310
Views
9
CrossRef citations to date
0
Altmetric
Review

A systematic review on the significant roles of cyclodextrins in the construction of supramolecular systems and their potential usage in various fields

Pages 189-216 | Received 16 Apr 2020, Accepted 03 Jul 2020, Published online: 07 Aug 2020

References

  • James, T. D. Specialty grand challenges in supramolecular chemistry. Front. Chem. 2017, 5, 83. doi:10.3389/fchem.2017.00083.
  • Aakeröy, C. B.; Sinha, A. S. Co-crystals: Introduction and scope. In Co-Crystals: Preparation Characterization and Applications; Aakeröy, C. B.; Sinha, A. S., Eds. Royal Society of Chemistry: London, UK, 2018, pp 1–32.
  • Schmidt, H.-W.; Wurthner, F. A periodic system of supramolecular elements. Angew. Chem. Int. Ed. Engl. 2020, 59(23), 8766–8775. doi:10.1002/anie.201915643.
  • Bojarska, J.; Jaczmarek, K.; Zabrocki, J.; Wolf, W. M. Supramolecular chemistry of modified amino acids and short peptides. Adv. Org. Synth. 2018, 11, 43–107.
  • Lehn, J. M. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Engl. 1990, 29(11), 1304–1319. doi:10.1002/anie.199013041.
  • Zhou, J.; Yu, G.; Huang, F. Supramolecular chemotherapy based on host–guest molecular recognition: A novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev. 2017, 46(22), 7021–7053. doi:10.1039/C6CS00898D.
  • Loh, X. J. Supramolecular host–guest polymeric materials for biomedical applications. Mater. Horiz. 2014, 1(2), 185–195. doi:10.1039/C3MH00057E.
  • Appel, E. A.; Barrio, J. D.; Loh, X. J.; Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 2012, 41(18), 6195–6214. doi:10.1039/c2cs35264h.
  • Periasamy, R.; Kothainayaki, S.; Sivakumar, K. Preparation physicochemical analysis and molecular modeling investigation of 2,2’-Bipyridine: β-Cyclodextrin inclusion complexe in solution and solid state. J. Mol. Struct. 2015, 1100, 59–69. doi:10.1016/j.molstruc.2015.07.026.
  • Vincenti, M. Special feature: Perspective host-guest chemistry in the mass spectrometer. J. Mass Spectrom. 1995, 30(7), 925–939. doi:10.1002/jms.1190300702.
  • Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98(5), 1743–1754. doi:10.1021/cr970022c.
  • Villiers, M. A. Sur la fermentation de la fécule par l’action du ferment butyrique. Compt. Rend. 1891, 112, 536–540.
  • Schardinger, F. Z.; Lintersuch, Z.; Nahr, U. Uber thermophile bakterien aus verschiedenen speisen und milch, sowie uber einigne umsetzungsprodukte derselben in kohlenhydrathaltigen nahrlosungen, darunter krystallisierte polysaccharide(dextrin)aus starkes. Genussm. 1903, 6, 865–880.
  • Schardinger, F. Wien Klin Wochenschr. 1904, 17, 207–209.
  • Periasamy, R.; Kothainayaki, S.; Sivakumar, K. Encapsulation of dicinnamalacetone in β-cyclodextrin: A physicochemical evaluation and molecular modeling approach on 1:2 inclusion complex. J. Macromol. Sci., Pure Appl. Chem. 2016, 53(9), 546–556. doi:10.1080/10601325.2016.1201750.
  • Leclercq, L. Interactions between cyclodextrins and cellular components: Towards greener medical applications? Beilstein J. Org. Chem. 2016, 12, 2644–2662. doi:10.3762/bjoc.12.261.
  • Di Cagno, M. P. The potential of cyclodextrins as novel active pharmaceutical ingredients: A short overview. Molecules. 2016, 22(1), 1. doi:10.3390/molecules22010001.
