and immunomodulatory activity. J. Am. Chem. Soc. 2006, 128, 5059–5072. DOI: 10.1021/ja057373q.
  • Stalford, S. A.; Kilner, C. A.; Leach, A. G.; Turnbull, W. B. Neighbouring group participation vs. addition to oxacarbenium ions: Studies on the synthesis of mycobacterial oligosaccharides. Org. Biomol. Chem. 2009, 7, 4842–4852. DOI: 10.1039/b914417j.
  • Kandasamy, J.; Hurevich, M.; Seeberger, P. H. Automated solid phase synthesis of oligoarabinofuranosides. Chem. Commun. 2013, 49, 4453–4455. DOI: 10.1039/c3cc00042g.
  • Sahloul, K.; Lowary, T. L. Development of an orthogonal protection strategy for the synthesis of mycobacterial arabinomannan fragments. J. Org. Chem. 2015, 80, 11417–11434. DOI: 10.1021/acs.joc.5b02083.
  • Oltvoort, J. J.; Van Boeckel, C. A. A.; De Koning, J. H.; Van Boom, J. H. Use of the cationic iridium complex 1,5-cyclooctadiene-bis[methyldiphenylphosphine]-iridium hexafluorophosphate in carbohydrate chemistry: Smooth isomerization of allyl ethers to 1-propenyl ethers. Synthesis. 1981, 1981, 305–308. DOI: 10.1055/s-1981-29429.
  • Gigg, R.; Warren, C. D. The allyl ether as a protecting group in carbohydrate chemistry. Part II. J. Chem. Soc, C. 1968, 5, 1903–1911. DOI: 10.1039/j39680001903.
  • Fraser-Reid, B.; Lu, J.; Jayaprakash, K. N.; López, J. C. Synthesis of a 28-mer oligosaccharide core of mycobacterial lipoarabinomannan (LAM) requires only two n-pentenyl orthoester progenitors. Tetrahedron Asymmetry. 2006, 17, 2449–2463. DOI: 10.1016/j.tetasy.2006.09.008.
  • Gao, J.; Liao, G.; Wang, L.; Guo, Z. Synthesis of a miniature lipoarabinomannan. Org. Lett. 2014, 16, 988–991. DOI: 10.1021/ol4036903.
  • Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Iterative one-pot synthesis of oligosaccharides. Angew. Chem. 2004, 116, 5333–5336. DOI: 10.1002/ange.200460176.
  • Gao, J.; Guo, Z. Synthesis of a tristearoyl lipomannan via preactivation-based iterative one-pot glycosylation. J. Org. Chem. 2013, 78, 12717–12725. DOI: 10.1021/jo4021979.
  • Alderwick, L. J.; Radmacher, E.; Seidel, M.; Gande, R.; Hitchen, P. G.; Morris, H. R.; Dell, A.; Sahm, H.; Eggeling, L.; Besra, G. S. Deletion of Cg-Emb in corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core. J. Biol. Chem. 2005, 280, 32362–32371. DOI: 10.1074/jbc.M506339200.
  • Bhamidi, S.; Scherman, M. S.; Rithner, C. D.; Prenni, J. E.; Chatterjee, D.; Khoo, K.-H.; McNeil, M. R. The identification and location of succinyl residues and the characterization of the interior arabinan region allow for a model of the complete primary structure of Mycobacterium tuberculosis mycolyl arabinogalactan. J. Biol. Chem. 2008, 283, 12992–13000. DOI: 10.1074/jbc.M800222200.
  • Bhamidi, S.; Scherman, M. S.; Jones, V.; Crick, D. C.; Belisle, J. T.; Brennan, P. J.; McNeil, M. R. Detailed structural and quantitative analysis reveals the spatial organization of the cell walls of in vivo grown Mycobacterium leprae and in vitro grown M. tuberculosis. J. Biol. Chem. 2011, 286, 23168–23177. DOI: 10.1074/jbc.M110.210534.
  • Brennan, P. J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003, 83, 91–97. DOI: 10.1016/S1472-9792(02)00089-6.
  • Lowary, T. L. Twenty years of Mycobacterial glycans: Furanosides and beyond. Acc. Chem. Res. 2016, 49, 1379–1388. DOI: 10.1021/acs.accounts.6b00164.
  • Gurjar, M. K.; Reddy, L. K.; Hotha, S. Synthesis of oligosaccharides of motifs D and E of arabinogalactan present in Mycobacterium tuberculosis. J. Org. Chem. 2001, 66, 4657–4660. DOI: 10.1021/jo010180a.
