125
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Investigation on the binding specificity of Agrocybe cylindracea galectin towards α(2,6)-linked sialyllactose by molecular modeling and molecular dynamics simulations

, , , &
Pages 566-585 | Received 12 Jul 2018, Accepted 10 Jun 2019, Published online: 09 Jul 2019

References

  • Barondes, S. H.; Castronovo, V.; Cooper, D. N.; Cummings, R. D.; Drickamer, K.; Felzi, T.; Gitt M. A.; Hirabayashi J.; Hughes C.; Kasai K. Galectins: a family of animal β-galactoside-binding lectins. Cell. 1994, 76, 597–598.
  • Barondes, S. H.; Cooper, D. N.; Gitt, M. A.; Leffler, H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 1994, 269, 20807–20810.
  • Cummings, R.; Liu. F. Galectins: Chapter 33. In Essentials of Glycobiology; Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W. and Etzler, M. E., Eds. Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY). 2009, p. 137–157.
  • Leffler, H. Galectins structure and function-A synopsis. In: Mammalian Carbohydrate Recognition Systems, Results and Problems in Cell Differentiation; Paul R. Crocker, Eds. Springer-Verlag, Berlin, Heidelberg, 2001, 33, pp 57–83. doi:10.1007/978-3-540-46410-5_4.
  • Yagi, F.; Miyamoto, M.; Abe, T.; Minami, Y.; Tadera, K.; Goldstein, I. J. Purification and carbohydrate-binding specificity of Agrocybe cylindracea lectin. Glycoconj. J. 1997, 14, 281–288. doi:10.1023/A:1018558225454.
  • Leffler, H.; Carlsson, S.; Hedlund, M.; Qian, Y.; Poirier, F. Introduction to galectins. Glycoconj. J. 2002, 19, 433–440. doi:10.1023/B:GLYC.0000014072.34840.04.
  • Parasuraman, P.; Murugan, V.; Selvin, J. F.; Gromiha, M. M.; Fukui, K.; Veluraja, K. Theoretical investigation on the glycan-binding specificity of Agrocybe cylindracea galectin using molecular modeling and molecular dynamics simulation studies. J. Mol. Recognit. 2015, 28, 528–538. doi:10.1002/jmr.2468.
  • Ban, M.; Yoon, H. J.; Demirkan, E.; Utsumi, S.; Mikami, B.; Yagi, F. Structural basis of a fungal galectin from Agrocybe cylindracea for recognizing sialoconjugate. J. Mol. Biol. 2005, 351, 695–706. doi:10.1016/j.jmb.2005.06.045.
  • Kuwabara, N.; Hu, D.; Tateno, H.; Makyio, H.; Hirabayashi, J.; Kato, R. Conformational change of a unique sequence in a fungal galectin from Agrocybe cylindracea controls glycan ligand-binding specificity. FEBS. Lett. 2013, 587, 3620–3625. doi:10.1016/j.febslet.2013.08.046.
  • Imamura, K.; Takeuchi, H.; Yabe, R.; Tateno, H.; Hirabayashi, J. Engineering of the glycan-binding specificity of Agrocybe cylindracea galectin towards α(2,3)-linked sialic acid by saturation mutagenesis. J. Biochem. 2011, 150, 545–552.
  • Sharon, N.; Lis, H. Lectins-proteins with a sweet tooth: Functions in cell recognition. Essays. Biochem. 1995, 30, 59–75.
  • Parasuraman, P.; Murugan, V.; Selvin, J. F.; Gromiha, M. M.; Fukui, K.; Veluraja, K. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: A study by in silico mutations and molecular dynamics simulations. J. Mol. Recognit. 2014, 27, 482–492.
  • Hu, D.; Tateno, H.; Sato, T.; Narimatsu, H.; Hirabayashi, J. Tailoring GalNAca1-3Galb-specific lectins from a multi-specific fungal galectin: Dramatic change of carbohydrate specificity by a single amino-acid substitution. Biochem. J. 2013, 453, 261–270. doi:10.1042/BJ20121901.
  • Salomonsson, E.; Carlsson, M. C.; Osla, V.; Hendus-Altenburger, R.; Kahl-Knutson, B.; Öberg, C. T.; Sundin A.; Nilsson R.; Nordberg-Karlsson E.; Nilsson U. J.; et al. Mutational tuning of galectin-3 specificity and biological function. J. Biol. Chem. 2010, 285, 35079–35091. doi:10.1074/jbc.M109.098160.
  • Yamamoto, K.; Maruyama, I. N.; Osawa, T. Cyborg lectins: Novel leguminous lectins with unique specificities. J. Biochem. 2000, 127, 137–142. doi:10.1093/oxfordjournals.jbchem.a022575.
  • Case, D. A.; Darden, T. A.; Cheatham, III. T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; et al. AMBER 12. University of California: San Francisco, 2012.
  • Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000, 21, 1049–1074. doi:10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.3.CO;2-6.
  • Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. doi:10.1002/jcc.20035.
  • Chen, J.; Wang, J.; Zhu, W. Zinc ion-induced conformational changes in new Delphi metallo-β-lactamase 1 probed by molecular dynamics simulations and umbrella sampling. Phys. Chem. Chem. Phys. 2017, 19, 3067–3075. doi:10.1039/C6CP08105C.
  • Chen, J.; Wang, J.; Zhu, W. Mutation L1196M-induced conformational changes and the drug resistant mechanism of anaplastic lymphoma kinase studied by free energy perturbation and umbrella sampling. Phys. Chem. Chem. Phys. 2017, 19, 30239–30248. doi:10.1039/C7CP05418A.
