280
Views
8
CrossRef citations to date
0
Altmetric
Articles

Glucopyranoside-substituted imidazolium-based chiral ionic liquids for Pd-catalyzed homo-coupling of arylboronic acids in water

, , , , , & show all
Pages 288-299 | Received 21 Mar 2020, Accepted 24 Jun 2020, Published online: 14 Jul 2020

References

  • Rogers, R. D.; Seddon, K. R. Chemistry. Ionic liquids-solvents of the future? Science 2003, 302(5646), 792–793. doi:10.1126/science.1090313.
  • Bedrov, D.; Piquemal, J.-P.; Borodin, O.; MacKerell, A. D.; Roux, B.; Schröder, C. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 2019, 119(13), 7940–7995. doi:10.1021/acs.chemrev.8b00763.
  • Egorova, K. S.; Gordeev, E. G.; Ananikov, V. P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 2017, 117(10), 7132–7189. doi:10.1021/acs.chemrev.6b00562.
  • Greaves, T. L.; Drummond, C. J. Protic ionic liquids: Evolving structure–property relationships and expanding applications. Chem. Rev. 2015, 115(20), 11379–11448. doi:10.1021/acs.chemrev.5b00158.
  • Hallett, J. P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev. 2011, 111(5), 3508–3576. doi:10.1021/cr1003248.
  • Lei, Z.; Chen, B.; Li, C.; Liu, H. Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. Chem. Rev. 2008, 108(4), 1419–1455. doi:10.1021/cr068441+.
  • Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Temperature-responsive ionic liquids: Fundamental behaviors and catalytic applications. Chem. Rev. 2017, 117(10), 6881–6928. doi:10.1021/acs.chemrev.6b00652.
  • Mika, L. T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev. 2018, 118(2), 505–613. doi:10.1021/acs.chemrev.7b00395.
  • Delbianco, M.; Bharate, P.; Varela-Aramburu, S.; Seeberger, P. H. Carbohydrates in supramolecular chemistry. Chem. Rev. 2016, 116(4), 1693–1752. doi:10.1021/acs.chemrev.5b00516.
  • MacLeod, M. J.; Goodman, A. J.; Ye, H. Z.; Nguyen, H. V.; Van Voorhis, T.; Johnson, J. A. Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene-thiolate ligands. Nat. Chem. 2019, 11(1), 57–63. doi:10.1038/s41557-018-0159-8.
  • Bromfield, S. M.; Wilde, E.; Smith, D. K. Heparin sensing and binding–taking supramolecular chemistry towards clinical applications. Chem. Soc. Rev. 2013, 42(23), 9184–9195. doi:10.1039/c3cs60278h.
  • Hassler, C. S.; Schoemann, V.; Nichols, C. M.; Butler, E. C.; Boyd, P. W. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc. Natl. Acad. Sci. USA. 2011, 108(3), 1076–1081. doi:10.1073/pnas.1010963108.
  • Huang, L. C.; Liang, P. H.; Liu, C. Y.; Lin, C. C. Large‐scale synthesis of per‐O‐acetylated saccharides and their sequential transformation to glycosyl bromides and thioglycosides. J. Carbohydr. Chem. 2006, 25(4), 303–313. doi:10.1080/07328300600770469.
  • Hossain, F.; Nishat, S.; Ghosh, S.; Boga, S.; Hymel, G. T.; Andreana, P. R. Synthesis of glycoimmunogen Tn-Thr-PS A1 via hydrazone bond and stability optimization of PS A1 monosaccharide mimics under vaccine development conditions. J. Carbohydr. Chem. 2020, 39(2-3), 107–129. doi:10.1080/07328303.2019.1709975.
  • Guo, Y.; Gong, W.; Wang, L.; Guo, J.; Jin, G.; Gu, G.; Guo, Z. Characterization and biochemical investigation of the potential inositol monophosphate phosphatase involved in bacterial mycothiol biosynthesis. J. Carbohydr. Chem. 2018, 37(9), 507–521. doi:10.1080/07328303.2018.1559326.
  • Annunziata, A.; Amoresano, A.; Cucciolito, M. E.; Esposito, R.; Ferraro, G.; Iacobucci, I.; Imbimbo, P.; Lucignano, R.; Melchiorre, M.; Monti, M.; et al. Pt(II) versus Pt(IV) in carbene glycoconjugate antitumor agents: Minimal structural variations and great performance changes. Inorg. Chem. 2020, 59(6), 4002–4014. doi:10.1021/acs.inorgchem.9b03683.
  • Woodward, S.; Diéguez, M.; Pàmies, O. Use of sugar-based ligands in selective catalysis: Recent developments. Coord. Chem. Rev. 2010, 254(17-18), 2007–2030. doi:10.1016/j.ccr.2010.03.005.
