1,244
Views
86
CrossRef citations to date
0
Altmetric
Original Article

Genomics of Cold Hardiness in Woody Plants

, , , , , & show all

REFERENCES

  • Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., and Genschik, P. 2008. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20: 2117–2129.
  • Alonso-Blanco, C., Gomez-Mena, C., Llorente, F., Koornneef, M., Salinas, J., and Martinez-Zapater, J.M. 2005. Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol. 139: 1304–1312.
  • Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fuji, H., Zheng, X., and Zhu, J.K. 2006. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biochem. Chem. 281: 37636–37645.
  • Arora, R. and Rowland, L.J. 2011. Physiological research on winter-hardiness: deacclimation resistance, reacclimation ability, photoprotection strategies, and a cold acclimation protocol design. HortScience 46: 1070–1078.
  • Arora, R., Rowland, L.J., Lehman, J.S., Lim, C.C., Panta, G.R., and Vorsa, N. 2000. Genetic analysis of freezing tolerance in blueberry (Vaccinium section Cyanococcus). Theor. Appl. Genet. 100: 690–696.
  • Arora, R., Rowland, L.J., and Panta, G.R. 1997. Chill responsive dehydrins in blueberry: are they associated with cold hardiness or dormancy transitions? Physiol. Plant. 101: 8–16.
  • Arora, R., and Wisniewski, M. 1994. Cold acclimation in genetically related deciduous and evergreen peach. II. Aa 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins. Plant Physiol. 105: 95–101.
  • Arora, R., Wisniewski, M., and Scorza, R. 1992. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). 1. Seasonal changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol. 99: 1562–1568.
  • Artlip, T., Callahan, A.M., Bassett, C., and Wisniewski, M. 1997. Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach. Plant Mol. Biol. 33: 61–70.
  • Artlip, T., Wisniewski, M., and Norelli, J. 2014. Field evaluation of apple overexpressing a peach CBF gene confirms its effect on cold hardiness, dormancy, and growth. Env. Exp, Bot. dox.doi.org/10.1016/envexp.2013.12.2008.
  • Arús, P., Verde, I., Sosinski, B., Zhebentyayeva, T., and Abbott, A.G. 2012. The peach genome. Tree Genet. Genom. 8: 531–547.
  • Azar, S., Marque G., Clanet, C., Marque, C., and Teulieres, C. 2012. Natural variation in CBF gene sequence and freezing tolerance in a E. gunnii population. Vienna International Plant Conference Vienna, Austria.
  • Azar, S., San Clemente, H., Cao, P.B., Mounet, F., Dunand, C., Marque, G., Marque, C., and Teulieres, C. (Submitted). Genome-wide analysis of the AP2/ERF family in E. grandis: focus on the regulation of the DREB1/CBF and DREB2 genes under abiotic stresses.
  • Azar, S., San Clemente, H., Marque, G., Dunand, C., Marque, C., and Teulières, C. 2011 Bioinformatic prediction of the AP2/ERF family in Eucalyptus grandis: focus on CBF family. International Conference IUFRO Meeting, Tree Biotechnology, Arraial d’Ajuda, Bahia, Brazil.
  • Badawi, M., Reddy, Y.V., Agharbaoui, Z., Tominaga, Y., Danyluk, J., Sarhan, F., and Houde, M. 2008. Structure and functional analysis of wheat ICE (Inducer of CBF Expression) genes. Plant Cell Physiol. 49: 1237–1249.
  • Barros, P.M., Gonçalves, N., Saibo, N.J. M., and Oliveira, M.M. 2012. Functional characterization of two almond C-repeat-binding factors involved in cold response. Tree Physiol. 32: 1113–1128.
  • Benedict, C., Geisler, M., Trygg, J., Huner, N., and Hurry, V. 2006a. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. Plant Physiol. 141: 1219–1232.
  • Benedict, C., Skinner, J.S., Meng, R., Chang, Y., Bhalerao, R., Huner, N.P. A., Finn, C.E., Chen, T.H. H., and Hurry, V. 2006b. The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ. 29: 1259–1272.
  • Bhalerao, R., Keskitalo, J., Sterky, F., Erlandsson, R., Björkbacka, H., Jonsson, B.S., Karlsson, I., Gardeström, P., Gustafsson, P., Lundeberg, J., and Jansson, S. 2003. Gene expression in autumn leaves. Plant Physiol. 131: 430–442.
  • Bielenberg, D.G., Wang, Y., Li, Z., Zhebentyayeva, T., Fan, S., Reighard, G.L., Scorza, R., and Abbott, A.G. 2008. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch.] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet. Genom. 4: 485–507.
  • Bielenberg, D.G., Wang, Y., Fan, S., Reighard, G.L., Scorza, R., and Abbott, A.G. 2004. A deletion affecting several gene candidates is present in the evergrowing peach mutant. Heredity 95: 436–444.
  • Boches, P.S., Bassil, N.V., and Rowland, L.J. 2005. Microsatellite markers for Vaccinium from EST and genomic libraries. Mol. Ecol. Notes 5: 657–660.
  • Bohlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A.M., Jansson, S., Strauss, S.H., and Nilsson, O. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312: 1040–1043.
  • Brevis, P., Hancock, J., and Rowland, L.J. 2007. Development of a genetic linkage map for tetraploid highbush blueberry using SSR and EST-PCR markers. HortScience 42: 963.
  • Brightwell, W.T., Darrow, G.M., and Woodard, O.J. 1949. Inheritance of seedlings of Vaccinium constablaei x Vaccinium ashei variety Pecan. Proc. Amer. Soc. Hort. Sci. 53: 239–240.
  • Brunner, A.M., Busov, V.B., and Strauss S.H. 2004. Poplar genome sequence: functional genomics in an ecologically dominant plant species. Tr. Plant Sci. 9: 49–56.