  • Gandolfi-Donadío, L.; Gallo-Rodriguez, C.; de Lederkremer, R. M. Facile synthesis of α-D-Araf-(1→5)-D-galf, the linker unit of the arabinan to the galactan in Mycobacterium tuberculosis. Can. J. Chem. 2006, 84, 486–491. DOI: 10.1139/v06-025.
  • Gandolfi-Donadío, L.; Gallo-Rodriguez, C.; de Lederkremer, R. M. Synthesis of a tetrasaccharide fragment of mycobacterial arabinogalactan. Carbohydr. Res. 2008, 343, 1870–1875. DOI: 10.1016/j.carres.2008.01.024.
  • Gandolfi-Donadío, L.; Santos, M.; de Lederkremer, R. M.; Gallo-Rodriguez, C. Synthesis of arabinofuranose branched galactofuran tetrasaccharides, constituents of mycobacterial arabinogalactan. Org. Biomol. Chem. 2011, 9, 2085–2097. DOI: 10.1039/c0ob00989j.
  • Wang, H.; Ning, J. A one-pot strategy for synthesis of 5-O-(α-d-Arabinofuranosyl)-6-O-(β-d- galactofuranosyl)-d-galactofuranose present in motif E of the Mycobacterium tuberculosis cell wall. J. Org. Chem. 2003, 68, 2521–2524. DOI: 10.1021/jo026325a.
  • Thadke, S. A.; Mishra, B.; Islam, M.; Pasari, S.; Manmode, S.; Rao, B. V.; Neralkar, M.; Shinde, G. P.; Walke, G.; Hotha, S. [Au]/[Ag]-catalysed expedient synthesis of branched heneicosafuranosyl arabinogalactan motif of Mycobacterium tuberculosis cell wall. Nat. Commun. 2017, 8, 14019.
  • Pasari, S.; Manmode, S.; Walke, G.; Hotha, S. A versatile synthesis of pentacosafuranoside subunit reminiscent of mycobacterial arabinogalactan employing one strategic glycosidation protocol. Chem. - Eur. J. 2017, 24, 1128–1139.
  • Wu, Y.; Xiong, D. C.; Chen, S. C.; Wang, Y. S.; Ye, X. S. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat. Commun. 2017, 8, 14851.
  • Jankute, M.; Cox, J. A. G.; Harrison, J.; Besra, G. S. Assembly of the mycobacterial cell wall. Annu. Rev. Microbiol. 2015, 69, 405–423. DOI: 10.1146/annurev-micro-091014-104121.
  • Angala, S. K.; Belardinelli, J. M.; Huc-Claustre, E.; Wheat, W. H.; Jackson, M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 361–399. DOI: 10.3109/10409238.2014.925420.
  • Draper, P.; Khoo, K.-H.; Chatterjee, D.; Dell, A.; Morris, R. H. Galactosamine in walls of slow-growing mycobacteria. Biochem. J. 1997, 327, 519–525. DOI: 10.1042/bj3270519.
  • Peng, W.; Zou, L.; Bhamidi, S.; McNeil, M. R.; Lowary, T. L. The galactosamine residue in mycobacterial arabinogalactan is α-linked. J. Org. Chem. 2012, 77, 9826–9832. DOI: 10.1021/jo301393s.
  • Lee, B. Y.; Oh, J. W.; Baek, J. Y.; Jeon, H. B.; Kim, K. S. Phthalic anhydride-mediated direct glycosylation of anomeric hydroxy arabinofuranose: Synthesis of repeating oligoarabinofuranoside and tetradecasaccharide arabinan motif of mycobacterial cell wall. J. Org. Chem. 2016, 81, 11372–11383. DOI: 10.1021/acs.joc.6b01723.
  • Postema, M. H. D. Recent developments in the synthesis of C-glycosides. Tetrahedron. 1992, 48, 8545–8599. DOI: 10.1016/S0040-4020(01)89435-7.
  • Bililign, T.; Griffith, B. R.; Thorson, J. S. Structure, activity, synthesis and biosynthesis of aryl-C-glycosides. Nat. Prod. Rep. 2005, 22, 742–760. DOI: 10.1039/b407364a.
  • Lalitha, K.; Muthusamy, K.; Prasad, Y. S.; Vemula, P. K.; Nagarajan, S. Recent developments in β-C-glycosides: Synthesis and applications. Carbohydr. Res. 2015, 402, 158–171. DOI: 10.1016/j.carres.2014.10.008.
  • Du, Y.; Linhardt, R. J.; Vlahov, I. R. Recent advances in stereoselective C-glycoside synthesis. Tetrahedron. 1998, 54, 9913–9959. DOI: 10.1016/S0040-4020(98)00405-0.
  • Liu, L.; McKee, M.; Postema, M. H. D. Synthesis of C-saccharides and higher congeners. Curr. Org. Chem. 2001, 5, 1133–1167. DOI: 10.2174/1385272013374699.
