493
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of glycoimmunogen Tn-Thr-PS A1 via hydrazone bond and stability optimization of PS A1 monosaccharide mimics under vaccine development conditions

, , , , &
Pages 107-129 | Received 22 Dec 2019, Accepted 25 Dec 2019, Published online: 03 Feb 2020

References

  • Slovin, S.F.; Keding, K.S.; Ragupathi, R. Carbohydrate vaccines as immunotherapy for cancer. Immunol. Cell Biol. 2005, 83, 418–428. doi: 10.1111/j.1440-1711.2005.01350.x.
  • Hossain, F.; Andreana, P.R. Developments in carbohydrate-based cancer therapeutics. Pharmacetules 2019, 12, 84. doi: 10.3390/ph12020084.
  • Silverman, G.J. Human antibody responses to bacterial antigens: studies of a model conventional antigen and a proposed model B-cell superantigen. Int. Rev. Immunol. 1992, 9(1), 57–78. doi: 10.3109/08830189209061783.
  • Feng, D.; Shaikh, A.S.; Wang, F. recent advance in tumor-associated carbohydrate antigens (TACAs)-based antitumor vaccines. ACS Chem. Biol. 2016, 11(4), 850–863. doi: 10.1021/acschembio.6b00084.
  • Guo, Z.; Wang, Q. Recent development in carbohydrate-based cancer vaccines. Curr. Opin. Chem. Biol. 2009, 13(5–6), 608–617. doi: 10.1016/j.cbpa.2009.08.010.
  • Dey, S.; Bajaj, S.O.; Tsai, T.-I.; Lo, H.-J.; Wu, K.; Wong, C.-H. Synthesis of modular building blocks using glycosyl phosphate donors for the construction of asymmetric N-glycans. Tetrahedron. 2018, 74(41), 6003–6011. doi: 10.1016/j.tet.2018.08.039.
  • Danishefsky, S.J.; Shue, Y.-K.; Chang, M.N.; Wong, C.-H. Development of globo-H cancer vaccine. Acc. Chem. Res. 2015, 48(3), 643–652. doi: 10.1021/ar5004187.
  • Nishat, S.; Andreana, P. Entirely carbohydrate-based vaccines: an emerging field for specific and selective immune responses. Vaccines. 2016, 4(2), 19. doi: 10.3390/vaccines4020019.
  • Wilkinson, B.L.; Day, S.; Malins, L.R.; Apostolopoulos, V.; Payne, R.J. Self-adjuvanting multicomponent cancer vaccine candidates combining per-glycosylated MUC1 glycopeptides and the toll-like receptor 2 agonist Pam3CysSer. Angew. Chem. Int. Ed. 2011, 50(7), 1635–1639. doi: 10.1002/anie.201006115.
  • Lakshminarayanan, V.; Thompson, P.; Wolfert, M.A.; Buskas, T.; Bradley, J.M.; Pathangey, L.B.; Madsen, C.S.; Cohen, P.A.; Gendler, S.J.; Boons, G.-J. Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc. Natl. Acad. Sci. USA 2012, 109(1), 261–266. doi: 10.1073/pnas.1115166109.
  • Tzianabos, A.O.; Onderdonk, A.B.; Rosner, B.; Cisneros, R.L.; Kasper, D.L. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 1993, 262(5132), 416–419. doi: 10.1126/science.8211161.
  • Cobb, B.A.; Wang, Q.; Tzianabos, A.O.; Kasper, D.L. Polysaccharide processing and presentation by the MHCII pathway. Cell 2004, 117(5), 677–687. doi: 10.016/j.cell.2004.05.001.
  • Eradi, P.; Ghosh, S.; Andreana, P.R. Total synthesis of zwitterionic tetrasaccharide repeating unit from Bacteroides fragilis ATCC 25285/NCTC 9343 capsular polysaccharide PS A1 with alternating charges on adjacent monosaccharides. Org. Lett. 2018, 20(15), 4526–4530. doi: 10.1021/acs.orglett.8b01829.
  • Tzianabos, A.; Wang, J.Y.; Kasper, D.L. Biological chemistry of immunomodulation by zwitterionic polysaccharides. Carbohydr. Res. 2003, 338(23), 2531–2538. doi: 10.1016/j.carres.2003.06.005.
  • Baumann, H.; Tzianabos, A.O.; Brisson, J.R.; Kasper, D.L.; Jennings, H.J. Structural elucidation of two capsular polysaccharides from one strain of Bacteroides fragilis using high-resolution NMR spectroscopy. Biochemistry. 1992, 31(16), 4081–4089. doi: 10.1021/bi00131a026.
  • Ju, T.; Otto, V.I.; Cummings, R.D. The Tn antigen-structural simplicity and biological complexity. Angew. Chem. Int. Ed. 2011, 50(8), 1770–1791. doi: 10.1002/anie.201002313.