  • Jiang, L.; Yang, J.; Wang, Q.; Ren, L.; Zhou, J. Physicochemical properties of catechin/β-cyclodextrin inclusion complex obtained via co-precipitation. CYTA J. Food. 2019, 17(1), 544–551. doi:10.1080/19476337.2019.1612948.
  • Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrin: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 2018, 535(1–2), 272–284. doi:10.1016/j.ijpharm.2017.11.018.
  • Crini, G. Review: A history of cyclodextrins. Chem. Rev. 2014, 114(21), 10940–10975. doi:10.1021/cr500081p.
  • Andersen, G. H.; Robbins, F. M.; Domingues, F. J.; Moores, R. G.; Long, C. L. The utilization of schardinger dextrins by the rat. Toxicol. Appl. Pharmocol. 1963, 5(2), 257–266. doi:10.1016/0041-008X(63)90048-6.
  • French, D.; Levine, M. L.; Pazur, J. H.; Norberg, E. Studies on the schardinger dextrins. the preparation and solubility characteristics of alpha, beta and gama dextrins. J. Am. Chem. Soc. 1949, 71(1), 353–356. doi:10.1021/ja01169a100.
  • Karrer, P.; Nageli, C.; Hurwitz, O.; Walti, A. Researches on the polysaccharides. A contribution to the knowledge of the starches and amylases. Helvetica. 1921, 4(1), 678–699. doi:10.1002/hlca.19210040175.
  • Cheirsilp, B.; Rakmai, J. Inclusion complex formation of cyclodextrin with its guest and their applications. Biol. Eng. Med. 2017, 2(1), 1–6. doi:10.15761/BEM.1000108.
  • Hedges, R. A. Industrial applications of cyclodextrins. Chem. Rev. 1998, 98(5), 2035–2044. doi:10.1021/cr970014w.
  • Sharma, N.; Baldi, A. Exploring versatile applications of cyclodextrins: An overview. Drug Deliv. 2016, 23(3), 729–747. doi:10.3109/10717544.2014.938839.
  • Abdolmaleki, A.; Ghasemi, F.; Ghasemi, J. B. Computer-aided drug design to explore cyclodextrin therapeutics and biomedical applications. Chem. Biol. Drug Des. 2017, 89(2), 257–268. doi:10.1111/cbdd.12825.
  • Zerkoune, L.; Lesieur, S.; Putaux, J. L.; Choisnard, L.; Geze, A.; Wouessidjewe, D.; Angelov, B.; Nardin, C. V.; Doutch, J.; Angelova, A. Mesoporous self assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water soluble substance. Soft Mater. 2016, 12, 7350–7359.
  • He, S.; Li, H.; Chen, H. L. Preparation of light sensitive polymer/graphene composite via molecular recognition by beta-cyclodextrin. J. Mater. Sci. 2018, 53(20), 14337–14349. doi:10.1007/s10853-018-2639-z.
  • Periasamy, R.; Kothainayaki, S.; Rajamohan, R.; Sivakumar, K. Spectral investigations of host-guest inclusion complex of 4,4′-methylene-bis (2-chloroaniline) with β-cyclodextrin. Carbohydr. Polym. 2014, 114, 558–566. doi:10.1016/j.carbpol.2014.08.006.
  • Schneider, H.-J.; Hacket, F.; Rüdiger, V.; Ikeda, H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 1998, 98(5), 1755–1786. doi:10.1021/cr970019t.
  • Marques, H. M. C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr. J. 2010, 25(5), 313–326. doi:10.1002/ffj.2019.
  • Alvira, E. Molecular dynamics study of the factors influencing the β-cyclodextrin inclusion complex formation of the isomers of linear molecules. J. Chem. 2017, 2017, 6907421. doi:10.1155/2017/6907421.
  • Periasamy, R.; Kothainayaki, S.; Sivakumar, K. Investigations on intermolecular complexation between 4,4′-Methylene-bis (N,N-dimethylaniline)and β-cyclodextrin: Preparation and characterization in aqueous medium and solid state. J. Mol. Struct. 2015, 1080, 69–79. doi:10.1016/j.molstruc.2014.09.046.
