257
Views
0
CrossRef citations to date
0
Altmetric
Articles

1H NMR analysis of perdeutero N-sulfoheparosan C5-epimerization: a direct way to measure the activity of immobilized C5-epimerase

, , , , &
Pages 437-449 | Received 08 Dec 2020, Accepted 21 Feb 2021, Published online: 30 Mar 2021

References

  • Zhang, X.; Lin, L.; Huang, H.; Linhardt, R. J. Chemoenzymatic synthesis of glycosaminoglycans. Acc. Chem. Res. 2020, 53(2), 335–346. doi:10.1021/acs.accounts.9b00420.
  • Liu, J.; Linhardt, R. J. Chemoenzymatic synthesis of heparan sulfate and heparin. Nat. Prod. Rep. 2014, 31(12), 1676–1685. doi:10.1039/c4np00076e.
  • Zhang, J.; Suflita, M.; Li, G.; Zhong, W.; Li, L.; Dordick, J. S.; Linhardt, R. J.; Zhang, F. High cell density cultivation of recombinant Escherichia coli strains expressing 2-O-sulfotransferase and C5-epimerase for the production of bioengineered heparin. Appl. Biochem. Biotechnol. 2015, 175(6), 2986–2995. doi:10.1007/s12010-014-1466-1.
  • Fu, L.; Suflita, M.; Linhardt, R. J. Bioengineered heparins and heparan sulfates. Adv. Drug Deliv. Rev. 2016, 97, 237–249. doi:10.1016/j.addr.2015.11.002.
  • Qin, Y.; Ke, J.; Gu, X.; Fang, J.; Wang, W.; Cong, Q.; Li, J.; Tan, J.; Brunzelle, J. S.; Zhang, C.; et al. Structural and functional study of D-glucuronyl C5-epimerase. J. Biol. Chem. 2015, 290(8), 4620–4630. doi:10.1074/jbc.M114.602201.
  • Prechoux, A.; Halimi, C.; Simorre, J. P.; Lortat-Jacob, H.; Laguri, C. C5-epimerase and 2-O-sulfotransferase associate in vitro to generate contiguous epimerized and 2-O-sulfated heparan sulfate domains. ACS Chem. Biol. 2015, 10(4), 1064–1071. doi:10.1021/cb501037a.
  • Zhang, X.; Pagadala, V.; Jester, H. M.; Lim, A. M.; Pham, T. Q.; Goulas, A. M. P.; Liu, J.; Linhardt, R. J. Chemoenzymatic synthesis of heparan sulfate and heparin oligosaccharides and NMR analysis: paving the way to a diverse library for glycobiologists. Chem. Sci. 2017, 8(12), 7932–7940. doi:10.1039/c7sc03541a.
  • Guerrini, M.; Beccati, D.; Shriver, Z.; Naggi, A.; Viswanathan, K.; Bisio, A.; Capila, I.; Lansing, J. C.; Guglieri, S.; Fraser, B.; et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat. Biotechnol. 2008, 26(6), 669–675. doi:10.1038/nbt1407.
  • Dey, S.; Lo, H. J.; Wong, C. H. Programmable one-pot synthesis of heparin pentasaccharide fondaparinux. Org. Lett. 2020, 22(12), 4638–4642. doi:10.1021/acs.orglett.0c01386.
  • Chang, C.-H.; Lico, L. S.; Huang, T.-Y.; Lin, S.-Y.; Chang, C.-L.; Arco, S. D.; Hung, S.-C. Synthesis of the heparin-based anticoagulant drug fondaparinux. Angew. Chem. Int. Ed. Engl. 2014, 53(37), 9876–9879. doi:10.1002/anie.201404154.
  • Dey, S.; Lo, H. J.; Wong, C. H. An efficient modular one-pot synthesis of heparin-based anticoagulant idraparinux. J. Am. Chem. Soc. 2019, 141(26), 10309–10314. doi:10.1021/jacs.9b03266.
  • Prandoni, P.; Tormene, D.; Perlati, M.; Brandolin, B.; Spiezia, L. Idraparinux: review of its clinical efficacy and safety for prevention and treatment of thromboembolic disorders. Expert. Opin. Investig. Drugs. 2008, 17(5), 773–777. doi:10.1517/13543784.17.5.773.
  • Jin, H.; Chen, Q.; Zhang, Y.-Y.; Hao, K.-F.; Zhang, G.-Q.; Zhao, W. Preactivation-based, iterative one-pot synthesis of anticoagulant pentasaccharide fondaparinux sodium. Org. Chem. Front. 2019, 6(17), 3116–3120. doi:10.1039/C9QO00480G.
  • Wang, Z.; Ly, M.; Zhang, F.; Zhong, W.; Suen, A.; Hickey, A. M.; Dordick, J. S.; Linhardt, R. J. E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol. Bioeng. 2010, 107(6), 964–973. doi:10.1002/bit.22898.
  • Cress, B. F.; Bhaskar, U.; Vaidyanathan, D.; Williams, A.; Cai, C.; Liu, X.; Fu, L.; M-Chari, V.; Zhang, F.; Mousa, S. A.; et al. Heavy heparin: a stable isotope-enriched, chemoenzymatically-synthesized, poly-component drug. Angew. Chem. Int. Ed. Engl. 2019, 58(18), 5962–5966. doi:10.1002/anie.201900768.