  • Burchett, S., Niven, S., and Fuller, M.P. 2006. The effect of cold-acclimation on the water relations and freezing tolerance Hordeum vulgare L. CryoLetters 27: 295–303.
  • Byrne, M., Murrell, J.C., Owen, J.V., Williams, E.R., and Moran, G.F. 1997. Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theor. Appl. Genet. 95: 975–979.
  • Cai Q., Moore, G.A., and Guy, C.L. 1995. An unusual group 2 LEA gene family in citrus responsive to low temperature. Plant Mol. Biol. 29: 11–23.
  • Canella, D. 2007. Characterization of the Arabidopsis thaliana CBF1 transcription factor: Functional role of two conserved signature sequences. Ph.D. Thesis. Michigan State University.
  • Canella, D., Gilmour, S.J., Kuhn, L.A,. and Thomashow, M.F. 2010. DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence Biochim. Biophys. Acta 1799: 454–462.
  • Caprio, J.M. and Quamme, H.A. 2002. Weather conditions associated with grape production in the Okanagan Valley of British Columbia and potential impact of climate change. Can. J. Plant Sci. 82: 755–763.
  • Castillo, R., Otto, M., Freer, J., and Valenzuela, S. 2008. Multivariate strategies for classification of Eucalyptus globulus genotypes using carbohydrates content and NIR spectra for evaluation of their cold resistance. J. Chemom. 22: 268–280.
  • Castillo, R.D., Contreras, D., Baeza, J., Otto, M., Agurto, C., and Freer, J. 2010. Classification of genotypes of Eucalyptus globulus under cold conditions using their free amino acid contents on leaves and regularized discriminant analysis (RDA). J. Chil. Chem. Soc. 55: 11–18.
  • Casson, S.A. and Hetherington, A.M. 2010. Environmental regulation of stomatal development. Curr. Opin. Plant 13: 90–95.
  • Catala, R., Santos, E., Alonso, J.M., Ecker, J.R., Martinez-Zapater, J.M., and Salinas, J. 2003. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15: 2940–2951.
  • Champ, K.I., Febres, V.J., and Moore, G.A. 2007. The role of CBF transcriptional activators in two Citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiol. Plant. 129: 529–541.
  • Chen, T.H. H., Howe, G.T., and Bradshaw H.D. Jr. 2002. Molecular genetic analysis of dormancy-related traits in poplars. Weed Sci. 50: 232–240.
  • Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B., Hong, X., Argawal, M., and Zhu, J-K 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17: 1043–1054.
  • Chinnusamy, V., Zhu, J., and Zhu, J-K. 2006. Gene regulation during cold acclimation in plants. Physiol. Plant. 126: 52–61.
  • Chinnusamy, V., Zhu, J.K., and Sunkar, R. 2010. Gene regulation during cold stress acclimation in plants. R. Sunkar (ed.) Plant Stress Tolerance, Methods Mol. Biol. 639: 39–55.
  • Choi, D.W., Zhu, B., and Close, T.J. 1999. The barley (Hordeum vulgare L.) dehydrin multigene family: Sequences, allele types, chromosome arrangements and expression characteristics of eleven Dhn genes of cv. Dicktoo. Theor. Appl. Genet. 98: 1234–1247.
  • Correa Molinari, H., Marur, C., Bespalhok Filho, J., Kobayashi, A., Pileggi, M., Pereira Leite, J.R., Protasio Pereira, L. and Esteves Vieira, L. 2004. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci. 167.
  • Deluc, L.G., Grimplet, J., Wheatley, M.D., Tillett, R.L., Quilici, D.R., Osborne C., Schooley, D.A., Schlauch, K.A., Cushman, J.C., and Cramer, G.R. 2007. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8: 429.
  • Dhanaraj, A.L., Slovin, J.P., and Rowland, L.J. 2005. Isolation of a cDNA clone and characterization of expression of the highly abundant, cold acclimation-associated 14 kDa dehydrin of blueberry. Plant Sci. 168: 949–957.
  • Dhanaraj, A.L., Alkharouf, N.W., Beard, H.S., Chouikha, I.B., Matthews, B.F., Wei, H., Arora, R., and Rowland, L.J. 2007. Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225: 735–751.
  • Doherty, C.J., Van Buskirk, H.A., Myers, S.J., and Thomashow, M.F. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21: 972–984.
  • Dong, C-H., Agarwal, M., Zhang, Y., Xie, Q., and Zhu, J-K. 2006. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. USA 103: 8281–8286.
  • Ehlenfeldt, M.K., Rowland, L.J., Ogden, E.L., and Vinyard, B. 2007. Bud cold hardiness of Vaccinium ashei, V. constablaei, and hybrid derivatives and their potential for producing northern-adapted rabbiteye cultivars. HortScience 42: 1131–1134.
  • El Kayal, W., Keller, G., Debayles, C., Kumar, R., Weier, D., Teulieres, C., and Marque, C. 2006. Regulation of tocopherol biosynthesis through transcriptional control of tocopherol cyclase during cold hardening in Eucalyptus gunnii. Physiol. Plant. 126: 221–223.
  • FAO 2007. State of the World's Forests 2007. Electronic Publishing Policy and Support Branch, Communication Division, FAO, Rome.
  • Febres, V.J., Khalaf, A.A., Shi, Q., Gmitter, F.G., and Moore, G.A. 2011. Early activation of defense genes in kumquat by the citrus canker pathogen. Phytopathol. 101: S51–S51.
  • Fennel, A. and Hoover, E. 1991. Photoperiod influences growth, bud dormancy, and cold acclimation in Vitis labruscana and V. riparia. Can. J. Amer. Soc. Hort. Sci. 116: 270–273.
  • Feng, X-M., Zho, Q., Zhao, L-L., Qiao, Y., Xie, X-B., Li, H-F., Yao, Y-X., You, C-X., and Hao, Y-J. 2012. The cold-induced basic helix-loop-helix transcription factor gene MDClbHLH1 encodes an ICE-like protein in apple. BMC Plant Biology 12: 22.