  • Zhao, W.; Ferro, V.; Baker, M. V. Carbohydrate–N-heterocyclic carbene metal complexes: Synthesis, catalysis and biological studies. Coord. Chem. Rev. 2017, 339, 1–16. doi:10.1016/j.ccr.2017.03.005.
  • Dieguez, M.; Claver, C.; Pamies, O. Recent progress in asymmetric catalysis using chiral carbohydrate-based ligands. Eur. J. Org. Chem. 2007, 2007(28), 4621–4634. doi:10.1002/ejoc.200700082.
  • Diéguez, M.; Pàmies, O.; Ruiz, A.; Dı́az, Y.; Castillón, S.; Claver, C. Carbohydrate derivative ligands in asymmetric catalysis. Coord. Chem. Rev. 2004, 248 (21-24), 2165–2192. doi:10.1016/j.ccr.2004.04.009.
  • Dieguez, M.; Pamies, O.; Claver, C. Ligands derived from carbohydrates for asymmetric catalysis. Chem. Rev. 2004, 104(6), 3189–3216. doi:10.1021/cr0306889.
  • Nemcsok, T.; Rapi, Z.; Bagi, P.; Bakó, P. Synthesis and application of novel carbohydrate-based ammonium and triazolium salts. Synth. Commun. 2019, 49(18), 2388–2400. doi:10.1080/00397911.2019.1625403.
  • Salman, A. A.; Tabandeh, M.; Heidelberg, T.; Hussen, R. S. D.; Ali, H. M. Alkyl-imidazolium glycosides: Non-ionic—cationic hybrid surfactants from renewable resources. Carbohydr. Res. 2015, 412, 28–33. doi:10.1016/j.carres.2015.04.022.
  • Kaur, N.; Chopra, H. K. Synthesis and applications of carbohydrate based chiral ionic liquids as chiral recognition agents and organocatalysts. J. Mol. Liq. 2020, 298(15), 111994. doi:10.1016/j.molliq.2019.111994.
  • Knochel, P.; Molander, G. A. Comprehensive Organic Synthesis. 2nd ed. Elsevier: Amsterdam, 2014.
  • Suzuki, A. Cross-coupling reactions of organoboranes: An easy way to construct C-C bonds. Angew. Chem. Int. Ed. 2011, 50(30), 6722–6737. doi:10.1002/anie.201101379.
  • Negishi, E.-I. Magical power of transition metals: Past, present, and future (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2011, 50(30), 6738–6764. doi:10.1002/anie.201101380.
  • Heck, R. F. Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J. Am. Chem. Soc. 1968, 90(20), 5518–5526. doi:10.1021/ja01022a034.
  • Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A critical review. Chem. Rev. 2018, 118(4), 2249–2295. doi:10.1021/acs.chemrev.7b00443.
  • Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 2015, 115(17), 9587–9652. doi:10.1021/acs.chemrev.5b00162.
  • Favier, I.; Pla, D.; Gómez, M. Palladium nanoparticles in polyols: Synthesis, catalytic couplings, and hydrogenations. Chem. Rev. 2020, 120(2), 1146–1183. doi:10.1021/acs.chemrev.9b00204.
  • Vasconcelos, S. N. S.; Reis, J. S.; de Oliveira, I. M.; Balfour, M. N.; Stefani, H. A. Synthesis of symmetrical biaryl compounds by homocoupling reaction. Tetrahedron 2019, 75(13), 1865–1959. doi:10.1016/j.tet.2019.02.001.
  • Shi, J.-C.; Lei, N.; Tong, Q.; Peng, Y.; Wei, J.; Jia, L. Synthesis of chiral imidazolinium carbene from a carbohydrate and its Rhodium(I) complex. Eur. J. Inorg. Chem. 2007, 2007(15), 2221–2224. doi:10.1002/ejic.200700027.
  • Tewes, F.; Schlecker, A.; Harms, K.; Glorius, F. Carbohydrate-containing N-heterocyclic carbene complexes. J. Organomet. Chem. 2007, 692(21), 4593–4602. doi:10.1016/j.jorganchem.2007.05.007.
  • Nishioka, T.; Shibata, T.; Kinoshita, I. Sugar-incorporated N-heterocyclic carbene complexes. Organometallics 2007, 26(5), 1126–1128. doi:10.1021/om061128d.
  • Keitz, B. K.; Grubbs, R. H. Ruthenium olefin metathesis catalysts bearing carbohydrate-based N-heterocyclic carbenes. Organometallics 2010, 29(2), 403–408. doi:10.1021/om900864r.