  • Petitou, M.; van Boeckel, C. A. A. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew. Chem. Int. Ed. Engl. 2004, 43(24), 3118–3133. doi:10.1002/anie.200300640.
  • Zhang, X.; Dickinson, D. M.; Lin, L.; Suflita, M.; Baytas, S.; Linhardt, R. J. Chemoenzymatic synthesis of heparan sulfate tetrasaccharide from a N-acetyl-α-D-glucosamine-O-methylglycoside acceptor. Tetrahedron Lett. 2019, 60(13), 911–915. doi:10.1016/j.tetlet.2019.02.036.
  • Hagner-McWhirter, Å. H.; Hannesson, H.; Campbell, P.; Westley, J.; Rodén, L.; Lindahl, U.; Li, J.-P. Biosynthesis of heparin/heparan sulfate: kinetic studies of the glucuronyl C5-epimerase with N-sulfated derivatives of the Escherichia coli K5 capsular polysaccharide as substrates. Glycobiology 2000, 10(2), 159–171. doi:10.1093/glycob/10.2.159.
  • Li, J. P.; Gong, F.; El Darwish, K.; Jalkanen, M.; Lindahl, U. Characterization of the D-glucuronyl C5-epimerase involved in the biosynthesis of heparin and heparan sulfate. J. Biol. Chem. 2001, 276(23), 20069–20077. doi:10.1074/jbc.M011783200.
  • Campbell, P.; Hannesson, H. H.; Sandbäck, D.; Rodén, L.; Lindahl, U.; Li, J. P. Biosynthesis of heparin/heparan sulfate. Purification of the D-glucuronyl C-5 epimerase from bovine liver. J. Biol. Chem. 1994, 269(43), 26953–26958.
  • Babu, P.; Victor, X. V.; Nelsen, E.; Nguyen, T. K. N.; Raman, K.; Kuberan, B. Hydrogen/deuterium exchange-LC-MS approach to characterize the action of heparan sulfate C5-epimerase. Anal. Bioanal. Chem. 2011, 401(1), 237–244. doi:10.1007/s00216-011-5087-z.
  • Qiao, M.; Lin, L.; Xia, K.; Li, J.; Zhang, X.; Linhardt, R. J. Recent advances in biotechnology for heparin and heparan sulfate analysis. Talanta. 2020, 219, 121270. doi:10.1016/j.talanta.2020.121270.
  • Li, K.; Bethea, H. N.; Liu, J. Using engineered 2-O-sulfotransferase to determine the activity of heparan sulfate C5-epimerase and its mutants. J. Biol. Chem. 2010, 285(15), 11106–11113. doi:10.1074/jbc.M109.081059.
  • Wang, Z.; Zhang, Z.; McCallum, S. A.; Linhardt, R. J. Nuclear magnetic resonance quantification for monitoring heparosan K5 capsular polysaccharide production. Anal. Biochem. 2010, 398(2), 275–277. doi:10.1016/j.ab.2009.12.005.
  • Vaidyanathan, D.; Ke, X.; Yu, Y.; Linhardt, R. J.; Dordick, J. S. Polysaccharide sequence influences the specificity and catalytic activity of glucuronyl C5-epimerase. Biochemistry. 2020, 59(27), 2576–2584. doi:10.1021/acs.biochem.0c00419.
  • Vaidyanathan, D.; Paskaleva, E.; Vargason, T.; Ke, X.; McCallum, S. A.; Linhardt, R. J.; Dordick, J. S. Elucidating the unusual reaction kinetics of D-glucuronyl C5-epimerase. Glycobiology. 2020, 30(11), 847–858. doi:10.1093/glycob/cwaa035.
  • Zhang, X.; Xu, Y.; Hsieh, P. H.; Liu, J.; Lin, L.; Schmidt, E. P.; Linhardt, R. J. Chemoenzymatic synthesis of unmodified heparin oligosaccharides: cleavage of p-nitrophenyl glucuronide by alkaline and Smith degradation. Org. Biomol. Chem. 2017, 15(5), 1222–1227. doi:10.1039/c6ob02603f.
  • Schuerch, C.; Frechet, J. M. Solid-phase synthesis of oligosaccharides. I. Preparation of the solid support. Poly[p-(1-propen-3-ol-1-yl)styrene]. J. Am. Chem. Soc. 1971, 93(2), 492–496. doi:10.1021/ja00731a031.
  • de Paz, J. L.; Noti, C.; Seeberger, P. H. Microarrays of synthetic heparin oligosaccharides. J. Am. Chem. Soc. 2006, 128(9), 2766–2767. doi:10.1021/ja057584v.
  • Robert, J. L.; Saravanababu, M.; Jin, X. Immobilization of heparin: approaches and applications. Curr. Top. Med. Chem. 2008, 8, 80–100. doi:10.2174/156802608783378891.
  • Zhang, X.; Han, X.; Xia, K.; Xu, Y.; Yang, Y.; Oshima, K.; Haeger, S. M.; Perez, M. J.; McMurtry, S. A.; Hippensteel, J. A.; et al. Circulating heparin oligosaccharides rapidly target the hippocampus in sepsis, potentially impacting cognitive functions. Proc. Natl. Acad. Sci. USA. 2019, 116(19), 9208–9213. doi:10.1073/pnas.1902227116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.