73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The impacts of benzoyl and benzyl groups on the non-covalent interactions and electronic properties of glycosyl acceptors

, , , , &
Received 14 Mar 2024, Accepted 03 Jun 2024, Published online: 14 Jun 2024

References

  • Ghosh, B.; Kulkarni, S. S. Advances in Protecting Groups for Oligosaccharide Synthesis. Chem. Asian J. 2020, 15(4), 450–462. DOI: 10.1002/asia.201901621.
  • Li, R.; Yu, H.; Chen, X. Recent Progress in Chemical Synthesis of Bacterial Surface Glycans. Curr. Opin. Chem. Biol. 2020, 58, 121–136. DOI: 10.1016/j.cbpa.2020.08.003.
  • Witte, M. D.; Minnaard, A. J. Site-Selective Modification of (Oligo) Saccharides. ACS Catal. 2022, 12(19), 12195–12205. DOI: 10.1021/acscatal.2c03876.
  • Van Der Vorm, S.; Hansen, T.; Van Hengst, J. M.; Overkleeft, H. S.; Van Der Marel, G. A.; Codée, J. D. Acceptor Reactivity in Glycosylation Reactions. Chem. Soc. Rev. 2019, 48(17), 4688–4706. DOI: 10.1039/C8CS00369F.
  • Hettikankanamalage, A. A.; Lassfolk, R.; Ekholm, F. S.; Leino, R.; Crich, D. Mechanisms of Stereodirecting Participation and Ester Migration from Near and Far in Glycosylation and Related Reactions. Chem. Rev. 2020, 120(15), 7104–7151. DOI: 10.1021/acs.chemrev.0c00243.
  • Greis, K.; Leichnitz, S.; Kirschbaum, C.; Chang, C.; Lin, M.; Meijer, G.; von Helden, G.; Seeberger, P. H.; Pagel, K. The Influence of the Electron Density in Acyl Protecting Groups on the Selectivity of Galactose Formation. J. Am. Chem. Soc. 2022, 144(44), 20258–20266. DOI: 10.1021/jacs.2c05859.
  • McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X. Quantum Computational Chemistry. Rev. Mod. Phys. 2020, 92(1), 015003. DOI: 10.1103/RevModPhys.92.015003.
  • Mikulak-Klucznik, B.; Gołębiowska, P.; Bayly, A. A.; Popik, O.; Klucznik, T.; Szymkuć, S.; Gajewska, E. P.; Dittwald, P.; Staszewska-Krajewska, O.; Beker, W.; et al. Computational Planning of the Synthesis of Complex Natural Products. Nature 2020, 588(7836), 83–88. DOI: 10.1038/s41586-020-2855-y.
  • de Almeida, A. F.; Moreira, R.; Rodrigues, T. Synthetic Organic Chemistry Driven by Artificial Intelligence. Nat. Rev. Chem. 2019, 3(10), 589–604. DOI: 10.1038/s41570-019-0124-0.
  • Elkin, M.; Newhouse, T. R. Computational Chemistry Strategies in Natural Product Synthesis. Chem. Soc. Rev. 2018, 47(21), 7830–7844. DOI: 10.1039/C8CS00351C.
  • Nakajima, M.; Adachi, Y.; Nemoto, T. Computation-Guided Asymmetric Total Syntheses of Resveratrol Dimers. Nat. Commun. 2022, 13(1), 152. DOI: 10.1038/s41467-021-27546-4.
  • Lassfolk, R.; Pedrón, M.; Tejero, T.; Merino, P.; Wärnå, J.; Leino, R. Acetyl Group Migration in Xylan and Glucan Model Compounds as Studied by Experimental and Computational Methods. J. Org. Chem. 2022, 87(21), 14544–14554. DOI: 10.1021/acs.joc.2c01956.
  • Hansen, T.; Elferink, H.; van Hengst, J. M. A.; Houthuijs, K. J.; Remmerswaal, W. A.; Kromm, A.; Berden, G.; van der Vorm, S.; Rijs, A. M.; Overkleeft, H. S.; et al. Characterization of Glycosyl Dioxolenium Ions and Their Role in Glycosylation Reactions. Nat. Commun. 2020, 11(1), 2664. DOI: 10.1038/s41467-020-16362-x.
  • Hansen, T.; Lebedel, L.; Remmerswaal, W. A.; van der Vorm, S.; Wander, D. P. A.; Somers, M.; Overkleeft, H. S.; Filippov, D. V.; Désiré, J.; Mingot, A.; et al. Defining the SN1 Side of Glycosylation Reactions: Stereoselectivity of Glycopyranosyl Cations. ACS Cent. Sci. 2019, 5(5), 781–788. DOI: 10.1021/acscentsci.9b00042.