  • Postema, M. H. D.; Piper, J. L.; Betts, R. L. Synthesis of stable carbohydrate mimetics as potential glycotherapeutics. Synlett. 2005, 2005, 1345–1358. DOI: 10.1055/s-2005-868500.
  • Schlesinger, L. S.; Hull, S. R.; Kaufman, T. M. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J. lmmunol. 1994, 152, 4070–4079.
  • Brennan, P. J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63. DOI: 10.1146/annurev.bi.64.070195.000333.
  • Besra, G. S.; Kremer, L. Current status and future development of antitubercular chemotherapy. Expert Opin. Investig. Drugs. 2002, 11, 1033–1049. DOI: 10.1517/13543784.11.8.1033.
  • Wolucka Beata, A. Biosynthesis of D-arabinose in mycobacteria – a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J. 2008, 275, 2691–2711. DOI: 10.1111/j.1742-4658.2008.06395.x.
  • Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M. R.; Buroni, S.; Lucarelli, A. P.; et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009, 324, 801–804. DOI: 10.1126/science.1171583.
  • Umesiri Francis, E.; Sanki Aditya, K.; Boucau, J.; Ronning Donald, R.; Sucheck Steven, J. Recent advances toward the inhibition of mAG and LAM synthesis in Mycobacterium tuberculosis. Med. Res. Rev. 2010, 30, 290–326.
  • Gurjar, M. K.; Nagaprasad, R.; Ramana, C. V. First synthesis of methyl α-C-D-arabinofuranosyl-(1→5)-α-D-arabinofuranoside: The C-disaccharide segment of motif C of Mycobacterium tuberculosis. Tetrahedron Lett. 2002, 43, 7577–7579. DOI: 10.1016/S0040-4039(02)01760-4.
  • Dondoni, A.; Marra, A. A new synthetic approach to mycobacterial cell wall α-(1→5)-D-arabinofuranosyl C-oligosaccharides. Tetrahedron Lett. 2003, 44, 4067–4071. DOI: 10.1016/S0040-4039(03)00844-X.
  • Aslam, T.; Fuchs, M. G. G.; Le Formal, A.; Wightman, R. H. Synthesis of C-disaccharide analogues of the α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranosyl motif of mycobacterial cell walls via alkynyl intermediates. Tetrahedron Lett. 2005, 46, 3249–3252. DOI: 10.1016/j.tetlet.2005.03.017.
  • Lei, Z.; Min, J. M.; Zhang, L. H. Synthesis of 3-deoxy-3-nucleobase-2,5-anhydro-D-mannitol: A novel class of hydroxymethyl-branched isonucleosides. Tetrahedron Asymmetry. 2000, 11, 2899–2906. DOI: 10.1016/S0957-4166(00)00246-9.
  • Omura, K.; Sharma, A. K.; Swern, D. Dimethyl sulfoxide-trifluoroacetic anhydride. New reagent for oxidation of alcohols to carbonyls. J. Org. Chem. 1976, 41, 957–962. DOI: 10.1021/jo00868a012.
  • Meng, Q.; Hesse, M. A new synthesis of (2S,3R,4R)-2-(Hydroxymethyl)pyrrolidine-3,4-diol. Helv. Chim. Acta. 1991, 74, 445–450. DOI: 10.1002/hlca.19910740222.
  • Dondoni, A.; Marra, A. Multigram scale synthesis of formyl tetra-O-benzyl-β-D-C-glucopyranoside using benzothiazole as a formyl group equivalent. Tetrahedron Lett. 2003, 44, 13–16. DOI: 10.1016/S0040-4039(02)02525-X.
  • Dondoni, A. Formylation of carbohydrates and the evolution of synthetic routes to artificial oligosaccharides and glycoconjugates. Pure Appl. Chem. 2009, 72, 1577–1588. DOI: 10.1351/pac200072091577.
  • Dondoni, A.; Formaglio, P.; Marra, A.; Massi, A. Selectivity in the SmI2-induced deoxygenation of thiazolylketoses for formyl C-glycoside synthesis and revised structure of C-ribofuranosides. Tetrahedron. 2001, 57, 7719–7727. DOI: 10.1016/S0040-4020(01)00736-0.
  • Dondoni, A. The thiazole aldehyde synthesis. Synthesis. 1998, 1998, 1681–1706. DOI: 10.1055/s-1998-2208.
  • Reitz, A. B.; Nortey, S. O.; Maryanoff, B. E.; Liotta, D.; Monahan, R. Stereoselectivity of electrophile-promoted cyclizations of.gamma.-hydroxyalkenes. An investigation of carbohydrate-derived and model substrates. J. Org. Chem. 1987, 52, 4191–4202. DOI: 10.1021/jo00228a009.