  • De Silva, R.A.; Wang, Q.; Chidley, T.; Appulage, D.K.; Andreana, P.R. Immunological response from an entirely carbohydrate antigen: design of synthetic vaccines based on Tn − PS A1 conjugates. J. Am. Chem. Soc. 2009, 131(28), 9622–9623. doi: 10.1021/ja902607a.
  • Morales, S.; Aceña, J.L.; García Ruano, J.L.; Cid, M.B. Sustainable synthesis of oximes, hydrazones, and thiosemicarbazones under mild organocatalyzed reaction conditions. J. Org. Chem. 2016, 81(20), 10016–10022. doi: 10.1021/acs.joc.6b01912.
  • Zhang, Z.; He, C.; Chen, X. Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications. Mater. Chem. Front. 2018, 2(10), 1765–1778. doi: 10.1039/C8QM00317C.
  • Fang, Y.; Xue, J.; Gao, S.; Lu, A.; Yang, D.; Jiang, H.; He, Y.; Shi, K. Cleavable PEGylation: a strategy for overcoming the “PEG Dilemma” in efficient drug delivery. Drug Delivery 2017, 24(2), 22–32. doi: 10.1080/10717544.2017.1388451.
  • Kölmel, D.K.; Kool, E.T. Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem. Rev. 2017, 117(15), 10358–10376. doi: 10.1021/acs.chemrev.7b00090.
  • Shaik, A.A.; Nishat, S.; Andreana, P.R. Stereoselective synthesis of natural and non-natural thomsen-nouveau antigens and hydrazide derivatives. Org. Lett. 2015, 17(11), 2582–2585. doi: 10.1021/acs.orglett.5b00512.
  • King, T.P.; Zhao, S.W.; Lam, T. Preparation of protein conjugates via intermolecular hydrazone linkage. Biochemistry 1986, 25(19), 5774–5779. doi: 10.1021/bi00367a064.
  • Adak, A.K.; Leonov, A.P.; Ding, N.; Thundimadathil, J.; Kularatne, S.; Low, P.S.; Wei, A. Bishydrazide glycoconjugates for lectin recognition and capture of bacterial pathogens. Bioconjugate Chem. 2010, 21(11), 2065–2075. doi: 10.1021/bc100288c.
  • Wilchek, M.; Bayer, E.A. The avidin-biotin complex in bioanalytical applications. Anal. Biochem. 1988, 171(1), 1–32. doi: 10.1016/0003-2697(88)90120-0.
  • O'Shannessy, D.J.; Dobersen, M.J.; Quarles, R.H. A novel procedure for labeling immunoglobulins by conjugation to oligosaccharide moieties. Immunol. Lett. 1984, 8, 273–277. doi: 10.1016/0165-2478(84)90008-7.
  • Byeon, J.-Y.; Limpoco, F.T.; Bailey, R.C. Efficient bioconjugation of protein capture agents to biosensor surfaces using aniline-catalyzed hydrazone ligation. Langmuir 2010, 26(19), 15430–15435. doi: 10.1021/la1021824.
  • Shi, M.; Kleski, K.A.; Trabbic, K.R.; Bourgault, J.-P.; Andreana, P.R. Sialyl-Tn polysaccharide A1 as an entirely carbohydrate immunogen: synthesis and immunological evaluation. J. Am. Chem. Soc. 2016, 138(43), 14264–14272. doi: 10.1021/jacs.6b05675.
  • Ghosh, S.; Nishat, S.; Andreana, P.R. Synthesis of an aminooxy derivative of the tetrasaccharide repeating unit of Streptococcus dysgalactiae 2023 polysaccharide for a PS A1 conjugate vaccine. J. Org. Chem. 2016, 81(11), 4475–4484. doi: 10.1021/acs.joc.6b00195.
  • Fife, T.H. Participation of solvent and general acids in acetal hydrolysis. Hydrolysis of 2-(para-substituted phenyl)-4,4,5,5-tetramethyl-1,3-dioxolanes. J. Am. Chem. Soc. 1967, 89(13), 3228–3231. doi: 10.1021/ja00989a024.
  • Piszkiewicz, D.; Bruice, T.C. Glycoside hydrolysis. I. Intramolecular acetamido and hydroxyl group catalysis in glycoside hydrolysis. J. Am. Chem. Soc. 1967, 89(24), 6237–6243. doi: 10.1021/ja01000a044.
  • Capon, B.; Smith, M.C. Intramolecular catalysis in acetal hydrolysis. Chem. Commun. (London) 1965 (21), 523–524. doi: 10.1039/c19650000523.
  • Dey, S.; Jayaraman, N. Glycosidic bond hydrolysis in septanosides: a comparison of mono-, di-, and 2-chloro-2-deoxy-septanosides. Carbohydr. Res. 2014, 399, 49–56. doi: 10.1016/j.carres.2014.05.013.
  • Kancharla, P.K.; Crich, D. Influence of side chain conformation and configuration on glycosyl donor reactivity and selectivity as illustrated by sialic acid donors epimeric at the 7-position. J. Am. Chem. Soc. 2013, 135(50), 18999–19007. doi: 10.1021/ja410683y.