  • Schmid, G. Cyclodextrin glycosyltransferase production: Yield enhancement by overexpression of cloned genes. Trends Biotechnol. 1989, 7(9), 244–248. doi:10.1016/0167-7799(89)90015-2.
  • Szejtli, J. Cyclodextrin Technology. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988, pp. 1–78
  • Loftsson, T.; Brewster, M. Pharmaceutical applications of cyclodextrins.1. drug solubilizarion and stabilization. J. Pharm. Sci. 1996, 85(10), 1017–1025. doi:10.1021/js950534b.
  • Martin Del Valle, E. M. Cyclodextrin and their uses: A review. Process. Biochem. 2004, 39(9), 1033–1046. doi:10.1016/S0032-9592(03)00258-9.
  • Miller, L. A.; Carrier, R. L.; Ahmed, I. Practical considerations in development of solid dosage forms that contain cyclodextrins. J. Pharm. Sci. 2007, 96(7), 1691–1707. doi:10.1002/jps.20831.
  • Mulimani, U.; Goswami, B.; Rughwani, B. Dissolution enhancement of clarithromycin using ternary cyclodextrin complexation. Int J Pharma Res Scholars. 2018, 7(3), 18–29. doi:10.31638/IJPRS.V7.I3.00047.
  • Ansari, M. Investigations of polyethylene glycol mediated ternary molecular inclusion complexes of silymarin with beta-cyclodextrin. J. Appl. Pharma. Sci. 2015, 5, 26–31.
  • Pamudji, J. S.; Mauludin, R.; Lestari, V. A. Improvement of carvedilol dissolution rate through formation of inclusion complex with β-cyclodextrin. Int. J. Pharm. Pharm. Sci. 2014, 4, 228–233.
  • Sapkal, N. P.; Kilor, V. A.; Bhusari, K. P.; Daud, A. S. Evaluation of some methods for preparing gliclazide-betacyclodextrin inclusion complexes. Trop. J. Pharm. Res. 2007, 6, 833–840.
  • Calik, M. K.; Ozdemir, M. Synthesis and controlled release of curcumin-β-cyclodextrin inclusion complex from nanocomposite poly(N-isopropylacrylamide/sodium alginate) hydrogels. J. Appl. Polym. Sci. 2019, 136(21), 47554. doi:10.1002/app.47554.
  • Li, W.; Ran, L.; Liu, F.; Hou, R.; Zhao, W.; Li, Y.; Wang, C.; Dong, J.; Hou. R. Preparation and characterisation of polyphenol-HP-β-cyclodectrin inclusion complex that protects lamp tripe protein. Against oxidation. Molecules. 2019, 24(24), 4487. doi:10.3390/molecules24244487.
  • Gupta, P. K.; Brazeau, G. A. Injectable Drug Development Techniques to Reduce Pain and Irritation. Interpharm Press: Englewood, USA, 1999, pp. 312–313.
  • Shimpi, S.; Chauhan, B.; Shimpi, P. Cyclodextrins: Application in different routes of drug administration. Acta Pharm. 2005, 55(2), 139–156.
  • Parlati, S.; Gobetto, R.; Barolo, C.; Arrais, A.; Buscaino, R.; Medana, C.; Savarino, P. Preparation and application of betacyclodextrin-disperse/reactive dye complex. J. Incl. Phenom. Macrocycl. Chem. 2007, 57(1–4), 463–470. doi:10.1007/s10847-006-9235-6.
  • Wang, Q. F.; Fan, X. W.; Xu, L.; Yao, Y. Preparation of inclusion complex of paeonol and betacyclodextrin by sealed controlled temperature method. Euro. PMC. 2007, 32, 218–221.
  • Choi, H. G.; Lee, B. J.; Han, J. H.; Lee, M. K.; Park, K. M.; Yong, C. S.; Rhee, J. D.; Kim, Y. B.; Kim, C. K. Terfenadine-beta-cyclodextrin inclusion complex with antihistaminic activity enhancement. Drug Dev. Ind. Pharm. 2001, 27(8), 857–862. doi:10.1081/DDC-100107250.
