513
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Manipulation of Ethylene Synthesis in Roots Through Bacterial ACC Deaminase for Improving Nodulation in Legumes

, , &
Pages 279-291 | Published online: 24 May 2011

REFERENCES

  • Alonso , J. M. , Hirayama , T. , Roman , G. , Nourizadeh , S. and Ecker , J. R. 1999 . EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. . Sci. , 284 : 2148 – 2152 .
  • Amrhein , N. and Wenker , D. 1979 . Novel inhibitors of ethylene production in higher plants. . Plant Cell Physiol. , 20 : 1635 – 1642 .
  • Arshad , M. , Khalid , A. , Shahzad , S. M. and Mahmood , T. 2010 . “ Role of ethylene and bacterial ACC deaminase in nodulation of legumes ” . In Microbes for Legume Improvement. , Edited by: Khan , M. S. and Zaidi , A. 103 – 122 . New York : Springer Wien .
  • Arshad , M. and Frakenberger , W. T. Jr. 2002 . Ethylene: Agricultural Sources and Applications , New York : Kluwer/Academic Publishers .
  • Arshad , M. , Saleem , M. and Hussain , S. 2007 . Perspectives of bacterial ACC deaminase in phytoremediation. . Trends Biotechnol. , 25 : 356 – 362 .
  • Arshad , M. , Shaharoona , B and Mahmood , T. 2008 . Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). . Pedosphere , 18 : 611 – 620 .
  • Bari , R. and Jones , J. D. G. 2009 . Role of plant hormones in plant defense responses. . Plant. Mol. Biol , 69 : 473 – 488 .
  • Belimov , A. A. , Dodd , I. C. , Hontzeas , N. , Theobald , J. C. , Safronova , V. I. and Davies , W. J. 2009 . Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. . New Phytol. , 181 : 413 – 423 .
  • Belimov , A. A. , Hontzeas , N. , Safronova , V. I. , Demchinskaya , S. V. , Piluzza , G and Bullitta , S. 2005 . Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). . Soil Biol. Biochem. , 37 : 241 – 250 .
  • Binder , B. M. 2008 . The ethylene receptors: Complex perception for a simple gas. . Plant Sci , 75 : 8 – 17 .
  • Bonfante , P. and Anca , A. 2009 . Plants mycorrhizal fungi, and bacteria: a network of interactions. . Ann. Rev. Microbiol. , 63 : 363 – 383 .
  • Bras , C. P. , Jorda , M. A. , Wijfjes , A. H. M. , Harteveld , M. , Stuurman , N. , Thomas-Oates , J. E. and Spaink , H. P. 2000 . A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NolL in Rhizobium leguminosarum. . Mol. Plant-Microbe Interact. , 13 : 475 – 479 .
  • Caba , J. M. , Poveda , J. L. , Gresshoff , P. M. and Ligero , F. 1999 . Differential sensitivity of nodulation to ethylene in soybean cv. Bragg and a super-nodulating mutant. . New Phytol. , 142 : 233 – 242 .
  • Caba , J. M. , Recalde , L. and Ligero , F. 1998 . Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. . Plant Cell Environ. , 21 : 87 – 93 .
  • Capitani , G. , Hohenester , E. , Feng , L. , Storici , P. , Kirsch , J. F. and Jansonius , J. N. 1999 . Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. . J. Mol. Biol. , 294 : 745 – 756 .
  • Capoen , W. , Den Herder , J. , Sun , J. , Verplancke , C. , De Keyser , A. , De Rycke , R. , Goormachtig , S. , Oldroyd , G. and Holsters , M. 2009 . Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata. . Plant Cell , 21 : 1526 – 1540 .
  • Chang , C. and Shockey , J. A. 1999 . The ethylene-response pathway: signal perception to gene regulation. . Curr. Opin. Plant Biol. , 2 : 352 – 358 .
  • Cheng , Z. , Park , E. and Glick , B. R. 2007 . 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. . Can. J. Microbiol. , 53 : 912 – 918 .