  • Fernandez, M.R., Valenzuela, S.A., and Balocchi, C.L. 2006. RAPD and freezing resistance in Eucalyptus globulus. Electr. J. Biotech. 9: 303–309.
  • Fernandez, M., Aguila, S.V., Arora, R., and Chen, K.T. 2012a. Isolation and characterization of three cold acclimation-responsive dehydrin genes from Eucalyptus globulus. Tree Genet. Genom. 8: 149–162.
  • Fernandez, M., Valenzuela, S., Barraza, H., Latorre, J., and Neira, V. 2012b. Photoperiod, temperature and water deficit differentially regulate the expression of four dehydrin genes from Eucalyptus globulus. Trees-Struct. Funct. 26: 1483–1493.
  • Fernandez-Caballero, C., Rosales, R., Romero, I., Escribano, M.I., Merodio, C., and Sanchez Ballesta, M.T. 2012. Unraveling the roles of CBF1, CBF4 and dehydrin 1 genes in the response of table grapes to high CO2 levels and low temperature. J Plant Physiol. 169:744–748.
  • Flachowsky, H., Peil, A., Spanen, T., Elo, A., and Hanke, V. 2007. Overexpression of BpMADS4 from silver birch (Betula pendula Roth) induces early-flowering in apple (Malus x domestica Borkh.). Plant Breeding 126: 137–145.
  • Fowler, S. and Thomashow, M.F. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675–1690.
  • Fowler, S.G., Cook, D., and Thomashow, M.F. 2005. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 137: 961–968.
  • Franklin, K.A. and Whitelam, G.C. 2007. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet. 39:1410–1413.
  • Fujita M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y, Yamaguchi-Shinozaki, K., and Shinozaki, K. 2006. Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant. Biol. 9:436–442.
  • Fursova, O.V., Pogorelko, G.V., and Tarasovet, V.A. 2009. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429: 98–103
  • Galet, P. 1993. Précis de viticultulture. 6e éd, Déhan, Montpellier, 575 p.
  • Galon, Y., Finkler, A., and Fromm, H. 2010. Calcium-regulated transcription in plants. Mol. Plant 3: 653–669.
  • Gamboa, M.C., Rasmussen-Poblete, S., Valenzuela, P.D., and Krauskopf, E. 2007. Isolation and characterization of a cDNA encoding a CBF transcription factor from E. globulus. Plant Physiol. Biochem. 45: 1–5.
  • Garris, A., Clark, L., Owens, C., McKay, S., Luby, J., Mathiason, K., and Fennell, A. 2009. Mapping of photoperiod-induced growth cessation in the wild grape Vitis riparia. J. Amer. Soc. Hort. Sci. 134: 261–272.
  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., and Thomashow, M.F. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16: 433–442.
  • Gilmour, S.J., Artus, N.N., and Thomashow, M.F. 1992. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18: 13–21.
  • Gmitter, F.G., Chen, C., Machado, M.A., de Souza, A.A., Ollitrault, P., Froehlicher, Y., and Shimizu, T. 2012. Citrus genomics. Tree Genet. Genom. 8: 611–626.
  • Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., and Rokhsar D.S. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40(D1): D1178–D1186.
  • Grattapaglia, D., Vaillancourt, R.E., Shepherd, M., Thumma, B.R., Foley, W., Külheim, C., Potts, B.M., and Myburg, A. 2012. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet. Genom. 8: 463–508.
  • Grönlund, A., Bhalerao, R.P., and Karlsson, J. 2009. Modular gene expression in Poplar: a multilayer network approach. New Phytol. 181: 315–322.
  • Gu, L., Hanson, P.J., Post, W.M., Kaiser, D.P., Yang, B., Nemani, R., Pallardy, S.G., and Meyers, T. 2008. The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming World? BioScience 58: 253–262.
  • Gusta, L.V. and Wisniewski, M. 2013. Understanding plant cold hardiness: an opinion. Physiol. Plant. 147: 4–14.
  • Guy, C.L. 1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41: 187–223
  • Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., and Zhang, J.Z. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130: 639–648.
  • Hanin, M., Brini- Faiçal, B., Toda, Y., Takeda, S., and Masmoudi, K. 2011. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav. 6: 1503–1509
  • Hannah, M.A., Heyer, A.G., and Hincha, D.K. 2005. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genetics 1: 179–181.
  • Hannah, M.A., Wiese, D., Freund, S., Fiehn, S., Heyer, A.G., and Hincha, D.K. 2006. Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 142: 98–112.
  • Hara, M. 2010. The multifunctionality of dehydrins. Plant Signal Behav. 5: 1–6.
  • Hara, M., Fujinaga, M., and Kuboi, T. 2004. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol. Biochem. 42: 657–662
  • Hara, M., Fujinaga, M., and Kuboi, T. 2001. Metal binding by citrus dehydrin with histidine-rich domains. J. Exp. Bot. 56: 2695–2703.
  • Hara, M., Shinoda, Y., Tanaka, Y. and Kuboi, T. 2009. DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ. 32: 532–541.
  • Hara, M., Terashima, S., Fukaya, T. and Kuboi, T. 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217: 290–298.
  • He, L.G., Wang, H.L., Liu, D.C., Zhao, Y.J., Xu, M., Zhu, M., Wei, G.Q., and Sun, Z.H. 2012. Isolation and expression of a cold-responsive gene PtCBF in Poncirus trifoliata and isolation of citrus CBF promoters. Biologia Plant. 56: 484–492.
  • Heide, O.M. 2008. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci. Hortic. 115: 309–314.
  • Heide, O.M. and Prestrud, A.K. 2005. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 25: 109–114.