  • Fonseca, L.; Rocha, M.; Brito, L.; Sousa, E.; Reinaldo, F.; Pereira, F.; Eroni, P. S. F.; de Lima, S. Characterization of inclusion complex of croton zehntneri essential oil and β-cyclodextrin prepared by spray drying and freeze drying. Rev. Virtual Quim. 2019, 11(2), 529–542. doi:10.21577/1984-6835.20190040.
  • Mattos de Silva, M. R.; Santos, E. P.; Barros, R. C. S. A.; Garcia, S.; Albuquerque, M. G.; Oliveira, J. S. C.; Sader, M. S. The development of a new complexation technique of hydrocortisone acetate with 2-hydroxypropyl-β-cyclodextrin: Preparation and characterization. J. Anal. Pharm. Res. 2018, 7, 194.
  • Osadebe, P. O.; Onugwu, L. E.; Attama, A. A. Energetics of the interaction between piraxicam and betacyclodextrin (β-CD) in inclusion complexes. Sci. Res. Essays. 2008, 3, 086–093.
  • Jadhav, P.; Pore, Y. Physicochemical, thermodynamic and analytical studies on binary and ternary inclusion complexes of bosentan with hydroxypropyl-β-cyclodextrin. Bull. Fac. Pharm. Cairo Univ. 2017, 55(1), 147–154. doi:10.1016/j.bfopcu.2016.12.004.
  • RahCim, N. Y.; Samad, F. H.; Rohisham, A. M. Spectroscopic studies of inclusion complex glipizide and β-cyclodextrin. Malaysian J. Anal. Sci. 2019, 23, 789–798.
  • Lisy Roselet, S.; Steiny, R. P.; Prema Kumari, J. Spectral characteristics and molecular docking studies on the α-cd inclusion complexes of 2-methyl-4-nitrophenol and 4-methyl-2-nitrophenol. Int. Res. J. Eng. Technol. 2017, 4, 2198–2205.
  • Domiński, A.; Konieczny, T.; Kurcok, P. α-Cyclodextrin based polypseudorotaxane hydrogels. Materials. 2019, 13(1), 133. doi:10.3390/ma13010133.
  • Tan, C.; Chen, J.; Zhang, L.; Zhang, B.; Huang, X.; Meng, H. The preparation and characterization of n-B18H22-beta cyclodextrin inclusion complex. IOP Conf. Ser.: Earth Environ. Sci. 2019, 233, 022005. doi:10.1088/1755-1315/233/2/022005.
  • Trofymchuk, I. M.; Belyakova, L. A.; Grebenyuk, A. G. Study of complex formation between β-cyclodextrin and benzene. J. Incl. Phenom. Macrocycl. Chem. 2011, 69(3–4), 371–375. doi:10.1007/s10847-010-9757-9.
  • Singh, R.; Bharti, N.; Madan, J.; Hiremath, S. Characterization of cyclodextrin inclusion complexes - A review. J. Pharm. Sci. Technol. 2010, 2, 171–183.
  • Sayed, M.; Gubbala, G. K.; Pal, H. Contrasting interactions of DNA- intercalating dye acridine orange with hydroxypropyl derivatives of β-cyclodextrin and γ-cyclodextrin hosts. New J. Chem. 2019, 43(2), 724–736. doi:10.1039/C8NJ04067B.
  • Shirly Treasa, M.; Premakumari, J. Characterisation and solubility studies of quinine sulphate and hydroxychloroquine sulphate inclusion complexes with α-cyclodextrin. IOSR-JAC. 2018, 11, 24–34.
  • Kiss, E.; Szabo, V. A.; Horvath, P. Simple circular dichroism method for selection of the optimal cyclodextrin for drug complexation. J. Incl. Phenom. Macrocycl. Chem. 2019, 95(3–4), 223–233. doi:10.1007/s10847-019-00938-2.
  • Job, P. Recherches sur la formation de complexes mineraux en solution et sur leurstabilite. Ann. Chim. 1928, 9, 113–203.