  • Contesto , C. , Desbrosses , G. , Lefoulon , C. and Bena , F. G. 2008 . Effects of rhizobacterial ACC-deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth promoting rhizobacteria. . Plant Sci. , 175 : 178 – 189 .
  • Csukasi , F. , Merchante , D. and Valpuesta , V. 2009 . Modification of plant hormone levels and signaling as a tool in plant biotechnology. . Biotechol. J. , 4 : 1293 – 1304 .
  • Czarny , J. , Grichko , V. and Glick , B. 2006 . Genetic modulation of ethylene biosynthesis and signaling in plants. . Biotechnol. Adv. , 24 : 410 – 419 .
  • D’Haeze , W. and Holsters , M. 2002 . Nod factor structures, responses, and perception during initiation of nodule development. . Glycobiol. , 12 : 79 – 105 .
  • Dell’Amico , E. , Cavalca , L. and Andreoni , V. 2008 . Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria . Soil Biol. Biochem. , 40 : 74 – 84 .
  • Dey , R. , Pal , K. K. , Bhatt , D. M. and Chauhan , S. M. 2004 . Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. . Microbiol. Res. , 59 : 371 – 394 .
  • Ding , Y. and Oldroyd , G. E. D. 2009 . Positioning the nodule, the hormone dictum. . Plant Signal Behav. , 4 : 89 – 93 .
  • Drennan , D. S. H. and Norton , C. 1972 . The effect of ethrel on nodulation in Pisum sativum L. . Plant Soil , 36 : 53 – 57 .
  • Duan , J. , Muller , K. M. , Charles , T. C. , Vesely , S. and Glick , B. R. 2009 . 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. . Microb. Ecol , 57 : 423 – 436 .
  • Duodu , S. , Bhuvaneswari , T. V. , Stokkermans , T. J. and Peters , N. K. 1999 . A positive role for rhizobitoxine in Rhizobium-legume symbiosis. . Mol. Plant Microbe Interact. , 12 : 1082 – 1089 .
  • Engstrom , E. M. , Ehrhardt , D. , Wmitra , R. M. and Long , S. R. 2002 . Pharmacological analysis of nod factor-induced calcium spiking in Medicago truncatula. Evidence for the requirement of type IIA calcium pumps and phosphoinositide signaling. . Plant Physiol. , 128 : 1390 – 1401 .
  • Ferguson , B. J. and Mathesius , U. 2003 . Signaling interactions during nodule development. . J. Plant Growth Regul. , 22 : 47 – 72 .
  • Ghosh , S. , Penterman , J. N. , Little , R. D. , Chavez , R. and Glick , B. R. 2003 . Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. . Plant Physiol. Biochem , 41 : 277 – 281 .
  • Giovanelli , J. , Owens , L. D. and Mudd , S. H. 1972 . β-cystathionase: in vivo inactivation by rhizobitoxine and role of the enzyme in methionine biosynthesis in corn seedlings. . Plant Physiol. , 51 : 492 – 503 .
  • Glick , B. R. 2004 . Bacterial ACC deaminase and the alleviation of plant stress. . Adv. Appl. Microbiol , 56 : 291 – 312 .
  • Glick , B. R. 2005 . Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. . FEMS Microbiol. Lett. , 251 : 1 – 7 .
  • Glick , B. R. , Penrose , D. M. and Li , J. 1998 . A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. . J. Theor. Biol. , 190 : 63 – 68 .
  • Glick , B. R. , Todorovic , B. , Czarny , J. , Cheng , Z. , Duan , J. and McConkey , B. 2007 . Promotion of plant growth by bacterial ACC deaminase. . Crit. Rev. Plant Sci. , 26 : 227 – 242 .
  • Gong , Y. , Gao , F. and Tang , K. 2005 . In vitro high frequency direct root and shoot regeneration in sweet potato using the ethylene inhibitor silver nitrate. . South African J. Bot. , 71 : 110 – 113 .
