234
Views
0
CrossRef citations to date
0
Altmetric
Articles

An expeditious one-pot synthesis of thiourea derivatives of carbohydrates from sugar azides

, &
Pages 334-353 | Received 16 Jun 2020, Accepted 09 Sep 2020, Published online: 10 Oct 2020

References

  • (a) Bell, T. W. Carriers and channels: current progress and future prospects. Curr. Opin. Chem. Biol. 1998, 2(6), 711–716. DOI: 10.1016/S1367-5931(98)80108-7. (b) Snowden, T. S.; Anslyn, E. V. Anion recognition: synthetic receptors for anions and their application in sensors. Curr. Opin. Chem. Biol. 1999, 3(6), 740–746. DOI: 10.1016/s1367-5931(99)00034-4.
  • Walpole, C.; Ko, S. Y.; Brown, M.; Beattie, D.; Campbell, E.; Dickenson, F.; Ewan, S.; Hughes, G. A.; Lemaire, M.; Lerpiniere, J.; et al. 2-Nitrophenylcarbamoyl-(S)-prolyl-(S)-3-(2-naphthyl)alanyl-N-benzyl-N-methylamide (SDZ NKT 343), a potent human NK1 tachykinin receptor antagonist with good oral analgesic activity in chronic pain models. J. Med. Chem. 1998, 41(17), 3159–3173. DOI: 10.1021/jm970499g. (b) Schroeder, D. C. Thioureas. Chem. Rev. 1955, 55(1), 181–228. DOI: 10.1021/cr50001a005.
  • (a) Garmaise, D. L.; Chambers, C. H.; McCrae, R. C. Anthelmintie quaternary salts. II. Thiazolium salts. J. Med. Chem. 1968, 11(6), 1205–1208. DOI: 10.1021/jm00312a021. (b) Hargrave, K. D.; Hess, F. K.; Oliver, J. T. N-(4-Substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antiallergy agents. J. Med. Chem. 1983, 26(8), 1158–1163. DOI: 10.1021/jm00362a014.
  • (a) Taylor, M. S.; Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. Engl. 2006, 45(10), 1520–1543. DOI: 10.1002/anie.200503132. (b) Connon, S. J. Organocatalysis mediated by (thio)urea derivatives. Chemistry 2006, 12(21), 5418–5427. DOI: 10.1002/chem.200501076. (c) Takemoto, Y. Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors. Org. Biomol. Chem. 2005, 3(24), 4299–4306. DOI: 10.1039/b511216h. (d) Schreiner, P. R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev. 2003, 32(5), 289–296. DOI: 10.1039/b107298f.
  • (a) Walpole, C. S. J.; Bevan, S.; Bovermann, G.; Boelsterli, J. J.; Breckenridge, R.; Davies, J. W.; Hughes, G. A.; James, I.; Oberer, L.; Janet, W.; Wrigglesworth, R. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J. Med. Chem. 1994, 37(13), 1942–1954. DOI: 10.1021/jm00039a006. (b) Honkanen, E.; Pippuri, A.; Kairisalo, P.; Nore, P.; Karppanen, H.; Paakkari, I. Synthesis and antihypertensive activity of some new quinazoline derivatives. J. Med. Chem. 1983, 26(10), 1433–1438. DOI: 10.1021/jm00364a014.
  • Vonlanthen, M.; Connelly, C. M.; Deiters, A.; Linden, A.; Finney, N. S. Thiourea-based fluorescent chemosensors for aqueous metal ion detection and cellular imaging. J. Org. Chem. 2014, 79(13), 6054–6060. DOI: 10.1021/jo500710g.
  • (a) Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3(2), 97–130. DOI: 10.1093/glycob/3.2.97. (b) Bertozzi, C. R.; Kiessling, L. L. Chemical glycobiology. Science 2001, 291(5512), 2357–2364. DOI: 10.1126/science.1059820.