  • Rajaram, R.; Sundararajalu, K. N.; Meenakshisundaram, S. Unusual excited state characteristics of 6-aminobenzothiazole with β-cyclodextrin. J. Fluoresc. 2011, 21(2), 521–529. doi:10.1007/s10895-010-0738-6.
  • Chadha, R.; Gupta, S.; Shukla, G.; Jain, D. V. S.; Singh, S. Characterization and in vivo efficacy of inclusion complexes of sulphadoxine with β-cyclodextrin: Calorimetric and spectroscopic studies. J. Incl. Phenom. Macrocycl. Chem. 2011, 71(1–2), 149–159. doi:10.1007/s10847-010-9919-9.
  • Ge, X.; He, J.; Yang, Y.; Qi, F.; Huang, Z.; Lu, R.; Huang, L.; Yao, X. Study on inclusion complexation between plant growth regulator 6-benzylaminopurine and β-cyclodextrin: Preparation, characterization and molecular modelling. J. Mol. Struct. 2011, 994(1–3), 163–169. doi:10.1016/j.molstruc.2011.03.013.
  • Jadhav, G. S.; Vavia, P. R.; Nandedkar, T. D. Danazol-β-cyclodextrin binary system: A potential application in emergency contraception by the oral route. AAPS Pharm. Sci. Tech. 2007, 8(2), E61–E70. doi:10.1208/pt0802035.
  • Landy, D.; Tetart, F.; Truant, E.; Blach, P.; Fourmentin, S.; Surpateanu, G. Development of a competitive continuous variation plot for the determination of inclusion compounds stoichiometry. J. Incl. Phenom. Macrocycl. Chem. 2007, 57(1–4), 409–413. doi:10.1007/s10847-006-9226-7.
  • Mady, F. M.; Farghaly Aly, U. Experimental, molecular docking investigations and bioavailability study on the inclusion complexes of finasteride and cyclodextrins. Drug Des. Dev. Ther. 2017, 11, 1681–1692. doi:10.2147/DDDT.S135084.
  • Qiu, N.; Cheng, X.; Wang, G.; Wang, W.; Wen, J.; Zhang, Y.; Song, H.; Ma, L.; Wei, Y.; Peng, A.; et al. Inclusion complex of barbigerone with hydroxypropyl-β-cyclodextrin: Preparation and in vitro evaluation. Carbohydr. Polym. 2014, 101, 623–630. doi:10.1016/j.carbpol.2013.09.035.
  • Gong, L.; Li, T.; Chen, F.; Duan, X.; Yuan, Y.; Zhang, D.; Jiang, Y. An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization. Food Chem. 2016, 196, 324–330. doi:10.1016/j.foodchem.2015.09.052.
  • Srinivasan, K.; Kayalvizhi, K.; Sivakumar, K.; Stalin, T. Study of inclusion complex of β-cyclodextrin and diphenylamine: Photophysical and electrochemical behaviours. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011, 79(1), 169–178. doi:10.1016/j.saa.2011.02.030.
  • Nerome, H.; Machmudah, S.; Wahyudiono Fukuzato, R.; Higashiura, T.; Youn, Y. S.; Lee, Y. W.; Goto, M. Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J. Supercrit. Fluids. 2013, 83, 97–103. doi:10.1016/j.supflu.2013.08.014.
  • Radu, C. D.; Parteni, O.; Ochiuz, L. Applications of cyclodextrins in medcal textiles –review. J. Control Rel. 2016, 224, 146–157. doi:10.1016/j.jconrel.2015.12.046.
  • Cireli, A.; Yurdakul, B. Application of cyclodextrin to the textile dyeing and washing process. J. Appl. Polym. Sci. 2006, 100(1), 208–218. doi:10.1002/app.22863.
  • Voncina, B.; Vivod, V.; Jausovec, D. Betacyclodextrin as a retarding agent in polyacrylonitrile dyeing. Dyes Pigm. 2007, 74(3), 642–646. doi:10.1016/j.dyepig.2006.04.013.