  • Goodlass , G. and Smith , K. A. 1979 . Effect of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.). . Plant Soil , 51 : 387 – 395 .
  • Goormachtig , S. , Capoen , W. , James , E. K. and Holsters , M. 2004 . Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. . Proc. National Acad. Sci. USA , 101 : 6303 – 6308 .
  • Govindasamy , V. , Senthilkumar , M. , Gaikwad , K. and Annapurna , K. 2008 . Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. . Curr. Microbiol. , 57 : 312 – 317 .
  • Gresshoff , P. M. , Lohar , D. , Chan , P. K. , Biswas , B. , Jiang , Q. , Reid , D. , Ferguson , B. and Stacey , G. 2009 . Genetic analysis of ethylene regulation of legume nodulation. . Plant Signal Behav. , 4 : 818 – 823 .
  • Grichko , V. P. and Glick , B. R. 2001 . Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. . Plant Physiol. Biochem. , 39 : 11 – 17 .
  • Guinel , F. C. and Geil , R. D. 2002 . A model for the development of rhizobial and arbuscular mycorrhizal symbiosis in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. . Can. J. Bot. , 80 : 695 – 720 .
  • Guinel , F. C. and Sloetjes , L. L. 2000 . Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym16), a pleiotropic mutant that nodulates poorly and has pale green leaves. . J. Exp. Bot , 51 : 885 – 894 .
  • Guo , H. and Ecker , J. R. 2004 . The ethylene signaling pathway: New insights. . Curr. Opin. Plant Biol. , 7 : 40 – 49 .
  • Heidstra , R. W. , Yang , W. C. , Yalcin , Y. , Peck , S. , Emons , A. M. , van Kammen , A. and Bisseling , T. 1997 . Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. . Develop , 124 : 1781 – 1787 .
  • Holguin , G. and Glick , B. R. 2000 . “ Inoculation of tomato plants with Azospirillum Brasilense transformed with the ACC demaninase gene from enterobacter cloacae UW4 ” . In Proc. 5 th Int. PGPR workshop , Portal Del Lago Hotel .
  • Hunter , W. J. 1993 . Ethylene production by root nodules and effect of ethylene on nodulation in Glycine max . Appl. Environ. Microbiol. , 59 : 1947 – 1950 .
  • Indiragandhi , P. , Anandham , R. , Kim , K. , Yim , W. , Madhaiyan , M. and Sa , T. 2008 . Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. . World J. Microbiol. Biotechnol. , 24 : 1037 – 1045 .
  • Jones , K. M. , Kobayashi , H. , Davies , B. W. , Taga , M. E. and Walker , G. C. 2007 . How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. . Nat. Rev. Microbiol. , 5 : 619 – 633 .
  • Kamala Kannan , S. , Kui-Jae , L. , Seung-Moon , P. , Jong-Chan , C. , Bong-Sik , Y. , Yong-Hoon , L. , Yool-Jin , P. and Byung-Taek , O. 2010 . Characterization of ACC deaminase gene in Pseudomonas entomophilastrain PS-PJH isolated from the rhizosphere soil. . Short Comm. , 50 : 200 – 205 .
  • Kaneko , T. , Nakamura , Y. , Sato , S. , Asamizu , E. , Kato , T. , Sasamoto , S. , Watanabe , A. , Idesawa , K. , Ishikawa , A. , Kawashima , K. , Kimura , T. , Kishida , Y. , Kiyokawa , C. , Kohara , M. , Matsumoto , M. , Matsuno , A. , Mochizuki , Y. , Nakayama , S. , Nakazaki , N. , Shimpo , S. , Sugimoto , M. , Takeuchi , C. , Yamada , M. and Tabata , S. 2000 . Complete genome structure of the nitrogenfixing symbiotic bacterium Mesorhizobium loti. . DNA Res , 7 : 38 – 406 .