  • Hinchee, M., Zhang, C., Chang, S., Cunningham, M., Hammond, W., and Nehra, N. 2011. Biotech Eucalyptus can sustainably address society's need for wood: the example of freeze tolerant Eucalyptus in the southeastern U.S. BMC Proc. 5: I24.
  • Houde, M., Danyluk, J., Laliberté, J.F., Rassart, E., Dhindsa, R.S., and Sarhan, F. 1992. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol. 99: 1381–1387.
  • Howe, G.T., Aitken, S.N., Neale, D.B., Jermstad, K.D., Wheeler, N.C., and Chen, T.N.N. 2003. From genotype to phenotype: unravelling the complexities of cold adaptation in forest trees. Can J. Bot. 81: 1247–1266.
  • Howell, G.S. 2000. Grapevine cold hardiness: Mechanisms of cold acclimation, mid-winter hardiness maintenance and spring deacclimation. Proc. ASEV 50th Ann. Mtg. Seattle, Washington.
  • Ibáñez, C., Kozarewa, I., Johansson, M., Ogren, E., Rohde, A., and Eriksson, M.E. 2010. Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol. 153: 1823–1833.
  • Jaglo-Ottosen K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104–106.
  • Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463–467.
  • Jamil, A., Riaz, S., Ashraf, M., and Foolad, M.R. 2011. Gene expression profiling of plants under salt stress. Critical Rev. Plant Sci. 30: 435–458.
  • Janská, A., Maršik, P., Zelenková, S., and Ovesná, J. 2010. Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol. 12: 395–405.
  • Jansson, S. and Douglas, C.J. 2007. Populus: a model system for plant biology. Annu. Rev. Plant Biol. 58: 435–458.
  • Jin, W., Dong, J., Hu, Y., Lin, Z., Xu, X., and Han, Z. 2009. Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible factor AtDREB1b. Hort Sci. 44: 35–39.
  • Jung, S., Cestaro, A., Troggio, M., Main, D., Zheng, P., Cho, I., Folta, K.M., Sosinski, B., Abbott, A., Celton, J.M., Arus, P., Shulaev, V., Verde, I., Morgante, M., Rokhsar, D.S., Velasco, R., and Sargent, D.J. Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics. 13 (129) 2–12.
  • Kalberer, S.R., Wisniewski, M., and Arora, R. 2006. Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Sci. 171: 3–16.
  • Karlberg, A., Englund, M., Petterle, A., Molnar, G., Sjödin, A., Bako, L., and Bhalerao, R.P. 2010. Analysis of global changes in gene expression during activity-dormancy cycle in hybrid aspen apex. Plant Biotechnology 27: 1–16.
  • Kanaoka, M.M., Pillitteri, L.J., Fujii, H., Yoshida, Y., Bogenschutz, N.L., Takabayashi, J., Zhu, J-K., and Torii, K.U. 2008. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20: 1775–1785.
  • Kang, H.G., Kim, J., Kim, B., Jeong H., Choi, S.H., Kim, E.K., Lee, H-Y., and Lim, P.K. 2011. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci. 180: 634–641.
  • Keller, G., Marchal, T., SanClemente, H., Navarro, M., Ladouce, N., Wincker, P., Couloux, A., Teulieres, C., and Marque, C. 2009. Development and functional annotation of an 11,303-EST collection from Eucalyptus for studies of cold tolerance. Tree Genet. Genom. 5: 317–327.
  • Kendall, S.L., Hellwege, A., Marriot, P., Whalley, C., Graham, I.A., and Penfield, S. 2011. Induction of dormancy in Arabidopsis summet annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23: 2568–2580.
  • Khraiwesh, B., Zhu, J.K., and Zhu, J. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta 1819:137–148.
  • Kidokoro, S., Maruyama, K., Nakashima, K., Imura, Y., Narusaka, Y., Shinwari, Z. K., Osakabe, Y., Fujita, Y., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2009. The phytochrome interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol. 151: 2046–2057.
  • Kitashiba, H., Ishizaka, T., Isuzugawa, K., Nishimura, K., and Suzuki, T. 2004. Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J. Plant Physiol. 161: 1171–1176.
  • Knight, H. 2000. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195: 269–324.
  • Knight, M.R. and Knight, H. 2012. Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol. 195: 737–751.
  • Kobayashi, M., Horiuchi, H., Fujita, K., Takuhara, Y., and Suzuki, S. 2012. Characterization of grape C-repeat-binding factor 2 and B-box-type zinc finger protein in transgenic Arabidopsis plants under stress conditions. Mol. Biol. Rep. 39: 7933–7939.
  • Kohler, A., Delaruelle, C., Martin, D., Encelot, N., and Martin, F. 2003. The poplar root transcriptome: analysis of 7000 expressed sequence tags. FEBS Lett. 542: 37–41.
  • Kort, J. and Turnock, R. 1998. Carbon reservoir and biomass in Canadian prairie shelterbelts. Agroforestry Systems 44: 175–186.
  • Krebs, J.A., Wu, Y., Chang, H-S., Zhu, T., Wang, X., and Harper, J.F. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130: 2129–2141.
  • Lang, P., Zhang, C.K., Ebel, R.C., Dane, F., and Dozier, W.A. 2005. Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359: 111–118.
  • Lazaro, A., Valverde, F., Piñeiro, M., and Jarillo, J.A. 2012. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24: 982–999.
  • Lee, C-M. and Thomashow, M.F. 2012. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 109: 15054–15059.
  • Leida, C., Conesa, A., Llacer, G., Badenes, M.L., and Rios, G. 2012. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol. 193: 67–80.
  • Levi, A., Panta, G.R., Parmentier, C.M., Muthalif, M.M., Arora, R., Shanker, S., and Rowland, L.J. 1999. Complementary DNA cloning, sequencing, and expression of an unusual dehydrin from blueberry floral buds. Physiol. Plant. 107: 98–109.