  • Surana, N.K.; Kasper, D.L. The yin yang of bacterial polysaccharides: lessons learned from B. fragilis PSA. Immunol. Rev. 2012, 245(1), 13–26. doi: 10.1111/j.1600-065X.2011.01075.x.
  • Anderson, E.; Fife, T.H. General acid catalysis of ketal hydrolysis. The hydrolysis of tropone diethyl ketal. J. Am. Chem. Soc. 1969, 91(25), 7163–7166. doi: 10.1021/ja01053a046.
  • Mayer, S.C.; Gallaway, W.; Kulishoff, J.; Yin, M.; Gadamasetti, V.; Mitchell, R. Stability studies of C-4′,6′ acetal benzylmaltosides synthesized as inhibitors of smooth muscle cell proliferation. Bioorg. Med. Chem. Lett. 2004, 14(11), 2829–2833. doi: 10.1016/j.bmcl.2004.03.049.
  • Fife, T.H.; Anderson, E. Intramolecular carboxyl group participation in acetal hydrolysis. J. Am. Chem. Soc. 1971, 93(24), 6610–6614. doi: 10.1021/ja00753a047.
  • Bohe, L.; Crich, D. A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydr. Res. 2015, 403, 48–59. doi: 10.1016/j.carres.2014.06.020.
  • Zatsepin, T.S.; Stetsenko, D.A.; Arzumanov, A.A.; Romanova, E.A.; Gait, M.J.; Oretskaya, T.S. Synthesis of peptide − oligonucleotide conjugates with single and multiple peptides attached to 2′-aldehydes through thiazolidine, oxime, and hydrazine linkages. Bioconjugate Chem. 2002, 13(4), 822–830.
  • Kalia, J.; Raines, R.T. Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. 2008, 47(39), 7523–7526. doi: 10.1002/anie.200802651.
  • Ngoje, G.; Addae, J.; Kaur, H.; Li, Z. Development of highly stereoselective GalN3 donors and their application in the chemical synthesis of precursors of Tn antigen. Org. Biomol. Chem. 2011, 9(19), 6825–6831. doi: 10.1039/c1ob05893b.
  • Ziegler, T. Rhizobial saccharides 2. Selective synthesis of both diastereomers of 4,6-O-pyruvylated d-glycopyranosides. Tetrahedron Lett. 1994, 35(37), 6857–6860. doi: 10.1016/0040-4039(94)85023-2.
  • Salmani, J.; Asghar, S.; Lv, H.; Zhou, J. Aqueous solubility and degradation kinetics of the phytochemical anticancer thymoquinone; probing the effects of solvents, pH and light. Molecules 2014, 19(5), 5925–5939. doi: 10.3390/molecules19055925.
  • Liimatainen, H.; Sirviö, J.; Pajari, H.; Hormi, O.; Niinimaki, J. Regeneration and recycling of aqueous periodate solution in dialdehyde cellulose production. J. Wood Chem. Tech. 2013, 4, 258–266. doi: 10.1080/02773813.2013.783076.
  • Pantosti, A.; Tzianabos, A.O.; Onderdonk, A.B.; Kasper, D.L. Immunochemical characterization of two surface polysaccharides of Bacteroides fragilis. Infec. Immun. 1991, 59, 2075–2082.
  • Kalka-Moll, W.M.; Wang, Y.; Comstock, L.E.; Gonzalez, S.E.; Tzianabos, A.O.; Kasper, D.L. Immunochemical and biological characterization of three capsular polysaccharides from a single ltem Bacteroides fragilis strain. Infect. Immun. 2001, 69(4), 2339–2344. doi: 10.1128/IAI.69.4.2339-2344.2001.
  • Ohlsson, J.; Magnusson, G. Galabiosyl donors; efficient synthesis from 1,2,3,4,6-penta-O-acetyl-β-D-galactopyranose. Carbohydr. Res. 2000, 329(1), 49–55. doi: 10.1016/S0008-6215(00)00154-3.
  • Oßwald, M.; Lang, U.; Friedrich-Bochnitschek, S.; Pfrengle, W.; Kunz, H. Regioselective glycosylation of glucosamine and galactosamine derivates using O-pivaloyl galactosyl donors. J Charbohydr. Sci. 2003, 58, 764. doi: 10.1515/znb-2003-0808.
  • Gold, H.; Boot, R.G.; Aerts, J.M.F.G.; Overkleeft, H.S.; Codée, J.D.C.; van der Marel, G.A. A concise synthesis of globotriaosylsphingosine. Eur. J. Org. Chem. 2011, 2011(9), 1652–1663. doi: 10.1002/ejoc.201001690.
  • Gola, G.; Libenson, P.; Donadío, L.; Rodriguez, C. Synthesis of 2,3,5,6-tetra-O-benzyl-D-galactofuranose for α-glycosidation. ARKIVOC 2005, 12, 234–242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.