  • Kaneko , T. , Nakamura , Y. , Sato , S. , Minamisawa , K. , Uchiumi , T. , Sasamoto , S. , Watanabe , A. , Idesawa , K. , Iriguchi , M. , Matsumoto , M. , Shimpo , S. , Tsuruoka , H. , Wada , T. , Yamada , M. and Tabata. , S. 2002 . Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. . DNA Res , 9 : 189 – 197 .
  • Kang , B. G. , Kim , W. T. , Yun , H. S. and Chang , S. C. 2010 . Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. . Plant Biotech. Reports , 4 : 179 – 183 .
  • Kanika , Dogra , T. and Latta . 2010 . Biochemical and molecular characterization of a rhizobitoxine-producing Bradyrhizobium from Pigeosn pea plants. . Folia. Microbiol , 55 : 233 – 238 .
  • Khalid , A. , Arshad , M. , Shaharoona , B. and Mahmood , T. 2009 . “ Plant growth promoting rhizobacteria and sustainable agriculture ” . In Microbial Strategies for Crop Improvement. , Edited by: Khan , M. S. , Zaidi , A. and Musarat , J. 133 – 160 . Berlin : Springer-Verleg .
  • Kumar , V. , Giridhar , P. and Ravishankar , G. A. 2009 . AgNO3-a potential regulator of ethylene activity and plant growth modulator. . Electron J. Biotech. , 12 : 1 – 15 .
  • Lee , K. H. and LaRue , T. A. 1992 . Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. . Plant Physiol. , 100 : 1759 – 1763 .
  • Li , Q. , Saleh-Lakha , S. and Glick , B. R. 2005 . The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. . Can. J. Microbiol. , 51 : 511 – 514 .
  • Ligero , F. , Caba , J. M. , Lluch , C. and Olivares , J. 1991 . Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. . Plant Physiol. , 97 : 1221 – 1225 .
  • Ligero , F. , Lluch , C. and Olivares , J. 1986 . Evolution of ethylene from roots of Medicago sativa plants inoculated with Rhizobium meliloti. . J. Plant Physiol , 125 : 361 – 366 .
  • Ligero , F. , Poveda , J. L. , Gresshoff , P. M. and Caba , J. M. 1999 . Nitrate inoculation in enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control. . J. Plant Physiol. , 154 : 482 – 488 .
  • Lin , Z. , Zhong , S. and Grierson , D. 2009 . Recent advances in ethylene research. . J. Exp Bot. , 10 : 1 – 26 .
  • Lohar , D. , Stiller , J. , Kam , J. , Stacey , G. and Gresshoff , P. M. 2009 . Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus . Ann. Bot. , 104 : 277 – 285 .
  • Lorteau , M. A. , Ferguson , B. J. and Guinel , F. C. 2001 . Effects of cytokinin on ethylene production and nodulation in pea, (Pisum sativum) cv. Sparkle. . Physiol. Planta. , 112 : 421 – 428 .
  • Lynch , J. and Brown , K. 2006 . Plant-environment Interactions , Boca Raton, FL : CRC .
  • Ma , W. B. , Guinel , F. C. and Glick , B. R. 2003b . Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. . Appl. Environ. Microbiol. , 69 : 4396 – 4402 .
  • Ma , W. , Charles , T. C. and Glick , B. R. 2004 . Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. . Appl. Environ. Microbiol. , 70 : 5891 – 5897 .
  • Ma , W. , Guinel , F. C. and Glick , B. R. 2003a . Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. . Appl. Environ. Microbiol. , 69 : 4396 – 4402 .
  • Ma , Y. , RajKumar , M. and Freitas , H. 2009 . Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. . J. Hazard. Mat. , 166 : 1154 – 1161 .
  • Maekawa-Yoshikawa , M. , Muller , J. , Takeda , N. , Maekawa , T. , Sato , S. , Tabata , S. , Perry , J. , Wang , T. L. , Groth , M. , Brachmann , A. and Parniske , M. 2009 . The Temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. . Plant Physiol. , 149 : 1785 – 1796 .