  • Parr, R. G. Density Functional Theory. Annu. Rev. Phys. Chem. 1983, 34(1), 631–656. DOI: 10.1146/annurev.pc.34.100183.003215.
  • Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112(1), 289–320. DOI: 10.1021/cr200107z.
  • Rong, C.; Wang, B.; Zhao, D.; Liu, S. Information‐Theoretic Approach in Density Functional Theory and its Recent Applications to Chemical Problems. WIREs Comput. Mol. Sci. 2020, 10(4), e1461. DOI: 10.1002/wcms.1461.
  • Te Vrugt, M.; Löwen, H.; Wittkowski, R. Classical Dynamical Density Functional Theory: from Fundamentals to Applications. Adv. Phys. 2020, 69(2), 121–247. DOI: 10.1021/cr200107z.
  • Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33(5), 580–592. DOI: 10.1002/jcc.22885.
  • Yuan, Z.; Yin, T.; Zhang, D. Hybrid Quantum-Classical Algorithms for Solving Quantum Chemistry in Hamiltonian–Wave-Function Space. Phys. Rev. A. 2021, 103(1), 012413. DOI: 10.1103/PhysRevA.103.012413.
  • Pujal, L.; Tehrani, A.; Heidar-Zadeh, F. Conceptual Density Functional Theory; Wiley-VCH Verlag GmbH & Co: Baden-Württemberg, Germany, 2022; pp 649–661.
  • Murray, J. S.; Politzer, P. The electrostatic potential: an overview. Wiley Interdiscip. Rev.: Comput. Mol. Sci 2011, 1, 153–163. DOI: 10.1002/wcms.19.
  • Suresh, C. H.; Remya, G. S.; Anjalikrishna, P. K. Molecular Electrostatic Potential Analysis: A Powerful Tool to Interpret and Predict Chemical Reactivity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12(5), e1601. DOI: 10.1002/wcms.1601.
  • Tanaka, K.; Chujo, Y. New idea for narrowing an energy gap by selective perturbation of one frontier molecular orbital. Chem. Lett. 2021, 50(2), 269–279. DOI: 10.1246/cl.200756.
  • Seeman, J. I. Kenichi Fukui, Frontier Molecular Orbital Theory, and the Woodward‐Hoffmann Rules. Part I. The Person. Chem. Rec. 2022, 22(4), e202100297. DOI: 10.1002/tcr.202100297.
  • Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132(18), 6498–6506. DOI: 10.1021/ja100936w.
  • Seeman, J. I. Effect of Conformational Change on Reactivity in Organic Chemistry. Evaluations, Applications, and Extensions of Curtin-Hammett Winstein-Holness Kinetics. Chem. Rev. 1983, 83(2), 83–134. DOI: 10.1021/cr00054a001.
  • Brink, B. D.; DeFrancisco, J. R.; Hillner, J. A.; Linton, B. R. Curtin–Hammett and Steric Effects in HOBt Acylation Regiochemistry. J. Org. Chem. 2011, 76(13), 5258–5263. DOI: 10.1021/jo200346r.
  • Seeman, J. I. The Curtin-Hammett Principle and the Winstein-Holness Equation: New Definition and Recent Extensions to Classical Concepts. J. Chem. Educ. 1986, 63(1), 42. DOI: 10.1021/ed063p42.
  • Qin, C.; Li, L.; Tian, G.; Ding, M.; Zhu, S.; Song, W.; Hu, J.; Seeberger, P. H.; Yin, J. Chemical Synthesis and Antigenicity Evaluation of Shigella dysenteriae Serotype 10 O-Antigen Tetrasaccharide Containing a (S)-4, 6-O-Pyruvyl Ketal. J. Am. Chem. Soc. 2022, 144(46), 21068–21079. DOI: 10.1021/jacs.2c05953.
  • Lu, T.; Chen, Q. Independent Gradient Model Based on Hirshfeld Partition: A New Method for Visual Study of Interactions in Chemical Systems. J. Comput. Chem. 2022, 43(8), 539–555. DOI: 10.1002/jcc.26812.
  • Lu, T.; Chen, Q. Visualization Analysis of Weak Interactions in Chemical Systems. In Comprehensive Computational Chemistry, First edition; Yáñez, M., Boyd, R. J., Eds.; Elsevier: Oxford, 2024; pp 240–264.