  • Levitt, J. 1980. Response of Plants to Environmental Stresses. 2nd ed. Chilling, Freezing, and High Temperature Stresses. Academic Press, New York.
  • Licausi, F., Giorgi, F.M., Zenoni, S., Osti, F., Pezzotti, M., and Perata, P. 2010. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11: 719.
  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406.
  • Liu, N., Zhong, N.-Q., Wang, G.-L., Li, L.-J., Liu, X.-L., He, Y.-K., and Xia, V. 2007. Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226: 827–838.
  • Liu, D.C., He, L.G., Wang, H.L., Xu, M., and Sun, Z.H. 2010. Molecular cloning, characterization and expression analysis of PtrHOS1, a novel gene of cold responses from trifoliate orange Poncirus trifoliata (L.) Raf. Acta Physiologiae Plant. 32: 271–279.
  • Maestrini, P., Cavallini, A., Rizzo, M., Giordani, T., Bernardi, R., Durante, M., and Natali, L. 2009. Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba). J. Plant Physiol. 166: 1544–1556.
  • Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., and Oda, K. 2004. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J. 37: 720–729.
  • Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., and Oda, K. 2008. DDF1 transcriptional activator upregulates expression of a gibberellin deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 56: 613–626.
  • Mantri, N.L., Ford, R., Coram, T.E., and Pang, E.C. 2007. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8: 303.
  • Mantri, N., Patade, V., Penna, S., Ford, R., and Pang, E. 2012. Abiotic stress responses in plants: present and future. In: Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability, P. Ahmad and M.N.V. Prasad (eds.). pp. 1–19.
  • Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2004. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38: 982–993.
  • Maruyama, K., Takeda, M., Kidokoro, S., Yamada, K., Sakuma, Y., Urano, K., Fujita, M., Yoshiwara, K., Matsukura, S., Morishita, Y., Sasaki, R., Suzuki, H., Saito, K., Shibata, D., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2009. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol. 150: 1972–1980.
  • Marquez, Y., Brown, J.W., Simpson, C., Barta, A. and Kalyna, M. 2012. Transcriptome survey reveals increased complexity of alternative splicing landscape in Arabidopsis. Genome Res. 22: 1184–1195.
  • McCamant, T. and Black, R.A. 2000. Cold hardiness in coastal, montane, and inland populations of Populus trichocarpa. Can. J. Forest Res. 30: 91–99.
  • Medina, J., Catalá, R., and Salinas, J. 2011. The CBFs: Three Arabidopsis transcription factors to cold acclimate. Plant Sci. 180: 3–11.
  • Misra, P.N. and Tewari, S.K. 1999. On the performance of poplars (Populus deltoides) on marginal soils in northern India. Biomass Bioenergy 16: 257–262.
  • Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D-J., and Hasegawa, P.M. 2007. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19: 1403–1414.
  • Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 1819: 86–96.
  • Mullins, M.G., Bouquet, A., and Williams L.E. 1992. Biology of the Grapevine. Cambridge University Press.
  • Moore, J.N. 1993. The blueberry industry of North America. Acta Hort. 346: 15–26.
  • Muthalif, M.M. and Rowland, L.J. 1994a. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus). Plant Physiol. 104: 1439–1447.
  • Muthalif, M.M. and Rowland, L.J. 1994b. Identification of chilling responsive proteins from floral buds of blueberry. Plant Sci. 101: 41–49.
  • Myburg, A., Grattapaglia, D., Tuskan, G., Jenkins, J., Schmutz, J., Mizrachi, E., Hefer, C., Pappas, G., Sterck, L., Van De Peer, Y., Hayes, R. and Rokhsar, D. 2011. The Eucalyptus grandis Genome Project: Genome and transcriptome resources for comparative analysis of woody plant biology. BMC Proc. 5: I2.
  • Myles S., Chia, J-M., Hurwitz, B., Simon, C., Zhong, G.Y., Buckler, E. and Ware, D. 2010. Rapid genomic characterization of the genus Vitis. PLoS ONE 5:e8219.
  • Myles, S., Boyko, A.R., Owens, C.L., Brown, P.J., Grassi, F., Aradhya, M.K., Prins, B., Reynolds, A., Chia, J.M., Ware, D., Bustamante, C.D., and Buckler, E.S. 2011. Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. U S A. 108:3530–3535.
  • Naik, D., Dhanaraj, A.L., Arora, R., and Rowland, L.J. 2007. Identification of genes associated with cold acclimation in blueberry (Vaccinium corymbosum L.) using a subtractive hybridization approach. Plant Sci. 173: 213–222.
  • Nakamura, J., Yuasa, T., Huong, T.T., Harano, K., Tanaka, S., Iwata, T., Phan, T. and Iwaya-Inoue, M. 2011. Rice homologs of inducer of CBF expression (OsICE) are involved in cold acclimation. Plant Biotechnology 28: 303–309.
  • Nanjo, T., Futamura, N., Nishiguchi, M., Igasaki, T., Shinozaki, K. and Shinohara, K. 2004. Characterization of full-length enriched expressed sequence tags of stress treated poplar leaves. Plant Cell Physiol. 45: 1738–1748.
  • Navarro, M., Marque, G., Ayax, C., Keller, G., Borges, J., Marque, C. and Teulieres, C. 2009. Complementary regulation of four Eucalyptus CBF genes under various cold inductions. J. Exp. Bot. 60: 2713–2724.
  • Navarro, M., Ayax, C., Martinez, Y., Laur, J., El Kayal, W., Marque, C. and Teulieres, C. 2011. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol. 9: 50–63.
  • Novillo, F., Alonso, J.M., Ecker, J.R., and Salinas, J. 2004. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DRE1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Nat Acad Sci USA 101: 3985–3990.
  • Novillo, F., Medina, J., and Salinas, J. 2007. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Nat Acad Sci USA 104: 21002–21007.