  • Magori , S. , Oka-Kira , E. , Shibata , S. , Umehara , Y. , Kouchi , H. , Hase , Y. , Tanaka , A. , Sato , S. , Tabata , S. and Kawaguchi , M. 2009 . Too much love, a root regulator associated with the long-distance control of nodulation in Lotus japonicas. . Mol. Plant-Microbe Interact. , 22 : 259 – 268 .
  • Mann , A. , Nandwal , A. S. , Kundu , B. S. , Sheokand , S. , Kumar , B. , Datta , D. and Sheoran , A. 2001 . Effect of nitrate and aminoethoxyvinylglycine on Cicer arietinum L. nodules . Biol. Plant , 44 : 131 – 135 .
  • Mann , A. , Nandwal , A. S. , Sheoran , I. S. , Kundu , B. S. , Sheokand , S. and Kamboj , D. V. 2002 . Ethylene evolution, H2O2 scavenging enzymes and membrane integrity of Cicer arietinum L., nodules as affected by nitrate and aminoethoxyvinylglicine. . J. Plant Physiol , 159 : 347 – 353 .
  • McClellan , C. A. and Chang , C . 2008 . The role of protein turnover in ethylene Diosynthesis and response. . Plant Sci. , 175 : 20 – 31 .
  • Miwa , H. , Sun , J. , Oldroyd , G. E. D. and Downie , J. A. 2006a . Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. . Mol. Plant Microbe Interact , 19 : 914 – 923 .
  • Miwa , H. , Sun , J. , Oldroyd , G. E. and Downie , J. A. 2006b . Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. . Plant J. , 48 : 883 – 894 .
  • Musarrat , J. , Al Khedhairy , A. A. , Al Arifi , S. and Khan , M. S. 2009 . “ Role of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium-legume symbiosis ” . In Microbial Strategies for Crop Improvement. , Edited by: Khan , M. S. , Zaidi , A. and Musarat , J. 63 – 83 . Berlin : Springer-Verleg .
  • Nadeem , S. A. , Zahir , Z. A. , Nadeem , M. , Asghar , H. N. and Arshad , M. 2010 . Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. . Soil Sci. Society Am. , 74 : 533 – 542 .
  • Nadeem , S. M. , Zahir , Z. A. , Naveed , M. and Arshad , M. 2009 . Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected field. . Can. J. Microbiol. , 55 : 1302 – 1309 .
  • Nandwal , A. S. , Maan , A. , Kundu , B. S. , Sheokand , S. , Kamboj , D. V. , Sheoran , A. , Kumar , B. and Dutta , D. 2000 . Ethylene evolution and antioxidant defence mechanism in Cicer arietinum roots in the presence of nitrate and aminoethoxyvinylglycine. . Plant Physiol. Biochem. , 38 : 709 – 715 .
  • Nie , L. , Shah , S. , Burd , G. I. , Dixon , D. G. and Glick , B. R. 2002 . Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. . Plant Physiol. Biochem. , 40 : 355 – 361 .
  • Nukui , N. , Ezura , H. and Minamisawa , K. 2004 . Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. . Plant Cell Physiol. , 45 : 427 – 435 .
  • Nukui , N. , Ezura , H. , Yohsshi , K. , Yasuta , T. and Minamisawa , K. 2000 . Effect of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum . Plant Cell Physiol. , 41 : 893 – 897 .
  • Nukui , N. , Minamisawa , K. , Ayabe , S. I. and Aoki , T. 2006 . Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. . Appl. Environ. Microbiol. , 72 : 4964 – 4969 .
  • O’Donnell , P. J. , Jones , J. B. , Antoine , F. R. , Ciardi , J. and Klee , H. J. 2001 . Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. . Plant J , 25 : 315 – 323 .
  • Ohtsubo , N. , Mitsuhara , I. , Koga , M. , Seo , S. and Ohashi , Y. 1999 . Ethylene promotes the necrotic lesion formation and basic PR gene expression in TMV-infected tobacco. . Plant Cell Physiol , 40 : 808 – 817 .