  • Shibata, T.; Hashimoto, H.; Kinoshita, I.; Yano, S.; Nishioka, T. Unprecedented diastereoselective generation of chiral-at-metal, half sandwich Ir(III) and Rh(III) complexes via anomeric isomerism on “sugar-coated” N-heterocyclic carbene ligands. Dalton Trans. 2011, 40(18), 4826–4829. doi:10.1039/c0dt01634a.
  • Shibata, T.; Ito, S.; Doe, M.; Tanaka, R.; Hashimoto, H.; Kinoshita, I.; Yano, S.; Nishioka, T. Dynamic behaviour attributed to chiral carbohydrate substituents of N-heterocyclic carbene ligands in square planar nickel complexes. Dalton Trans. 2011, 40(25), 6778–6784. doi:10.1039/c0dt01833c.
  • Zhou, Z.; Qiu, J.; Xie, L.; Du, F.; Xu, G.; Xie, Y.; Ling, Q. Synthesis of chiral imidazolium salts from a carbohydrate and their application in Pd-catalyzed Suzuki–Miyaura reaction. Catal. Lett. 2014, 144(11), 1911–1918. doi:10.1007/s10562-014-1323-4.
  • Yang, C. C.; Lin, P. S.; Liu, F. C.; Lin, I. J. B.; Lee, G. H.; Peng, S. M. Glucopyranoside-incorporated N-heterocyclic carbene complexes of silver(I) and palladium(II): Efficient water-soluble Suzuki − Miyaura coupling palladium(II) catalysts. Organometallics 2010, 29(22), 5959–5971. doi:10.1021/om100751r.
  • Butler, R. N.; Coyne, A. G. Water: Nature’s reaction enforcers-comparative effects for organic synthesis “in-water” and “on-water. Chem. Rev. 2010, 110(10), 6302–6337. doi:10.1021/cr100162c.
  • Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic organic reactions in water toward sustainable society. Chem. Rev. 2018, 118(2), 679–746. doi:10.1021/acs.chemrev.7b00417.
  • Simon, M.-O.; Li, C.-J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev. 2012, 41(4), 1415–1427. doi:10.1039/C1CS15222J.
  • Zhou, Z.; Zhao, Y.; Zhen, H.; Lin, Z.; Ling, Q. Poly(ethylene glycol)- and glucopyranoside-substituted N-heterocyclic carbene precursors for the synthesis of arylfluorene derivatives using efficient palladium-catalyzed aqueous Suzuki reaction. Appl. Organometal. Chem. 2016, 30(11), 924–931. doi:10.1002/aoc.3522.
  • Zhou, Z. G.; Li, M.; Liu, G. S.; Xu, G. H.; Xue, J. Ultra-small sugar-substituted N-heterocyclic carbenes protected Pd nanoparticles and catalytic activity. Appl. Organomet. Chem. 2019, 33(7), e4942.
  • Zhou, Z.; Yuan, Y.; Xie, Y.; Li, M. Green, efficient and reusable bis(imidazolium) ionic liquids promoted Pd-catalyzed aqueous Suzuki reaction for organic functional materials. Catal. Lett. 2018, 148(9), 2696–2702. doi:10.1007/s10562-018-2452-y.
  • Zhang, M.; Tang, Z.; Fu, W.; Wang, W.; Tan, R.; Yin, D. An ionic liquid-functionalized amphiphilic Janus material as a Pickering interfacial catalyst for asymmetric sulfoxidation in water. Chem. Commun. (Camb.) 2019, 55(5), 592–595. doi:10.1039/C8CC08292H.
  • Shi, J.-C.; Zhou, Z.-G.; Zheng, S.; Zhang, Q.; Jia, L.; Lin, J. Carbohydrate-based phosphines as supporting ligand for palladium-catalyzed Suzuki–Miyaura cross-coupling reaction. Tetrahedron Lett. 2014, 55(18), 2904–2907. doi:10.1016/j.tetlet.2014.01.011.
  • Shi, G. L.; Chen, K. H.; Wang, Y. T.; Li, H. R.; Wang, C. M. Highly efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 by hydroxyl functionalized aprotic ionic liquids. ACS Sustainable Chem. Eng. 2018, 6, 5760–5765. doi:10.1021/acssuschemeng.8b01109.
  • Rendon-Nava, D.; Alvarez-Hernandez, A.; Rheingold, A. L.; Suarez-Castillo, O. R.; Mendoza-Espinosa, D. Hydroxyl-functionalized triazolylidene-based PEPPSI complexes: Metallacycle formation effect on the Suzuki coupling reaction. Dalton Trans. 2019, 48(10), 3214–3222. doi:10.1039/C8DT04432E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.