  • Panta, G.R., Rieger, M.W., and Rowland, L.J. 2001. Effect of cold and drought stress on blueberry dehydrin accumulation. J. Hort. Sci. & Biotech. 76: 549–556.
  • Panta, G.R., Rowland, L.J., Arora, R., Ogden, E.L., and Lim, C-C. 2004. Inheritance of cold hardiness and dehydrin genes in diploid mapping populations of blueberry. J. Crop Improvement 10: 37–52.
  • Pauley, S.S. and Perry, T.O. 1954. Ecotypic variation in the photoperiodic response in Populus. J. Arnold Arbor. 35:167–188.
  • Pena, L. and Navarro, L. 1999. Transgenic trees. In: Bajaj YPS (ed). Biotechnology and Agriculture. Berlin, pp 39–54.
  • Pérez, F.J., Kühn, N., Ormeño-Nuñez, J., and Rubio, S. 2009. The expression of VvPHYA and VvPHYB transcripts is differently regulated by photoperiod in leaves and buds of grapevines. Plant Signal Behav. 4: 614–616.
  • Pérez, F.J., Kühn, N., and Vergara, R. 2011. Expression analysis of phytochromes A, B and floral integrator genes during the entry and exit of grapevine-buds from endodormancy. J. Plant Physiol. 168: 1659–1666.
  • Plomion C., Lalanne C., Claverol S., Meddour H., Kohler A., Bogeat-Triboulot M.B., Barre A., Le Provost G., Dumazet H., Jacob D., Bastien C., Dreyer E., de Daruvar A., Guehl J.M., Schmitter J.M., Martin F. and Bonneu M. 2006. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 6: 6509–6527.
  • Polashock, J.J., Arora, R., Peng, Y., Naik, D., and Rowland, L.J. 2010. Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J. Amer. Soc. Hort. Sci. 135: 40–48.
  • Poling, E.B. 2008. Spring cold injury to winegrapes and protection strategies and methods. Hort. Sci. 43: 1652–1662.
  • Qin, F., Sakuma, Y., Tran, L.-S.P, Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T., Sawano, Y., Miyazono, K., Tanokura, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2008. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20: 1693–1707.
  • Qin, F., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2011. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol. 52: 1569–1582.
  • Rasmussen-Poblete, S., Valdes, J., Gamboa, M. C., Valenzuela, P. D. T. and Krauskopf, E. 2008. Generation and analysis of an Eucalyptus globulus cDNA library constructed from seedlings subjected to low temperature conditions. Electr. J. Biotech. 11: 56–68.
  • Rekarte-Cowie, I., Ebshish, O.S., Mohammed, K., and Pearce, R.S. 2008. Sucrose helps regulate cold acclimation of Arabidopsis thaliana. Journal of Experimental Botany 59: 4205–4217.
  • Riu, K-Z., Jin, S-B., Boo, K-H., Lee, D-S., Lee, H-Y. and Song, K-J. 2003. Expression of a Fatty Acid Desaturase gene and cold tolerance in a Citrus transgenics plants. In: Sciences FoHaL (ed.), Cheju National University.
  • Rodriguez, J., Sherman, W.B., Scorza, R., Wisniewski, M., and Okie, W.R. 1994. Evergreen peach, its inheritance and dormant behavior. J. Amer. Soc. Hort. Sci. 119: 789–792.
  • Rohde, A. and Bhalerao, R.P. 2007. Plant dormancy in the perennial context. Trends Plant Sci. 12: 217–223.
  • Rowland, L.J., Ogden, E.L., Arora, R., Lim, C.-C., Lehman, J.S., Levi, A., and Panta, G.R. 1999. Use of blueberry to study genetic control of chilling requirement and cold hardiness in woody perennials. HortScience 34: 1185–1191.
  • Rowland, L.J., Mehra, S., Dhanaraj, A., Ogden, E.L., and Arora, R. 2003a. Identification of molecular markers associated with cold tolerance in blueberry. Acta Hort. 625: 59–69.
  • Rowland, L.J., Mehra, S., Dhanaraj, A.L., Ogden, E.L., Slovin, J.P., and Ehlenfeldt, M.K. 2003b. Development of EST-PCR markers for DNA fingerprinting and genetic relationship studies in blueberry (Vaccinium, section Cyanococcus). J. Amer. Soc. Hort. Sci. 128: 682–690.
  • Rowland, L.J., Ogden, E.L., Ehlenfeldt, M.K., and Vinyard, B. 2005. Cold hardiness, deacclimation kinetics, and bud development among 12 diverse blueberry genotypes under field conditions. J. Amer. Soc. Hort. Sci. 130: 508–514.
  • Rowland, L.J., Dhanaraj, A.L., Naik, D., Alkharouf, N., Matthews, B., and Arora, R. 2008. Study of cold tolerance in blueberry using EST libraries, cDNA microarrays, and subtractive hybridization. HortScience 43: 1975–1981.
  • Rowland, L.J., Alkharouf, N., Darwish, O., Ogden, E.L., Polashock, J.J., Bassil, N.V., and Main, D. 2012a. Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biology 12: 46.
  • Rowland, L.J., Bell, D.J., Alkharouf, N., Bassil, N.V., Drummond, F.A., Beers, L., Buck, E.J., Finn, C.J., Graham, J., McCallum, S., Hancock, J.F., Polashock, J.J., Olmstead, J.W., and Main, D. 2012b. Generating genomic tools for blueberry improvement. Int. J. Fruit Sci. 12: 276–287.
  • Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., Bhalerao, R.P., Boerjan, W., and Rohde, A. 2007. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19: 2370–2390.
  • Sahin-Cevik, M. and Moore, G.A. 2006a. Identification and expression analysis of cold-regulated genes from the cold-hardy citrus relative Poncirus trifoliata (L.) Raf. Plant Mol. Biol. 62: 83–97.