  • Okazaki , S , Sugawara , M. and Minamisawa , K. 2004 . Bradyrhizobium elkanii rtxC gene is required for expression of symbiotic phenotypes in the final step of rhizobitoxine biosynthesis. . Appl. Environ. Microbiol. , 70 : 535 – 541 .
  • Okazaki , S. , Yuhashi , K. and Minamisawa , K. 2003 . Quantitative and time-course evaluation of nodulation competitiveness of rhizobitoxine-producing Bradyrhizobium elkanii. . FEMS Microbiol. Ecol. , 45 : 155 – 160 .
  • Oldroyd , G. E. D. and Downie , J. A. 2004 . Calcium, kinases and nodulation signaling in legumes. . Nat. Rev. Mol. Cell Biol. , 5 : 566 – 576 .
  • Oldroyd , G. E. D. , Engstrom , E. M. and Long , S. R. 2001 . Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula . Plant Cell , 13 : 1835 – 1849 .
  • Onofre-Lemus , J. , Hernández-Lucas , I. , Girard , L. and Caballero-Mellado , J. 2009 . ACC (1-Aminocyclopropane-1-Carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. . App. Environ. Microbiol. , 75 : 6581 – 6590 .
  • Parker , M. A. and Peters , N. K. 2001 . Rhizobitoxine production and symbiotic compatibility of Bradyrhizobium from Asian and North American lineages of Amphicarpaea. . Can. J. Microbiol. , 47 : 889 – 894 .
  • Patrick , A. , Gusti , A. , Cheminant , S. , Alioua , M. , Dhondt , S. , Coppens , F. , Beemster , G. T. S. and Genschik , P. 2009 . Gibberellin signaling controls cell proliferation rate in Arabidopsis. . Curr. Biol. , 19 : 1188 – 1193 .
  • Penmetsa , R. V. and Cook , D. R. 1997 . A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. . Sci. , 275 : 527 – 530 .
  • Penmetsa , R. V. , Frugoli , J. A. , Smith , L. S. and Long , S. R. 2003 . Dual genetic pathways controlling nodule number in Medicago truncatula . Plant Physiol. , 131 : 998 – 1008 .
  • Peters , N. K. and Crist-Esters , D. K. 1989 . Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. . Plant Physiol. , 91 : 690 – 693 .
  • Prayitno , J. and Mathesius , U. 2010 . Differential Regulation of the Nodulation Zone by Silver Ions, L-α - (2-Amino-Ethoxyvinyl)-Glycine, and the skl Mutation in Medicago truncatula . . HAYATI J. Biosci. , 17 : 15 – 20 .
  • Ratcliff , W. C. and Denison , R. F. 2009 . Rhizobitoxine producers gain more poly-3-hydroxybutyrate in symbiosis than do competing rhizobia, but reduce plant growth. . Isme. J. , 3 : 870 – 872 .
  • Ratcliff , W. C. , Kadam , S. V. and Denison , R. F. 2008 . Polyhydroxybutyrate supports survival and reproduction in starving rhizobia. . FEMS Microbiol. Ecol. , 65 : 391 – 399 .
  • Remans , R. , Croonenborghs , A. , Torres Gutierrez , R. , Michiels , J. and Vanderleyden , J. 2007 . Effects of plant growth promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. . Eur. J. Plant Pathol. , 119 : 341 – 351 .
  • Rodriguez , F. I. , Esch , J. J. , Hall , A. E. , Binder , B. M. , Schaller , G. E. and Bleecker , A. B. 1999 . A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. . Sci. , 283 : 996 – 998 .
  • Ruan , X. and Peters , N. K. 1992 . Isolation and characterization of rhizobitoxine mutants of Bradyrhizobium japonicum. . J. Bacteriol. , 174 : 3467 – 3473 .
  • Saleem , M. , Arshad , M. , Hussain , S. and Bhatti , A. 2007 . Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC-deaminase in stress agriculture . J. Ind. Microbiol. Biotechnol , 34 : 635 – 648 .
