316
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Chemical synthesis and preliminary biological evaluation of C-6-O-methyl-1-deoxynojirimycin as a potent α-glucosidase inhibitor

, &
Pages 36-49 | Received 21 May 2019, Accepted 01 Dec 2019, Published online: 13 Dec 2019

References

  • Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetry. 2000, 11, 1645–1680. DOI: 10.1016/S0957-4166(00)00113-0.
  • Asano, N.; Oseki, K.; Kizu, H.; Matsui, K. Nitrogen-in-the-ring pyranoses and furanoses: Structural basis of inhibition of mammalian glycosidases. J. Med. Chem. 1994, 37, 3701–3706. DOI: 10.1021/jm00048a006.
  • Liu, H.; Sim, L.; Rose, D. R.; Pinto, B. M. A new class of glucosidase inhibitor: Analogues of the naturally occurring glucosidase inhibitor salacinol with different ring heteroatom substituents and acyclic chain extension. J. Org. Chem. 2006, 71, 3007–3013. DOI: 10.1021/jo052539r.
  • Wong, C. H.; Dumas, D. P.; Ichikawa, Y.; Koseki, K.; Danishefsky, S. J.; Weston, B. W.; Lowe, J. B. Specificity, inhibition, and synthetic utility of a recombinant human α-1,3-fucosyltransferase. J. Am. Chem. Soc. 1992, 114, 7321–7322. DOI: 10.1021/ja00044a068.
  • Zhang, G. L.; Chen, C.; Xiong, Y.; Zhang, L. H.; Ye, J.; Ye, X. S. Synthesis of N-substituted iminosugar derivatives and their immunosuppressive activities. Carbohydr. Res. 2010, 345, 780–786. DOI: 10.1016/j.carres.2010.01.021.
  • Taylor, R. H.; Barker, H. M.; Bowey, E. A.; Canfield, J. E. Regulation of the absorption of dietary carbohydrate in man by two new glycosidase inhibitors. Gut. 1986, 27, 1471. DOI: 10.1136/gut.27.12.1471.
  • Yoshikuni, Y. Inhibition of intestinal α-glucosidase activity and postprandial hyperglycemia by moranoline and its N-alkyl derivatives. Agric. Biol. Chem. 1988, 52, 121–128. DOI: 10.1248/bpb1978.11.356.
  • Park, H.; Hwang, K. Y.; Kim, Y. H.; Oh, K. H.; Lee, J. Y.; Kim, K. Discovery and biological evaluation of novel α-glucosidase inhibitors with in vivo antidiabetic effect. Bioorg. Med. Chem. Lett. 2008, 18, 3711–3715. DOI: 10.1016/j.bmcl.2008.05.056.
  • Heightman, T. D.; Vasella, A. T. Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases. Angew. Chem. Int. Ed. 1999, 38, 750–770. DOI: 10.1002/(SICI)1521-3773(19990315)38:6 < 750::AID-ANIE750 > 3.3.CO;2-Y.
  • Kimura, T.; Nakagawa, K.; Kubota, H.; Kojima, Y.; Goto, Y.; Yamagishi, K.; Oita, S.; Oikawa, S.; Miyazawa, T. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J. Agric. Food Chem. 2007, 55, 5869–5874. DOI: 10.1021/jf062680g.
  • Kim, G. N.; Kwon, Y. I.; Jang, H. D. Mulberry leaf extract reduces postprandial hyperglycemia with few side effects by inhibiting α-glucosidase in normal rats. J. Med. Food. 2011, 14, 712–717. DOI: 10.1089/jmf.2010.1368.
  • Singab, A. N. B.; El-Beshbishy, H. A.; Yonekawa, M.; Nomura, T.; Fukai, T. Hypoglycemic effect of Egyptian Morus alba root bark extract: Effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2005, 100, 333–338. DOI: 10.1016/j.jep.2005.03.013.
  • Segal, P.; Feig, P. U.; Schernthaner, G.; Ratzmann, K. P.; Rybka, J.; Petzinna, D.; Berlin, C. The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes. Care. 1997, 20, 687–691. DOI: 10.2337/diacare.20.5.687.
  • Sugimoto, S.; Nakajima, H.; Kosaka, K.; Hosoi, H. Review: Miglitol has potential as a therapeutic drug against obesity. Nutr. Metab. (Lond.). 2015, 12, 51. DOI: 10.1186/s12986-015-0048-8.
  • (a) Wang, W. F.; Liang, T. T.; Fang, Z. J. Synthesis and preliminary biological evaluation of C-6 deutero DNJ. Chem. Res. Appl. 2017, 29, 793–798; (b) Iftikhar, M.; Fang, Z. J. Modifications at the 6-O-position of 1-deoxynojirimycin: Facile and efficient synthesis of 6-O-alkylated-N-octyl-1-deoxynojirimycin derivatives. J. Carbohydr. Chem. 2017, 36, 295–306. DOI: 10.1080/07328303.2017.1397683.
  • Wu, L.; Jiang, J. B.; Jin, Y.; Kallemeijn, W. W.; Kuo, C. L.; Artola, M.; Dai, W.; van Elk, C.; van Eijk, M.; van der Marel, G. A.; et al. Activity-based probes for functional interrogation of retaining β-glucuronidases. Nat. Chem. Biol. 2017, 13, 867. DOI: 10.1038/nchembio.2395.