  • Sahin-Cevik, M. and Moore G.A. 2006b. Two AP2 domain containing genes isolated from the cold-hardy Citrus relative Poncirus trifoliata are induced in response to cold. Funct. Plant Biol. 33: 863–875.
  • Sahin-Cevik, M. and Moore, G.A. 2012. Cold-induced dehydrins from Poncirus trifoliata localized in the nucleus. J. Plant Biochem. Biotech. 21: 134–139.
  • Sakai, A. and Larcher, W. 1987. Frost Survival of Plants. Springer, Berlin.
  • Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2004. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136: 2734–2746.
  • Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem.. Biophys. Res. Comm. 290: 998–1009.
  • Sanchez-Ballesta, M.T., Rodrigo, M.J., Lafuente, M.T., Granell, A., and Zacarias, L. 2004 Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit, but responsive to cold and water stress in leaves. J. Agric. Food Chem. 52 (7):1950–1957.
  • Sannigrahi, P., Ragauskas, A.J. and Tuskan, G.A. 2010. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biof. Biopr. Bioref. 4: 209–226.
  • Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61–72.
  • Sharabi-Schwager, M., Lers, A., Samach, A., Guy, C., and Porat, R. 2010. Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J. Exp. Bot. 61: 261–273.
  • Shinozaki, K. and Yamaguchi-Shinozaki, K. 1996. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7: 161–167.
  • Siddiqua, M. and Nassuth, A. 2011. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant, Cell Environ. 34: 1345–1359.
  • Sjodin, A., Bylesjo, M., Skogstrom, O., Eriksson, D., Nilsson, P., Ryden, P., Jansson, S., and Karlsson, J. 2006. UPSC-BASE—Populus transcriptomics online. Plant J. 48: 806–817.
  • Srinivasan, C., Dardick, C., Callahan, A., and Scorza, R. 2012. Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement and continuous flowering. PLoS ONE 7: e40715.
  • Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu, M., Sandberg, G., Olsson, O., Teeri, T.T., Boerjan, W., Gustafsson, P., Uhlén, M., Sundberg, B., and Lundeberg, J. 1998. Gene discovery in the wood-forming tissues of poplar: analysis of 5, 692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95: 13330–13335.
  • Sterky, F., Bhalerao, R.R., Unneberg, P., Segerman, B., Nilsson, P., Brunner, A.M., Charbonnel-Campaa, L., Lindvall, J.J., Tandre, K., Strauss, S.H., Sundberg, B., Gustafsson, P., Uhlén, M., Bhalerao, R.P., Nilsson. O., Sandberg, G., Karlsson, J., Lundeberg, J., and Jansson, S. 2004 A Populus EST resource for plant functional genomics. Proc. Natl Acad. Sci. USA 101: 13951–13956.
  • Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. U.S.A. 94: 1035–1040.
  • Strauss, S. and Viswanath, V. 2011. Field trials of GM trees in the USA: activity and regulatory developments. BMC Proc. 5: O61.
  • Takuhara, Y., Kobayashi, M., and Suzuki, S. 2011. Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. J. Plant Physiol. 168: 967–975.
  • Talon, M. and Gmitter, F.G. Jr. 2008. Citrus genomics. Int J Plant Genom. 2008: 528361.
  • Thomashow, M.F. 2010. Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold-response pathway. Plant Physiol. 154: 571–577.
  • Thomashow, M.F., Gilmour, S.J., Stockinger, E.J., Jaglo-Ottosen, K., and Zarka, D.G. 2001. Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol. Plant. 112: 171–175.
  • Tillett, R.L., Ergul, A., Albion, R.L., Schlauch, K.A., Cramer, G.R., and Cushman, J.C. 2011. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale data sets. BMC Plant Biology 11: 86.
  • Tillett, R.L., Wheatley, M.D., Tattersall, E.A.R., Schlauch, R.A., Cramer, G.R., and Cushman, J.C. 2012. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnology J. 10: 105–124.
  • Tsutsui, T., Kato, W., Asada, Y., Sako, K., Sato, T., Sonoda, Y., Kidokoro, S., Yamaguchi-Shinozaki, K., Tamaoki, M., Arakawa, K., Ichikawa, T., Nakazawa, M., Seki, M., Shinozaki, K., Matsui, M., Ikeda, A., and Yamaguchi, J. 2009. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J. Plant. Res. 122: 633–643.
  • Tuskan, G.A., DiFazio, S.P., Hellsten, U., Jansson, S., Rombauts, S., Putnam, N., Sterck, L., 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596–1604.
  • Ubi, B.E., Sakamot, D., Ban, Y., Shimada, Y., Ito, A., Nakajima, I., Takemura, Y., Tamura, F., Saito, T., and Moriguchi, T. 2010. Molecular cloning of dormancy-associated MADS-box gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese pear. J. Amer. Soc. Hort. Sci. 135: 174–182.
  • Uemura, M., Warren, G. and Steponkus, P.L. 2003. Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol. 131:1800–1807.
  • Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., 2007. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12): e1326.
  • Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., 2010. The genome of the domesticated apple (Malus × domestica). Nature Genetics 42: 833–839.
  • Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F. 2005. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41: 195–211.
  • Walworth, A.E., Rowland, L.J., Polashock, J.J., Hancock, J.F., and Song, G.-Q. 2012. Overexpression of a blueberry-derived CBF enhances cold tolerance in a southern highbush blueberry cultivar. Molecular Breeding 30:1313–1323.
  • Wang, Y. and Hua, J. 2009. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance. Plant J. 60: 340–349.
  • Wang, S., Yang, S., Yin, Y., Guo, X., Wang, S., and Hao, D. 2009a. An in silico strategy identified the target gene candidates regulated by dehydration responsive element binding proteins (DREBs) in Arabidopsis genome. Plant Mol. Biol. 69: 167–178.