  • Lu, T.; Chen, Q. Interaction Region Indicator: A Simple Real Space Function Clearly Revealing Both Chemical Bonds and Weak Interactions. Chem. Methods. 2021, 1(5), 231–239.
  • Murray, J. S.; Politzer, P. Electrostatic Potentials: Chemical Applications; Wiley-VCH Verlag GmbH & Co: Baden-Württemberg, Germany, 1998.
  • Politzer, P.; Murray, J. S.; Bulat, F. A. Average Local Ionization Energy: A Review. J. Mol. Model. 2010, 16(11), 1731–1742. DOI: 10.1007/s00894-010-0709-5.
  • Lu, T.; Chen, F. Atomic Dipole Moment Corrected Hirshfeld Population Method. J. Theor. Comput. Chem. 2012, 11(01), 163–183. DOI: 10.1142/S0219633612500113.
  • Hohenstein, E. G.; Chill, S. T.; Sherrill, C. D. Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. J. Chem. Theory Comput. 2008, 4(12), 1996–2000. DOI: 10.1021/ct800308k.
  • Walker, M.; Harvey, A. J.; Sen, A.; Dessent, C. E. Performance of M06, M06-2X, and M06-HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. J. Phys. Chem. A. 2013, 117(47), 12590–12600. DOI: 10.1021/jp408166m.
  • Pauling, L. The Nature of the Chemical Bond; Cornell: Ithaca, New York, 1960, p 350.
  • Tang, T.-H.; Deretey, E.; Knak Jensen, S.; Csizmadia, I. Hydrogen Bonds: Relation Between Lengths and Electron Densities at Bond Critical Points. Eur. Phys. J. D. 2006, 37(2), 217–222. DOI: 10.1140/epjd/e2005-00317-0.
  • Crabtree, R. H. A new type of hydrogen bond. Science. 1998, 282(5396), 2000–2001. DOI: 10.1126/science.282.5396.2000.
  • Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41(1), 48–76. DOI: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.
  • Andersson, Y.; Hult, E.; Rydberg, H.; Apell, P.; Lundqvist, B. I.; Langreth, D. C. Electronic Density Functional Theory; Springer: Boston, MA, 1998; pp 243–260.
  • Hermann, J.; DiStasio, R. A.; Jr.; Tkatchenko, A. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chem. Rev. 2017, 117(6), 4714–4758. DOI: 10.1021/acs.chemrev.6b00446.
  • Hibbert, F.; Emsley, J. Hydrogen Bonding and Chemical Reactivity. Adv. Phys. Org. Chem. 1990, 26, 255–379.
  • Politzer, P.; Murray, J. S. Molecular Electrostatic Potentials and Chemical Reactivity. Rev. Comput. Chem. 1991, 2, 273–312.
  • Coulson, C. A.; Longuet-Higgins, H. C. The Electronic Structure of Conjugated Systems I. General Theory. Proc. R. Soc. London. Sect. A. Math. Phys. Sci. 1947, 191(1024), 39–60. DOI: 10.1098/rspa.1947.0102.
  • Longuet-Higgins, H.; Murrell, J. The Electronic Spectra of Aromatic Molecules V: The Interaction of Two Conjugated Systems. Proc. Phys. Soc. A. 1955, 68(7), 601–611. DOI: 10.1088/0370-1298/68/7/308.
  • Politzer, P.; Murray, J. Chemical Reactivity Theory: A Density Functional View; CRC Press LLC: Boca Raton, FL, 2009; pp 243–254.
  • Liu, L. L.; Stephan, D. W. Radicals Derived from Lewis Acid/Base Pairs. Chem. Soc. Rev. 2019, 48(13), 3454–3463. DOI: 10.1039/C8CS00940F.
  • Liu, Z.; Lu, T.; Chen, Q. Intermolecular Interaction Characteristics of the All-Carboatomic Ring, Cyclo [18] Carbon: Focusing on Molecular Adsorption and Stacking. Carbon. 2021, 171, 514–523. DOI: 10.1016/j.carbon.2020.09.048.
  • Singha, M.; Bhattacharya, P.; Ray, D.; Basak, A. Sterically Hindering the Trajectory of Nucleophilic Attack Towards p-Benzynes by a Properly Oriented Hydrogen Atom: An Approach to Achieve Regioselectivity. Org. Biomol. Chem. 2021, 19(23), 5148–5154. DOI: 10.1039/D1OB00521A.