  • Dardeer, H. M.; El-Sisi, A. A.; Emam, A. A.; Hilal, N. M. Synthesis, application of a novel azo dye and its inclusion complex with β-cyclodextrin onto polyester fabric. Int. J. Text. Sci. 2017, 6, 79–87.
  • Savarino, D.; Viscardi, G.; Quagliotto, P.; Montoneri, E.; Barni, E. Reactivity and effects of cyclodextrins in textile dyeing. Dyes Pigm. 1999, 42(2), 143–147. doi:10.1016/S0143-7208(99)00004-2.
  • Savarino, P.; Piccinini, P.; Montoneri, E.; Viscardi, G.; Quagliotto, P.; Barni, E. Effect of additives on the dyeing of nylon-6 with dyes containing hydraphobic and hydrophilic moieties. Dyes Pigm. 2000, 47(1–2), 177–188. doi:10.1016/S0143-7208(00)00074-7.
  • Mamba, B. B.; Krause, R. W.; Malefetse, T. J.; Nxumalo, E. N. Monofunctionalised cyclodextrin polymers for the removal of organic pollutants from waste water. Environ. Chem. Lett. 2007, 5(2), 79–84. doi:10.1007/s10311-006-0082-x.
  • Mhlanga, S. D.; Mamba, B. B.; Krause, R. W.; Malefetse, T. J. Removal of organic contaminants from water using nano sponge cyclodextrin polyurethanes. J. Chem. Technol. Biotechnol. 2007, 82(4), 382–388. doi:10.1002/jctb.1681.
  • Loftsson, T.; Duchene, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329(1–2), 1–11. doi:10.1016/j.ijpharm.2006.10.044.
  • Challa, R.; Ahuja, A.; Ali, J.; Khar, R. K. Cyclodextrins in drug delivery: An updated review. AAPS. PharmSciTech. 2005, 6(2), E329–E357. doi:10.1208/pt060243.
  • Rasheed, A.; Ashok Kumar, C. K.; Sravanthi, V. Cyclodextrins as drug carrier molecule: A review. Sci. Pharm. 2008, 76, 567–598.
  • Uekama, K. Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 2004, 52(8), 900–915. doi:10.1248/cpb.52.900.
  • Tiwari, G.; Tiwari, R.; Rai, A. K. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioall. Sci. 2010, 2(2), 72–79. doi:10.4103/0975-7406.67003.
  • Rodriguez-Aller, M.; Guinchard, S.; Guillarme, D.; Pupier, M.; Jeannerat, D.; Rivara-Minten, E.; Veuthey, J. L.; Gurny, R. New prostaglandin analog formulation for glaucoma treatment containing cyclodextrins for improved stability, solubility and ocular tolerance. Eur. J. Pharm. Biopharm. 2015, 95(B), 203–214. doi:10.1016/j.ejpb.2015.04.032.
  • Davis, M. E.; Brewster, M. E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3(12), 1023–1035. doi:10.1038/nrd1576.
  • Kovvasu, S. P.; Kunamaneni, P.; Kunderu, R. S Cyclodextrins and their application in enhancing the solubility, dissolution rate and bioavailability. Innoriginal. Int. J. Sci. 2018, 5, 25–34.
  • Maazauoui, R.; Abderrahim, R. Applications of cyclodextrins: Formation of inclusion complexes and their characterization. Int. J. Adv. Res. 2015, 3, 1030.
  • Steed, J. W.; Turner, D. R.; Wallace, K. Core Concepts in Supramolecular Chemistry and Nano Chemistry. John Wiley & Sons Ltd.: West Sussex, UK, 2007, p. 93–94.
  • Abraham, J.; Mathew, F. M. Taste masking of peadiatric formulation: A review on technologies, recent trends and regulatory aspects. Int. J. Pharm. Pharm. Sci. 2014, 6, 12–19.
  • Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J. C.; Rial-Otero, R.; Simal-Gándara, J. A review on the use of cyclodextrin in foods. Food Hydrocoll. 2009, 23(7), 1631–1640. doi:10.1016/j.foodhyd.2009.01.001.
  • Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour encapsulation and controlled release a review. Int. J. Food Sci. Tech. 2006, 41(1), 1–21. doi:10.1111/j.1365-2621.2005.00980.x.
  • Decock, G.; Landy, D.; Surpateanu, G.; Fourmentin, S. Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography. J. Incl. Phenom. Macrocycl. Chem. 2008, 62(3–4), 297–302. doi:10.1007/s10847-008-9471-z.
  • Alonso, L.; Calvo, M. V.; Fontecha, J. The influence of β-cyclodextrin on the reduction of cholesterol content in egg and duck liver pate. Foods. 2019, 8, 241. doi:10.3390/foods8070241.
  • Sharma, N.; Baldi, A. Exploring versatile applications of cyclodextrins: An overview. Drug Deliv. 2016, 23(3), 739–757. doi:10.3109/10717544.2014.938839.
  • Sriamornsak, P.; Sungthongjeeh, S. Modification of theophylline release with alginate gel formed in hard capsules. AAPS. PharmSciTech. 2007, 8(3), E1–E8. doi:10.1208/pt0803051.
  • Prabhu, K. S.; Ramadoss, C. S. Penicillin acylase catalyzed synthesis of penicillin-G from substrates anchored in cyclodextrins. Indian J. Biochem. Biophys. 2000, 37(1), 6–12.
  • Fernández, M.; Fragoso, A.; Cao, R.; Baños, M.; Villalonga, R. Chemical conjugation of trypsin with monoamine derivatives of cyclodextrins: Catalytic and stability properties. Enzyme Microb. Technol. 2002, 31(4), 543–548. doi:10.1016/S0141-0229(02)00151-5.
  • Jarho, P.; Vander Velde, D.; Stella, V. J. Cyclodextrin-catalyzed deacetylation of spironolactone is pH and cyclodextrin dependent. J. Pharm. Sci. 2000, 89(2), 241–249. doi:10.1002/(SICI)1520-6017(200002)89:2<241::AID-JPS11>3.0.CO;2-0.
  • Das, S. K.; Rajabalaya, R.; David, S.; Gani, N.; Khanam, J.; Nanda, A. Cyclodextrins-the molecular container. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 1694–1720.
  • Bai, C. C.; Tian, B. R.; Zhao, T.; Huang, Q.; Wang, Z. Z. Cyclodextrin-catalyed organic synthesis: Reactions, mechanisms, and applications. Molecules 2017, 22(9), 1475. doi:10.3390/molecules22091475.
  • Chen, H. Y.; Ji, H. B. β-Cyclodextrin promoted oxidation of cinnamaldehyde to natural benzalddhyde in water. Chin. J. Chem. Eng. 2011, 19(6), 972–977. doi:10.1016/S1004-9541(11)60079-7.
  • Wang, P.; Ren, J. Separation of purine and pyrimidine bases by capillary electrophoresis using beta-cyclodextrin as an additive. J. Pharm. Biomed. Anal. 2004, 34(2), 277–283. doi:10.1016/S0731-7085(03)00502-8.
  • Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives, Weinheim, Germany: Wiley-VCH, 1995, pp 271.
  • Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335(6070), 813–817. doi:10.1126/science.1205962.
  • Kurth, D. G.; Higuchi, M. Transition metal ions: Weak links for strong polymers. Soft Matter. 2006, 2(11), 915–927. doi:10.1039/b607485e.
  • Wilson, A. J. Non-covalent polymerassembly using arrays of hydrogen-bonds. Soft Matter. 2007, 3(4), 409–425. doi:10.1039/b612566b.
  • Zayed, J. M.; Nouvel, N.; Rauwald, U.; Scherman, O. A. Chemical complexity - supramolecular self-assembly of synthetic and biological building blocks in water. Chem. Soc. Rev. 2010, 39(8), 2806–2816. doi:10.1039/b922348g.
  • Huang, F.; Scherman, O. A. Supramolecular polymers. Chem. Soc. Rev. 2012, 41(18), 5879–5880. doi:10.1039/c2cs90071h.