  • McGurk, P.; Chang, G. X.; Lowary, T. L.; McNeil, M.; Field, R. A. Stereospecific synthesis of 5-phospho-α-D-arabinosyl-C-phosphonophosphate (pACpp): A stable analogue of the putative mycobacterial cell wall biosynthetic intermediate 5-phospho-d-arabinosyl pyrophosphate (pApp). Tetrahedron Lett. 2001, 42, 2231–2234. DOI: 10.1016/S0040-4039(01)00118-6.
  • Calzada, E.; Clarke, C. A.; Roussin-Bouchard, C.; Wightman, R. H. Synthesis of C-glycofuranosides by the stereoselective reduction of hemiacetals. J. Chem. Soc, Perkin Trans. 1. 1995, 5, 517–518. DOI: 10.1039/p19950000517.
  • Omura, K.; Swern, D. Oxidation of alcohols by “activated” dimethyl sulfoxide. A preparative, steric and mechanistic study. Tetrahedron. 1978, 34, 1651–1660. DOI: 10.1016/0040-4020(78)80197-5.
  • Mancuso, A. J.; Brownfain, D. S.; Swern, D. Structure of the dimethyl sulfoxide-oxalyl chloride reaction product. Oxidation of heteroaromatic and diverse alcohols to carbonyl compounds. J. Org. Chem. 1979, 44, 4148–4150. DOI: 10.1021/jo01337a028.
  • Connon Stephen, J.; Blechert, S. Recent developments in olefin cross-metathesis. Angew. Chem. Int. Ed. 2003, 42, 1900–1923. DOI: 10.1002/anie.200200556.
  • Chang, G. X.; Lowary, T. L. An olefin cross metathesis approach to C-disaccharide analogs of the α-D-arabinofuranosyl-(1→5)-α-D-arabinofuranoside motif found in the mycobacterial cell wall. Tetrahedron Lett. 2006, 47, 4561–4564. DOI: 10.1016/j.tetlet.2006.05.008.
  • Cipolla, L.; Peri, F.; Ferla, B. L.; Redaelli, C.; Nicotra, F. Carbohydrate scaffolds for the production of bioactive compounds. Curr. Org. Synth. 2005, 2, 153–173. DOI: 10.2174/1570179053545341.
  • Giles, R.; Son, V.; Sargent, M. Palladium-assisted (Z)-(E) isomerization of styrenes. Aust. J. Chem. 1990, 43, 777–781. DOI: 10.1071/CH9900777.
  • Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1999, 1, 953–956. DOI: 10.1021/ol990909q.
  • Meakin, P.; Jesson, J. P.; Tolman, C. A. Nature of chlorotris(triphenylphosphine)rhodium in solution and its reaction with hydrogen. J. Am. Chem. Soc. 1972, 94, 3240–3242. DOI: 10.1021/ja00764a061.
  • Patil, R. S.; Ahire, K. M.; Ramana, C. V. Stereospecific synthesis of C-arabinofuranosides and carba-disaccharide analogues of motif C of cell wall AG complex of Mtb. Tetrahedron Lett. 2012, 53, 6347–6350. DOI: 10.1016/j.tetlet.2012.09.015.
  • Yuasa, H.; Izukawa, Y.; Hashimoto, H. Synthesis of 5-thio-D-mannose. J. Carbohydr. Chem. 1989, 8, 753–763. DOI: 10.1080/07328308908048037.
  • Alcaraz, L.; Harnett, J. J.; Mioskowski, C.; Martel, J. P.; Le Gall, T.; Shin, D.-S.; Falck, J. R. Novel conversion of epoxides to one carbon homologated allylic alcohols by dimethylsulfonium methylide. Tetrahedron Lett. 1994, 35, 5449–5452. DOI: 10.1016/S0040-4039(00)73522-2.
  • Evans, M. E.; Parrish, F. W. A simple synthesis of L-gulose. Carbohydr. Res. 1973, 28, 359–364. DOI: 10.1016/S0008-6215(00)82790-1.
  • Blumberg, K.; Fuccello, A.; van Es, T. Intramolecular cyclization of pentose and hexose dithioacetals. Carbohydr. Res. 1979, 70, 217–232. DOI: 10.1016/S0008-6215(00)87102-5.
  • Popsavin, M.; Popsavin, V.; Vukojević, N.; Csanádi, J.; Miljković, D. Preparation of 2,5-anhydro-3,4,6-tri-O-benzoyl-D-allononitrile from D-glucose. Carbohydr. Res. 1994, 260, 145–150. DOI: 10.1016/0008-6215(94)80029-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.