  • Neuvonen, H.; Neuvonen, K.; Pasanen, P. Evidence of Substituent-Induced Electronic Interplay. Effect of the Remote Aromatic Ring Substituent of Phenyl Benzoates on the Sensitivity of the Carbonyl Unit to Electronic Effects of Phenyl or Benzoyl Ring Substituents. J. Org. Chem. 2004, 69(11), 3794–3800. DOI: 10.1021/jo035521u.
  • Toro-Labbé, A. Theoretical Aspects of Chemical Reactivity; Elsevier: Amsterdam Netherlands, 2006.
  • Fu Lu T.; Chen, F. 北京科技大学化学与生物工程学院化学与化学工程系, 北京100083, Department of Chemistry and Chemical Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China Comparing Methods for Predicting the Reactive Site of Electrophilic Substitution. Acta Phys. Chim. Sin. 2014, 30(4), 628–639. DOI: 10.3866/PKU.WHXB201401211.
  • Al-Zaqri, N.; Pooventhiran, T.; Alsalme, A.; Rao, D. J.; Rao, S. S.; Sankar, A.; Thomas, R. First-Principle Studies of Istradefylline with Emphasis on the Stability, Reactivity, Interactions and Wavefunction-Dependent Properties. Polycyclic Aromat. Compd. 2022, 42(6), 3238–3252. DOI: 10.1080/10406638.2020.1857273.
  • Pooventhiran, T.; Bhattacharyya, U.; Rao, D. J.; Chandramohan, V.; Karunakar, P.; Irfan, A.; Mary, Y. S.; Thomas, R. Detailed Spectra, Electronic Properties, Qualitative Non-Covalent Interaction Analysis, Solvatochromism, Docking and Molecular Dynamics Simulations in Different Solvent Atmosphere of Cenobamate. Struct. Chem. 2020, 31(6), 2475–2485. DOI: 10.1007/s11224-020-01607-8.
  • Pooventhiran, T.; Cheriet, M.; Bhattacharyya, U.; Irfan, A.; Puchta, R.; Sowrirajan, S.; Thomas, R. Detailed Structural Examination, Quantum Mechanical Studies of the Aromatic Compound Solarimfetol and Formation of Inclusion Compound with Cucurbituril. Polycyclic Aromat. Compd. 2022, 42(8), 5443–5455. DOI: 10.1080/10406638.2021.1937238.
  • Zhu, S.; Khan, M. A.; Wang, F.; Bano, Z.; Xia, M. Rapid Removal of Toxic Metals Cu2+ and Pb2+ by Amino Trimethylene Phosphonic Acid Intercalated Layered Double Hydroxide: A Combined Experimental and DFT Study. Chem. Eng. J. 2020, 392, 123711. DOI: 10.1016/j.cej.2019.123711.
  • Heuckendorff, M.; Pedersen, C. M.; Bols, M. Quantifying Electronic Effects of Common Carbohydrate Protecting Groups in a Piperidine Model System. Chemistry. 2010, 16(47), 13982–13994. DOI: 10.1002/chem.201002313.
  • Mulliken, R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23(10), 1833–1840. DOI: 10.1063/1.1740588.
  • Edmiston, C.; Ruedenberg, K. Localized Atomic and Molecular Orbitals. Rev. Mod. Phys. 1963, 35(3), 457–464. DOI: 10.1103/RevModPhys.35.457.
  • Spackman, M. A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm. 2009, 11(1), 19–32. DOI: 10.1039/B818330A.
  • Lu.; Chen, F. 北京科技大学化学与生物工程学院, 北京 100083, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China. Comparison of Computational Methods for Atomic Charges. Acta Phys. Chim. Sin. 2012, 28(01), 1–18. DOI: 10.3866/PKU.WHXB2012281.
  • Cao, J.; Ren, Q.; Chen, F.; Lu, T. Comparative Study on the Methods for Predicting the Reactive Site of Nucleophilic Reaction. Sci. China Chem. 2015, 58(12), 1845–1852. DOI: 10.1007/s11426-015-5494-7.
  • Whitfield, D. M.; Guo, J. Proton Transfer and Hydrogen Bonding in Glycosylation Reactions. J. Carbohydr. Chem. 2017, 36(2–3), 59–99. DOI: 10.1080/07328303.2017.1365369.
  • Thibaudeau, C.; Plavec, J.; Garg, N.; Papchikhin, A.; Chattopadhyaya, J. How Does the Electronegativity of the Substituent Dictate the Strength of the Gauche Effect? J. Am. Chem. Soc. 1994, 116(9), 4038–4043. DOI: 10.1021/ja00088a043.