  • Saltvei , M. E. 2005 . Aminoethoxyvinylglycine (AVG) reduces ethylene and protein biosynthesis in excised discs of mature-greentomato pericarp tissues. . Postharvest Biol.Tech. , 35 : 183 – 190 .
  • Schmidt , J. S. , Harper , J. E. , Hoffman , T. K. and Bent , A. F. 1999 . Regulation of soybean nodulation independent of ethylene signaling. . Plant Physiol. , 119 : 951 – 959 .
  • Shaharoona , B. , Arshad , M. and Zahir , Z. A. 2006a . Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). . Lett. Appl. Microbiol. , 42 : 155 – 159 .
  • Shaharoona , B. , Arshad , M. and Zahir , Z. A. 2006b . Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. . Soil Biol. Biochem. , 38 : 2971 – 297 .
  • Shaharoona , B. , Arshad , M. and Khalid , A. 2007a . Differential response of etiolated pea seedling to 1-aminocyclopropane-1-carboxylate and/or L-methionine utilizing rhizobacteria. . J. Micrbiol. , 45 : 15 – 20 .
  • Shaharoona , B. , Jamro , G. M. , Zahir , Z. A. , Arshad , M. and Memon , K. S. 2007b . Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum l.). . J. Microbiol. Biotechnol. , 17 : 1300 – 1307 .
  • Shaharoona , B. , Naveed , M. , Arshad , M. and Zahir , Z. A. 2008 . Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). . Appl. Microbiol. Biotechnol. , 79 : 147 – 155 .
  • Shahzad , S. M. , Khalid , A. , Arshad , M. , Khalid , M. and Mehboob , I. 2008 . Integrated use of plant growth promoting bacteria and P-enriched compost for improving growth, yield and nodulation of chickpea. . Pak. J. Bot. , 31 : 57 – 77 .
  • Shahzad , S. M. , Khalid , A. , Arshad , M. , Tahir , J. and Mahmood , T. 2010 . Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. . Europ. J. Soil Biol. , 46 : 342 – 347 .
  • Sheng , X-F. , Xia , J. J. , Jiang , C. Y. , He , L. Y. and Qian , M. 2008 . Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting growth and lead accumulation of rape. . Environ. Pollut. , 156 : 1164 – 1170 .
  • Shimizu-Yumoto , H. and Ichimura , K. 2010 . Combination pulse treatment of 1-naphthaleneacetic acidand aminoethoxyvinylglycine greatly improves postharvest life in cut Eustoma flowers. . Postharvest Biol. Tech , 56 : 104 – 107 .
  • Stearns , J. C. and Glick , B. R. 2003 . Transgenic plants with altered ethylene biosynthesis or perception. . Biotechnol. Adv. , 21 : 193 – 210 .
  • Stepanova , A. N. and Alonso , J. M. 2005 . Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. . Physiol. Planta. , 123 : 195 – 206 .
  • Stepanova , A. N. and Ecker , J. R. 2000 . Ethylene signaling: From mutants to molecules . Curr. Opin. Plant Biol. , 3 : 353 – 360 .
  • Suganuma , N. , Yamauchi , H. and Yamamoto , K. 1995 . Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum. . Plant Sci , 111 : 163 – 168 .
  • Sugawara , M. , Okazaki , S. , Nukui , N. , Ezura , H. , Mitsui , H. and Minamisawa , K. 2006 . Rhizobitoxine modulates plant microbe interactions by ethylene inhibition. . Biotechnol. Adv , 24 : 382 – 388 .
  • Sullivan , J. T. , Trzebiatowski , J. R. , Cruickshank , R. W. , Gouzy , J. , Brown , S. D. and Elliot , R. M. 2002 . Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. . J. Bacteriol. , 184 : 3086 – 3095 .
  • Sun , J. , Cardoza , V. , Mitchell , D. M. , Bright , L. , Oldroyd , G. and Harris , J. M. 2006 . Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. . Plant J , 46 : 961 – 970 .