  • Schmidt, R. R.; Kinzy, W. Anomeric-oxygen activation for glycoside synthesis: the trichloroacetimidate method. Adv. Carbohydr. Chem. Biochem. 1994, 50, 121–223.
  • Carbohydrates in Drug Discovery and Development; Tiwari, V. K., Ed. Elsevier Publication: Amsterdam, Netherlands, 2020.
  • Mishra, S.; Upadhayay, K.; Mishra, K. B.; Tripathi, R. P.; Tiwari, V. K. Carbohydrate-based therapeutics: a frontier in drug discovery and development. Studies Nat. Prod. Chem. 2016, 50, 307–361.
  • Cao, H.; Hwang, J.; Chen, X. Carbohydrate-containing natural products in medicinal chemistry. In Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry, Tiwari, V. K., Mishra, B. B., Eds. Research Signpost: Trivendrum, India, 2011, pp 411–431.
  • (a) Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016, 116(5), 3086–3240. DOI: 10.1021/acs.chemrev.5b00408. (b) Meldal, M.; Tornoe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008, 108(8), 2952–3015. DOI: 10.1021/cr0783479. (c) He, X. P.; Zeng, Y. L.; Zang, Y.; Li, J.; Field, R. A.; Chen, G. R. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res. 2016, 429, 1–22. DOI: 10.1016/j.carres.2016.03.022.
  • (a) Berecibar, A.; Grandjean, C.; Siriwardena, A. Synthesis and biological activity of natural aminocyclopentitol glycosidase inhibitors: mannostatins, trehazolin, allosamidins, and their analogues. Chem. Rev. 1999, 99(3), 779–844. DOI: 10.1021/cr980033l. (b) Goud, P. M.; Venkatachalam, T. K.; Uckun, F. M. Introduction of a carbohydrate moiety into the structure of thiourea compounds targeting HIV-1 reverse transcriptase. Synth. Commun. 2003, 33(7), 1185–1193. DOI: 10.1081/SCC-120017195. (c) Tripathi, R. P.; Tiwari, V. K.; Mishra, R. C.; Srivastava, R.; Srivastava, S.; Chaturvedi, V.; Srivastava, K. K.; Srivastava, B. S. Novel combinatorial library of N1–glycosylated and N3–substituted ureas and thioureas useful as anti-tubercular agents. Patent No.: 199556, 6/10/2006.
  • (a) Blanco, J. L. J.; Bootello, P.; Benito, J. M.; Mellet, C. O.; Fernandez, J. M. G. Urea-, thiourea-, and guanidine-linked glycooligomers as phosphate binders in water. J. Org. Chem. 2006, 71(14), 5136–5143. DOI: 10.1021/jo060360q. (b) Mishra, N.; Tiwari, V. K.; Schmidt, R. R. Recent trends and challenges on carbohydrate-based molecular scaffolding: general consideration toward impact of carbohydrates in drug discovery and development. In Carbohydrates in Drug Discovery and Development; V. K. Tiwari, Ed. Elsevier: Amsterdam, Netherlands, 2020, pp 1–69.
  • (a) Mishra, K. B.; Tiwari, V. K. Click chemistry inspired synthesis of morpholine-fused triazoles. J. Org. Chem. 2014, 79(12), 5752–5762. DOI: 10.1021/jo500890w. (b) Mishra, K. B.; Shashi, S.; Tiwari, V. K. Metal-free synthesis of morpholine-fused [5,1-c] triazolyl glycoconjugates via glycosyl Azido alcohols. RSC Adv. 2015, 5(105), 86840–86848. DOI: 10.1039/C5RA17181D. (c) Mishra, K. B.; Mishra, R. C.; Tiwari, V. K. First noscapine glycoconjugates inspired by click chemistry. RSC Adv. 2015, 5(64), 51779–51789. DOI: 10.1039/C5RA07321A. (d) Mishra, K. B.; Tiwari, N.; Bose, P.; Singh, R.; Rawat, A. K.; Singh, S. K.; Mishra, R. C.; Singh, R. K.; Tiwari, V. K. Design, synthesis and pharmacological evaluation of noscapine glycoconjugates. Chem. Select 2019, 4(9), 2644–2648. DOI: 10.1002/slct.201803588.