  • Wang, H.L., Tao, J.J., He, L.G., Zhao, Y.J., Xu, M., Liu, D.C., and Sun, Z.H. 2009b. cDNA cloning and expression analysis of a Poncirus trifoliata CBF gene. Biol. Plant. 53: 625–630.
  • Wanner, L.A. and Junttila, O. 1999. Cold induced freezing tolerance in Arabidopsis. Plant Physiol. 120: 391–400.
  • Weber, C.A. and Moore, G. 2003. Mapping freeze tolerance quantitative trait loci in a citrus grandis × Poncirus trifoliata f1 pseudo-testcross using molecular markers. J. Amer. Soc. Hort. Sci. 128 (4): 508–514.
  • Weiser, C.J. 1970. Cold resistance and injury in woody plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169: 1269–1278.
  • Welling, A. and Palva, E.T. 2006. Molecular control of cold acclimation in trees. Physiol. Plant. 127: 167–181.
  • Welling, A. and Palva, E.T. 2008. Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol. 147: 1199–1211.
  • Welling, A., Rinne, P., Vihera-Aarnio, A., Kontunen-Soppela, S., Heino, P., and Palva, E.T. 2004. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J. Exp. Bot. 55: 507–516.
  • Wisniewski, M., Norelli, J., Bassett, C., Artlip, T., and Macarisin, D. 2011. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233: 971–983.
  • Wisniewski, M., Bassett, C., Norelli, J., Macarisin, D., Artlip, T., Gasic, K. and Korban, S. 2008. Expressed sequence tag analysis of the response of apple (Malus x domestica ‘Royal Gala’) to low temperature and water deficit. Physiol. Plant. 133: 298–317.
  • Wisniewski, M., Bassett, C.L., Renaut, J., Farrell, R., Jr., Tworkoski, T., and Artlip, T. 2006. Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature, and water deficit. Tree Physiol. 26: 575–584.
  • Wisniewski, M., Bassett, C., and Gusta, L. 2003. An overview of cold hardiness in woody plants: Seeing the forest through the trees. HortScience 38: 952–959.
  • Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X-M., and Griffith, M. 1999. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiol. Plant. 105: 600–608.
  • Wisniewski, M., Close, T.J., Artlip, T., and Arora, R. 1996. Seasonal patterns of dehydrins and 70 – kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiol. Plant. 96: 496–505.
  • Wisniewski, M. and Ashworth, E.N. 1986. A comparison of seasonal ultrastructural changes in stem tissues of peach (Prunus persica) that exhibit contrasting mechanisms of cold hardiness. Bot. Gaz. 147: 407–417.
  • Wolkers, W.F., McCready, S., Brandt, W.F., Lindsey, G.G., and Hoekstra, F.A. 2001. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim. Biophys. Acta 1544: 196–206.
  • Xiao, H. and Nassuth, A. 2006. Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Reports 25: 968–977.
  • Xiao, H., Siddiqua, M., Braybrook, S., and Nassuth, A. 2006. Three grape CBF/DREB1 genes are regulated by low temperature, drought and abscisic acid. Plant Cell Environ. 29: 1410–1421.
  • Xiao, H., Tattersall, E., Siddiqua, M., Cramer, G.R., and Nassuth, A. 2008. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ. 31: 1–10.
  • Yang, Y., He, M., Zhu, Z., Li, S., Xu, Y., Zhang, C., Singer, S.D., and Wang, Y. 2012. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 12: 140.
  • Yang, W., Liu, X-D., Chi, X-J, Wu, C-A., Li, Y-Z., Song, L-L., Liu, X-M., Wang, Y-F., Wang, F-W., Zhang, C., Liu, Y., Zong, J-M., and Li, H-Y. 2011. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233: 219–229.
  • Yelenovsky, G. 1985. Cold hardiness in citrus. Hort. Rev. 7: 201–238.
  • Zarka, D.G., Vogel, J.T., Cook, D., and Thomashow, M.F. 2003. Cold induction of Arabidopsis CBF genes involves multiple ICE (Inducer of CBF Expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol. 133: 910–918.
  • Zenoni, S., Ferrarini, A., Giacomelli, E., Xumerle, L., Fasoli, M., Malerba, G., Bellin, D., Pezzotti, M., and Delledonne, M. 2010. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol. 152: 1787–1795.
  • Zhang, C., Winkeler, K., Miller, A., Vales, T., Foutz, K., Zhao, K., and Wood, M. 2010. Enhancement of cold tolerance in plants. Patent Application publication, USA, p 48.
  • Zhang, X., Fowler, S.G., Cheng, H., Lou, Y, Rhee, S.Y., Stockinger, E.J., and Thomashow, M.F. 2004. Freezin-sensitive tomato has a functional CBF cold response pathway but a CBF retgulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 39: 905–919.
  • Zhang, C.K., Lang, L., Dane, F., Ebel R.C., Singh, N.K., Locy R.D., and Dozier, W.A. 2005. Cold acclimation induced gens of trifoliate orange (Poncirus trifoliata). Plant Cell Rep. 23(10–11):764–769.
  • Zhao, T., Liang, D, Wang, P., Liu, J., and Ma, F. 2012. Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol. Genet. Genomics 287: 423–436.
  • Zhuang, J., Yao, Q-H., Xiong, A-S., and Zhang, J. 2011. Isolation, phylogeny and expression patterns of AP2-like genes in apple (Malus x domestica Borkh). Plant Mol. Biol. Rep. 29: 209–216.
  • Zhou, Z., Wang, M.-J., Hu, J.-J., Lu, M.-Z., and Wang, J.H. 2012. Improve freezing tolerance in transgenic poplar by overexpressing a ω-3 fatty acid desaturase gene. Mol. Breed. 25: 571–579.
  • Zuther, E., Schulz, E., Childs, L.H., and Hincha, D.K. 2012. Clinical variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell Environ. 35: 1860–1878.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.