  • Los, J.; Geerlings, J. J. C. Charge Exchange in Atom-Surface Collisions. Phys. Rep. 1990, 190(3), 133–190. DOI: 10.1016/0370-1573(90)90104-a.
  • Pamperin, M.; Bronold, F.; Fehske, H. Mixed-Valence Correlations in Charge-Transferring Atom–Surface Collisions. Phys. Scr. 2015, T165, 014008. DOI: 10.1088/0031-8949/2015/T165/014008.
  • Obu, Q. S.; Louis, H.; Odey, J. O.; Eko, I. J.; Abdullahi, S.; Ntui, T. N.; Offiong, O. E. Synthesis, Spectra (FT-IR, NMR) Investigations, DFT Study, In Silico ADMET and Molecular Docking Analysis of 2-Amino-4-(4-Aminophenyl) Thiophene-3-Carbonitrile as a Potential Anti-Tubercular Agent. J. Mol. Struct. 2021, 1244, 130880. DOI: 10.1016/j.molstruc.2021.130880.
  • Mishma, J. C.; Jothy, V. B.; Muthu, S.; Irfan, A. Bonding Nature, Nucleophilic Reactivity and Electron Excitation of NLO Active 2, 6 Dichloroindophenol Sodium Salt (Polar and Non Polar Solvents) with Topology Analysis-Bacterial Pathogens Study. J. Mol. Liq. 2022, 367, 120533. DOI: 10.1016/j.molliq.2022.120533.
  • Braga, L. S.; Leal, D. H.; Kuca, K.; Ramalho, T. C. Perspectives on the Role of the Frontier Effective-For-Reaction Molecular Orbital (FERMO) in the Study of Chemical Reactivity: An Updated Review. Coc. 2020, 24(3), 314–331. DOI: 10.2174/1385272824666200204121044.
  • Bulat, F. A.; Chamorro, E.; Fuentealba, P.; Toro-Labbé, A. Condensation of Frontier Molecular Orbital Fukui Functions. J. Phys. Chem. A. 2004, 108(2), 342–349. DOI: 10.1021/jp036416r.
  • Khemalapure, S. S.; Katti, V. S.; Hiremath, C. S.; Hiremath, S. M.; Basanagouda, M.; Radder, S. B. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Vis), ELF, LOL, NBO, and Fukui Function Investigations on (5-Bromo-Benzofuran-3-yl)-Acetic Acid Hydrazide (5BBAH): Experimental and Theoretical Approach. J. Mol. Struct. 2019, 1196, 280–290. DOI: 10.1016/j.molstruc.2019.06.078.
  • Houk, K. N. Frontier Molecular Orbital Theory of Cycloaddition Reactions. Acc. Chem. Res. 1975, 8(11), 361–369. DOI: 10.1021/ar50095a001.
  • Fukui, K. Role of Frontier Orbitals in Chemical Reactions. Science. 1982, 218(4574), 747–754. DOI: 10.1126/science.218.4574.747.
  • Rauk, A. Orbital Interaction Theory of Organic Chemistry; John Wiley & Sons: New York, 2004.
  • Dewar, M. J. Aromaticity and Pericyclic Reactions. Angew. Chem. Int. Ed. Engl. 1971, 10(11), 761–776. DOI: 10.1002/anie.197107611.
  • Oda, A.; Ohkubo, T.; Yumura, T.; Kobayashi, H.; Kuroda, Y. Room-Temperature Activation of the C–H Bond in Methane over Terminal ZnII–Oxyl Species in an MFI Zeolite: A Combined Spectroscopic and Computational Study of the Reactive Frontier Molecular Orbitals and their Origins. Inorg. Chem. 2018, 58(1), 327–338. DOI: 10.1021/acs.inorgchem.8b02425.
  • Yu, J.; Su, N. Q.; Yang, W. Describing Chemical Reactivity with Frontier Molecular Orbitalets. JACS Au. 2022, 2(6), 1383–1394. DOI: 10.1021/jacsau.2c00085.
  • Frisch, M.; Trucks, G.; Schlegel, H. B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16; Gaussian, Inc.: Wallingford, CT, 2016.
  • Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14(1), 33–38. DOI: 10.1016/0263-7855(96)00018-5.
  • Williams, T.; Kelley, C.; Bersch, C.; Bröker, H.-B.; Campbell, J.; Cunningham, R.; Denholm, D.; Elber, G.; Fearick, R.; Grammes, C. Gnuplot 5.2.; Alogus Publishing: New York, 2017.
  • Legault, C. Y. CYLview 20; niversité de Sherbrooke: Fredericton, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.