  • (a) Dwivedi, P.; Mishra, K. B.; Mishra, B. B.; Singh, N.; Singh, R. K.; Tiwari, V. K. Click inspired synthesis of antileishmanial triazolyl O-benzylquercetin glycoconjugates. Glycoconj. J. 2015, 32(3–4), 127–140. DOI: 10.1007/s10719-015-9582-x. (b) Dwivedi, P.; Mishra, K.B.; Mishra, B.B.; Pritika Tiwari, V. K. Click inspired synthesis of triazole-linked vanillin glycoconjugates. Glycoconj. J. 2017, 34, 61–70. DOI: 10.1007/s10719-016-9729-4. (c) Singh, A.; Prasad, V.; Rajkhowa, S.; Tripathi, V. D.; Tiwari, V. K. Synthesis of glycosylated thiols as promising anti-tubercular agents. J. Ind. Chem. Soc. 2020, 97, 213–225. (d) Mishra, N.; Agrihari, A. K.; Singh, S.; Bose, P.; Singh, A. S.; Tiwari, V. K. Novel cinchonidine glycoconjugates as potential plasmepsin inhibitors. Scientific Rep. 2020, 10, 1–17.
  • (a) Kushwaha, D.; Tiwari, V. K. Click Chemistry inspired Synthesis of glycoporphyrin dendrimers. J. Org. Chem. 2013, 78(16), 8184–8190. DOI: 10.1021/jo4012392. (b) Agrahari, A. K.; Singh, A. S.; Singh, A. K.; Mishra, N.; Singh, M.; Prakas, P.; Tiwari, V. K. Click inspired synthesis of hexa and octadecavalent peripheral galactosylated glycodendrimer and their possible therapeutic implications. New J. Chem. 2019, 43(31), 12475–12482. DOI: 10.1039/C9NJ02564B. (c) Agrahari, A. K.; Singh, A. S.; Mukherjee, R.; Tiwari, V. K. An expeditious click approach towards the synthesis of galactose coated novel glyco-dendrimers and dentromers utilizing double stage convergent method. RSC Adv. 2020, 10(52), 31553–31562. DOI: 10.1039/D0RA05289B. (d) Mishra, A.; Tiwari, V. K. One-pot synthesis of glycosyl-β-azido ester via diazotransfer reaction toward access of glycosyl-β-triazolyl ester. J. Org. Chem. 2015, 80(10), 4869–4881. DOI: 10.1021/acs.joc.5b00179. (e) Kumar, D.; Mishra, A.; Mishra, B. B.; Bhattacharya, S.; Tiwari, V. K. Synthesis of glycoconjugate benzothiazoles via cleavage of benzotriazole ring. J. Org. Chem. 2013, 78(3), 899–909. DOI: 10.1021/jo3021049. (f) Mishra, A.; Mishra, B. B.; Tiwari, V. K. Regioselective synthesis of novel isoxazole-linked glycoconjugates. RSC Adv. 2015, 5(52), 41520–41535. DOI: 10.1039/C5RA05905D. (g) Mishra, K. B.; Mishra, B. B.; Tiwari, V. K. Efficient Synthesis of Ethisterone glycoconjugate via bis-triazole linkage. Carbohydr. Res. 2014, 399, 2–7. DOI: 10.1016/j.carres.2014.09.001. (h) Mishra, N.; Singh, A. S.; Agrahari, A. K.; Singh, S.; Singh, M.; Tiwari, V. K. Synthesis of Benz-fused azoles via C-heteroatom coupling reactions catalyzed by Cu(I) in the presence of glycosyltriazole ligands. ACS Comb. Sci. 2019, 21(5), 389–399. DOI: 10.1021/acscombsci.9b00004.