  • Tamimi , S. M. and Timko , M. P. 2003 . Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.). . Plant Soil , 257 : 125 – 131 .
  • Tirichine , L. , Sandal , N. , Madsen , L. H. , Radutoiu , S. , Albrektsen , A. S. , Sato , S. , Asamizu , E. , Tabata , S. and Stougaard , J. 2006 . A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. . Sci. Mag. , 315 : 104 – 107 .
  • Tittabutr , P. , Awaya , J. D. , Li , Q. X. and Borthakur , D. 2008 . The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. Strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. . Syst. Appl. Microbiol , 31 : 141 – 150 .
  • Uchiumi , T. , Oowada , T. , Itakura , M. , Mitsui , H. , Nukui , N. , Dawadi , P. , Kaneko , T. , Tabata , S. , Yokoyama , T. , Tejima , T. , Saeki , K. , Oomori , H. , Hayashi , M. , Maekawa , T. , Sriprang , R. , Murooka , Y. , Tajima , S. , Simomura , K. , Nomura , M. , Suzuki , A. , Shimoda , S. , Sioya , K. , Abe , M. and Minamisawa , K. 2004 . Expression islands clustered on symbiosis island of Mesorhizobium loti genome . J. Bacteriol , 186 : 2439 – 2448 .
  • Valverde , C. and Wall , L. G. 2005 . Ethylene modulates the susceptibility of the root for nodulation in actinorhizal Discaria trinervis. . Physiol. Planta. , 124 : 121 – 131 .
  • van Loon , L. C. , Geraats , B. P. and Linthorst , H. J. 2006 . Ethylene as a modulator of disease resistance in plants. . Trends Plant Sci. , 11 : 184 – 191 .
  • van Workum , W. A. T. , Van Brussel , A. A. N. , Tak , T. , Wijffelman , C. A. and Kijne , W. J. 1995 . Ethylene prevents nodulation of Vicia sativa ssp. nigra by exopolysaccharides deficient mutants of Rhizobium leguminosarum bv viciae. . Mol. Plant. Microbe. Interac. , 8 : 278 – 285 .
  • Wang , K. L. , Li , H. and Ecker , J. R. 2002 . Ethylene biosynthesis and signaling networks. . Plant Cell , 14 : 131 – 151 .
  • Wood , N. T. 2001 . Nodulation by numbers: the role of ethylene in symbiotic nitrogen fixation. . Trends Plant Sci. , 6 : 501 – 502 .
  • Yang , S. F. and Hoffman , N. E. 1984 . Ethylene biosynthesis and its regulation in higher plants. . Annu. Rev. Plant Physiol , 35 : 155 – 189 .
  • Yasuta , T. , Satoh , S. and Minamisawa , K. 1999 . New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase. . Appl. Environ. Microbiol. , 65 : 849 – 852 .
  • Yuhashi , K. I. , Ichikawa , N. , Ezuura , H. , Akao , S. , Minakawa , Y. , Nukui , N. , Yasuta , T. and Minamisawa , K. 2000 . Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. . Appl. Environ. Microbiol. , 66 : 2658 – 2663 .
  • Zaat , S. A. J. , Van Brussel , A. A. N. , Tak , T. , Lugtenberg , B. J. J. and Kijne , J. W. 1989 . The ethylene-inhibitor aminoethoxyvinyl- glycine restores normal nodulation by Rhizobium leguminosarum biovar. viciae on Vicia sativa subsp. nigra by suppressing the ‘Thick and short roots’ phenotype. . Planta. , 177 : 141 – 150 .
  • Zahir , Z. A. , Munir , A. , Asghar , H. N. , Arshad , M. and Shaharoona , B. 2008 . Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. . J. Microbiol. Biotechn , 18 : 958 – 963 .
  • Zhang , W. and Wen , C. K. 2009 . Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon. . Plant Physiol. Biochem. , 48 : 45 – 53 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.