  • Cheng, B.; Li, Y. X.; Jia, Y. M.; Yu, C. Y. Concise synthesis of 1-epi-castanospermine. Chin. Chem. Lett. 2017, 28, 1688–1692. DOI: 10.1016/j.cclet.2017.05.013.
  • Chagnault, V.; Lalot, J.; Murphy, P. V. Synthesis of somatostatin mimetics based on 1-deoxynojirimycin. ChemMedChem 2008, 3, 1071. DOI: 10.1002/cmdc.200800038.
  • Dasari, B.; Jogula, S.; Borhade, R.; Balasubramanian, S.; Chandrasekar, G.; Kitambi, S. S.; Arya, P. Macrocyclic glycohybrid toolbox identifies novel antiangiogenesis agents from zebrafish assay. Org. Lett. 2013, 15, 432–435. DOI: 10.1021/ol3032297.
  • Behling, J.; Farid, P.; Medich, J. R.; Scaros, M. G.; Prunier, M.; Weier, R. M.; Khanna, I. A short and practical synthesis of 1-deoxynojirimycin. Synth. Commun. 1991, 21, 1383–1386. DOI: 10.1080/00397919108021285.
  • Matos, C. R. R.; Lopes, R. S. C.; Lopes, C. C. Synthesis of 1-deoxynojirimycin and N-butyl-1-deoxynojirimycin. Synthesis. 1999, 4, 571–573. DOI: 10.1055/s-1999-3430.
  • Gao, K.; Zheng, C. L.; Wang, T.; Zhao, H. H.; Wang, J.; Wang, Z. Y.; Zhai, X.; Jia, Z. J.; Chen, J. X.; Zhou, Y. W.; et al. 1-deoxynojirimycin: Occurrence, extraction, chemistry, oral pharmacokinetics, biological activities and in silico target fishing. Molecules. 2016, 21, 1600. DOI: 10.3390/molecules21111600.
  • Lin, G. M.; Sun, H. G.; Liu, H. W. Study of uridine 5′-diphosphate (UDP)-galactopyranose mutase using UDP-5-fluorogalactopyranose as a probe: Incubation results and mechanistic implications. Org. Lett. 2016, 18, 3438–3441. DOI: 10.1021/acs.orglett.6b01618.
  • Miao, Y.; Phuphuak, Y.; Rousseau, C.; Bousquet, T.; Mortreux, A.; Chirachanchai, S.; Zinck, P. Ring-opening polymerization of lactones using binaphthyl-diyl hydrogen phosphate as organocatalyst and resulting monosaccharide functionalization of polylactones. J. Polym. Sci. A Polym. Chem. 2013, 51, 2279–2287. DOI: 10.1002/pola.26612.
  • Matwiejuk, M.; Thiem, J. New method for regioselective glycosylation employing saccharide oxyanions. Eur. J. Org. Chem. 2011, 29, 5860–5878. DOI: 10.1002/ejoc.201100861.
  • Compain, P.; Decroocq, C.; Iehl, J.; Holler, M.; Hazelard, D.; Mena Barragán, T.; Ortiz Mellet, C.; Nierengarten, J. F. Glycosidase inhibition with fullerene iminosugar balls: A dramatic multivalent effect. Angew. Chem. Int. Ed. 2010, 49, 5753–5756. DOI: 10.1002/anie.201002802.
  • Compain, P.; Stauffert, F.; Lepage, M.; Pichon, M.; Hazelard, D.; Bodlenner, A. A convenient, gram-scale synthesis of 1-deoxymannojirimycin. Synthesis. 2016, 48, 1177–1180. DOI: 10.1055/s-0035-1561323.
  • Rapoport, H.; Reist, H. N. A method for preparing codeinone. J. Am. Chem. Soc. 1955, 77, 490–491. DOI: 10.1021/ja01607a086.
  • Fleming, J. J.; Bois, J. D. A synthesis of (+)-saxitoxin. J. Am. Chem. Soc. 2006, 128, 3926–3927. DOI: 10.1021/ja0608545.
  • Tu, Y.; Frohn, M.; Wang, Z. X.; Shi, Y. Synthesis of 1,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiulo-2,6-pyranose. A highly enantioselective ketone catalyst for epoxidation. Org. Synth. 2003, 80, 1. DOI: 10.1002/0471264180.os080.01.
  • Hakamata, W.; Nakanishi, I.; Masuda, Y.; Shimizu, T.; Higuchi, H.; Nakamura, Y.; Saito, S.; Urano, S.; Oku, T.; Ozawa, T.; et al. Planar catechin analogues with alkyl side chains: A potent antioxidant and an α-glucosidase inhibitor. J. Am. Chem. Soc. 2006, 128, 6524–6525. DOI: 10.1021/ja057763c.
  • Monrad, R. N.; Pipper, C. B.; Madsen, R. Synthesis of calystegine A3 from glucose by the use of ring-closing metathesis. Eur. J. Org. Chem. 2009, 2009, 3387–3395. DOI: 10.1002/ejoc.200900310.
  • Xia, M. J.; Yao, W.; Meng, X. B.; Lou, Q. H.; Li, Z. J. Co2(CO)6-Propargyl cation mediates glycosylation. Reaction by using thioglycoside. Tetrahedron Lett. 2017, 58, 2389–2392. DOI: 10.1016/j.tetlet.2017.05.012.
  • Lemieux, R. U.; Spohr, U.; Bach, M.; Cameron, D. R.; Palcic, M. M.; Frandsen, T. P.; Stoffer, B. B.; Svensson, B. Chemical mapping of the active site of glucoamylase of Aspergillus niger. Can. J. Chem. 1996, 74, 319–335. DOI: 10.1139/v96-036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.