  • Mishra, K. B.; Agrahari, A.; Tiwari, V. K. One-Pot synthesis of oxazolidine-2-thione and thiozolidine-2-thione from sugar azido-alcohols. Carbohydr. Res. 2017, 450, 1–9. DOI: 10.1016/j.carres.2017.08.002.
  • (a) Moeker, J.; Teruya, K.; Rossit, S.; Wilkinson, B. L.; Lopez, M.; Bornaghi, L. F.; Innocenti, A.; Supuran, C. T.; Poulsen, A. A. Design and synthesis of thiourea compounds that inhibit transmembrane anchored carbonic anhydrases. Bioorg. Med. Chem. 2012, 20(7), 2392–2404. DOI: 10.1016/j.bmc.2012.01.052. (b) Li, F. R.; Fan, Z. F.; Qi, S. J.; Wang, Y. S.; Wang, J.; Liu, Y.; Cheng, M. S. Design, synthesis, molecular docking analysis, and carbonic anhydrase IX inhibitory evaluations of novel N-substituted-β-d-glucosamine derivatives that incorporate benzenesulfonamides. Molecules 2017, 22, 785. DOI: 10.3390/molecules22050785.
  • Khan, K. M.; Naz, F.; Taha, M.; Khan, A.; Perveen, S.; Choudhary, M. I.; Voelter, W. Synthesis and in vitro urease inhibitory activity of N,N'-disubstituted thioureas. Eur. J. Med. Chem. 2014, 74, 314–323. DOI: 10.1016/j.ejmech.2014.01.001.
  • Walpole, C.; Ko, S. Y.; Brown, M.; Beattie, D.; Campbell, E.; Dickenson, F.; Ewan, S.; Hughes, G. A.; Lemaira, M. A non-isothiocyanate route to synthesize trisubstituted thioureas of arylamines using in situ generated dithiocarbamates. RSC Adv. 2013, 3, 3079–3087.
  • Maddani, M. R.; Prabhu, K. R. A concise synthesis of substituted thiourea derivatives in aqueous medium. J. Org. Chem. 2010, 75(7), 2327–2332. DOI: 10.1021/jo1001593.
  • (a) Gyorgydeak, Z.; Thiem, J. Synthesis and transformation of glycosylazides. Adv. Carb. Chem. Biochem. 2006, 60, 103–182. (b) Witczak, Z. J. Recent advances in the synthesis of functionalized carbohydrate azides. Royal Chem. Soc. Rep. 2010, 36, 176–193.
  • Desiraju, G. R. Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier, 1989.
  • (a) Desiraju, G. R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 2013, 135(27), 9952–9967. DOI: 10.1021/ja403264c. (b) Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. Engl. 2007, 46(44), 8342–8356. DOI: 10.1002/anie.200700534.
  • (a) Mironov, I. V.; Tsvelodub, L. D. Complexation of copper(I) by thiourea in acidic aqueous solution. J. Solut. Chem. 1996, 25(3), 315–325. DOI: 10.1007/BF00972529. (b) Jeyalakshmi, K.; Haribabu, J.; Balachandran, C.; Narmatha, E.; Bhuvanesh, N. S. P.; Aoki, S.; Awale, S.; Karvembu, R. Highly active copper(i) complexes of aroylthiourea ligands against cancer cells – synthetic and biological studies. New J. Chem. 2019, 43(7), 3188–3198. DOI: 10.1039/C8NJ04246B.
  • Kumar, D.; Mishra, K. B.; Mishra, B. B.; Mondal, S.; Tiwari, V. K. Click chemistry inspired highly facile synthesis of triazolyl ethisterone glycoconjugates. Steroids 2014, 80, 71–79. DOI: 10.1016/j.steroids.2013.11.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.