  • Chen, J. Functional roles of magnesium binding to extracellular signal-regulated kinase 2 explored by molecular dynamics simulations and principal component analysis. J. Biomol. Struct. Dyn. 2018, 36, 351–361. doi:10.1080/07391102.2016.1277783.
  • Priyadarzini, T. R.; Subashini, B.; Selvin, J. F.; Veluraja, K. Molecular dynamics simulation and quantum mechanical calculations on a-D-N-acetylneuraminic acid. Carbohydrate. Res. 2012, 351, 93–97. doi:10.1016/j.carres.2012.01.015.
  • Yan, C.; Xiu, Z.; Li, X.; Li, S.; Hao, C.; Teng, H. Comparative molecular dynamics simulations of histone deacetylase‐like protein: Binding modes and free energy analysis to hydroxamic acid inhibitors. Proteins. 2008, 73, 134–149. doi:10.1002/prot.22047.
  • Murugan, V.; Parasuraman, P.; Selvin, J. F.; Gromiha, M. M.; Fukui, K.; Veluraja, K. Theoretical investigation on the binding specificity of fluorinated sialyldisaccharides Neu5Acα(2–3)Gal and Neu5Acα(2–6)Gal with influenza hemagglutinin H1 - a molecular dynamics study. J. Carbohyd. Chem. 2017, 36, 111–128. doi:10.1080/07328303.2017.1365153.
  • Priyadarzini, T. R.; Selvin, J. F.; Gromiha, M. M.; Fukui, K.; Veluraja, K. Theoretical investigation on the binding specificity of sialyldisaccharides with hemagglutinins of influenza A virus by molecular dynamics simulations. J. Biol. Chem. 2012, 287, 34547–34557. doi:10.1074/jbc.M112.357061.
  • Veluraja, K.; Margulis, C. J. Conformational dynamics of sialyl lewisx in aqueous solution and its interaction with selectine. A study by molecular dynamics. J. Biomol. Struct. Dyn. 2005, 23, 101–111. doi:10.1080/07391102.2005.10507051.
  • Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. doi:10.1063/1.464397.
  • Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. doi:10.1063/1.445869.
  • Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. doi:10.1002/jcc.20289.
  • Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.
  • Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. doi:10.1002/jcc.20084.
  • Kraulis, P. J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 1991, 24, 946–950. doi:10.1107/S0021889891004399.
  • Miller, III. B. R.; McGee, Jr. T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. MMPBSA. py: An efficient program for end-state free energy calculations. J. Chem. Theory. Comput. 2012, 8, 3314–3321. doi:10.1021/ct300418h.
  • Homeyer, N.; Gohlke, H. Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol. Inform. 2012, 31, 114–122. doi:10.1002/minf.201100135.
  • Srinivasan, J.; Cheatham, T. E.; Cieplak, P.; Kollman, P. A.; Case, D. A. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J. Am. Chem. Soc. 1998, 120, 9401–9409.
  • Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.; Weissig, H.; Shindyalov I. N.; Bourne P. E. The protein data bank. Nucleic. Acids. Res. 2000, 28, 235–242. doi:10.1093/nar/28.1.235.
  • Gromiha, M. M.; An, J.; Kono, H.; Oobatake, M.; Uedaira, H.; Sarai, A. ProTherm: Thermodynamic database for proteins and mutants. Nucleic. Acids. Res. 1999, 27, 286–288. doi:10.1093/nar/27.1.286.
  • Parthiban, V.; Gromiha, M. M.; Schomburg, D. CUPSAT: Prediction of protein stability upon point mutations. Nucleic. Acids. Res. 2006, 34, W239–W242. doi:10.1093/nar/gkl190.
  • Topham, C. M.; Srinivasan, N.; Blundell, T. L. Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein. Eng. 1997, 10, 7–21. doi:10.1093/protein/10.1.7.
  • Veluraja, K.; Rao, V. S. R. Theoretical studies on the conformation of β-DN-acetyl neuraminic acid (sialic acid). Biochim. Biophys. Acta. 1980, 630, 442–446. doi:10.1016/0304-4165(80)90293-7.
  • Rao, V. S. R. Conformation of Carbohydrates. First Edition. CRC Press, Taylor & Francis Ltd.: UK, 1998. ISBN: 9789057023149.
  • Flippen, J. L. The crystal structure of β-D-N-acetylneuraminic acid dihydrate (sialic acid), C11H19NO9.2H2O. Acta. Cryst. 1973, B29, 1881–1886. doi:10.1107/S0567740873005698.
  • Sharmila, D. J.; Veluraja, K. Monosialogangliosides and their interaction with cholera toxin-investigation by molecular modeling and molecular mechanics. J. Biomol. Struct. Dyn. 2004, 21, 591–613. doi:10.1080/07391102.2004.10506951.
  • Veluraja, K.; Selvin, J. F. A.; Venkateshwari, S.; Priyadarzini, T. R. K. 3DSDSCAR - a three dimensional structural database for sialic acid-containing carbohydrates through molecular dynamics simulation. Carbohydr. Res. 2010, 345, 2030–2037. doi:10.1016/j.carres.2010.06.021.
  • Selvin, J. F.; Priyadarzini, T. R.; Veluraja, K. Sialyldisaccharide conformations: A molecular dynamics perspective. J. Comput. Aided. Mol. Des. 2012, 26, 375–385. doi:10.1007/s10822-012-9563-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.