  • Guo, D. S.; Liu, Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 2012, 41(18), 5907–5921. doi:10.1039/c2cs35075k.
  • Zhang, H.; Zhao, Y. Pillararene‐based assemblies: Design principle, preparation and applications. Chem. Eur. J. 2013, 19(50), 16862–16879. doi:10.1002/chem.201301635.
  • Chen, G.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 2011, 40(5), 2254–2266. doi:10.1039/c0cs00153h.
  • Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 2000, 39(19), 3348–3391. doi:10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X.
  • Wenz, G.; Han, B.-H.; Müller, A. Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 2006, 106(3), 782–817. doi:10.1021/cr970027+.
  • Nepogodiev, S. A.; Stoddart, J. F. Cyclodextrin-based catenanes and rotaxanes. Chem. Rev. 1998, 98(5), 1959–1976. doi:10.1021/cr970049w.
  • Platzek, J.; Schmitt-Willich, H. Polyrotaxanes. Schering, A.-G (Assignee). Google patent WO 9930744.
  • Kräuter, I.; Herrmann, W.; Wenz, G. Self organization fluorescent molecular necklaces in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 1996, 25(1–3), 93–96. doi:10.1007/BF01041544.
  • Alsbaiee, A.; Smith, B. J.; Xiao, L.; Ling, Y.; Helbling, D. E.; Dichtel, W. R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature. 2016, 529(7585), 190–194. doi:10.1038/nature16185.
  • Lo Meo, P.; Lazzara, G.; Liotta, L.; Riela, S.; Noto, R. Cyclodextrin–calixarene co-polymers as a new class of nanosponges. Polym. Chem. 2014, 5(15), 4499–4510. doi:10.1039/C4PY00325J.
  • Kovalova, L.; Knappe, D. R. U.; Lehnberg, K.; Kazner, C.; Hollender, J. Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environ. Sci. Pollut. Res. Int. 2013, 20(6), 3607–3615. doi:10.1007/s11356-012-1432-9.
  • Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol. 2020, 92(5), 479–490. doi:10.1002/jmv.25707.
  • Lu, C.-W.; Liu, X.-F.; Jia, Z. F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet. 2020, 395(10224), e39. doi:10.1016/S0140-6736(20)30313-5.
  • Carrouel, F.; Conte, M. P.; Fisher, J.; Gonçalves, L. S.; Dussart, C.; Llodra, J. C.; Bourgeois, D. COVID-19: A recommendation to examine the effect of mouth rinses with β-cyclodextrin combined with citrox in preventing infection and progression. J. Clin. Med. 2020, 9(4), 1126. doi:10.3390/jcm9041126.
  • Barman, S.; Nayak, D. P. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J. Virol. 2007, 81(22), 12169–12178. doi:10.1128/JVI.00835-07.
  • Pratelli, A.; Colao, V. Role of the lipid rafts in the life cycle of canine coronavirus. J. Gen. Virol. 2015, 96(2), 331–337. doi:10.1099/vir.0.070870-0.
  • Lu, Y.; Liu, D. X.; Tam, J. P. Lipid rafts are involved in SARS-CoV entry into vero E6 cells. Biochem. Biophys. Res. Commun. 2008, 369(2), 344–349. doi:10.1016/j.bbrc.2008.02.023.
  • Learn, G. D.; Lai, E. J.; Von Recum, H. A. Cyclodextrin polymer coatings resist protein fouling, mammalian cell adhesion and bacterial attachment. bioRxiv. 2020. doi:10.1101/2020.01.16.909564.
  • Haley, R. M.; Gottardi, R.; Langer, R.; Mitchell, M. J. Cyclodextrins in drug delivery: Applications in gene and combination therapy. Drug Deliv. Transl. Res. 2020, 10(3), 661–677. doi:10.1007/s13346-020-00724-5.
  • Reno, F. E.; Normand, P.; Macinally, K.; Silo, S.; Stotland, P.; Triest, M.; Carballo, D.; Piche, C. A noval naasal powder formulation of glucagon:toxicology studies in animal model. BMC Pharmacol. Toxicol. 2015, 16, 29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.