3,500
Views
250
CrossRef citations to date
0
Altmetric
Original Articles

Bacterial Associations with Legumes

, , &

REFERENCES

  • Amarger, N., Macheret, V., and Laguerre, G. 1997. Rhizobium gallicum sp. nov., and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int. J. Syst. Bacteriol. 47: 996–1006.
  • Aguilar, O.M., Grasso, D.H., Riccillo, P.M., López, M.V., and Szafer, E. 1998. Rapid identification of bean Rhizobium isolates by a nifH gene-pcr assay. Soil Biol. Biochem. 30: 1655–1661.
  • Amadou, C., Pascal, G., Mangenot, S., Glew, M., Bontemps, C., Capela, D., Carrere, S., Cruveiller, S., Dossat, C., Lajus, A., Marchetti, M., Poinsot, V., Rouy, Z., Servin, B., Saad, M., Schenowitz, C., Barbe, V., Batut, J., Medigue, C. and Masson-Boivin, C. 2008. Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res. 18: 1472–1483.
  • Andam, C.P., Mondo, S.J., and Parker, M.A. 2007. Monophyly of nodA and nifH Genes across Texan and Costa Rican Populations of Cupriavidus Nodule Symbionts. Appl. Environ. Microbiol. 73: 4686–4690.
  • Angus, A.A., and Hirsch, A.M. 2010. Insights into the history of the legume-betaproteobacterial symbiosis. Mol. Ecol. 19: 28–30.
  • Arason, G.J. 1996. Lectins as molecules in vertebrates and invertebrates. Fish Shellfish Immunol. 6: 277–289.
  • Ardley, J.K., Parker, M.A., de Meyer, S.E., Trengove, R.D., O’Hara, G.W., Reeve, W.G., Yates, R.J., Dilworth, M.J., Willems, A., and Howieson, J.G. 2012. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int. J. Syst. Evol. Microbiol. 62: 2579–2588.
  • Armas-Capote, N., Pérez-Yepez, J., Martínez-Hidalgo, P., Garzón-Machado, V., del Arco-Aguilar, M., Velázquez, E. and León-Barrios, M. 2014. Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Is.) Syst. Appl. Microbiol.. 37: 140–148.
  • Bai, Y., D’Aoust, F., Smith, D. L., and Driscoll, B. T. 2002. Isolation of plant-growth-promoting Bacillus strains from soybean root. Can. J. Microbiol. 48: 230–238.
  • Bailly, X., Olivieri, I., Brunel, B., Cleyet-Marel, J.C., and Béna, G. 2007. Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species. J. Bacteriol. 189: 5223–5236.
  • Baldwin, I.L., and Fred, E.B. 1929. Nomenclature of the root-nodule bacteria of Leguminosae. J. Bacteriol. 17: 141–150.
  • Barnett, M.J., Fisher, R.F., Jones, T., Komp, C., Abola, A.P., Barloy-Hubler, F., Bowser, L., Capela, D., Galibert, F., Gouzy, J., Gurjal, M., Hong, A., Huizar, L., Hyman, R.W., Kahn, D., Kahn, M.L., Kalman, S., Keating, D.H., Palm, C., Peck, M.C., Surzycki, R., Wells, D.H., Yeh, K.C., Davis, R.W., Federspiel, N.A., and Long, S.R. 2001. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. USA. 98: 9883–9888.
  • Barrett, C.F., and Parker, M.A. 2006. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl. Environ. Microbiol. 72: 1198–1206.
  • Bautista, V.V., Monsalud, R.G., and Yokota, A. 2010. Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int. J. Syst. Evol. Microbiol. 60: 627–632.
  • Beijerinck, M.W. 1888. Cultur des Bacillus radicicola aus den Knöllchen. Bot. Ztg. 46: 740–750.
  • Beijerinck, M.W., and van Delden, A. 1902. Ueber die Assimilation des freien Stickstoffs durch Bakterien. Zentbl. Bakt. Parasitenk. Infekt. Abt II 9: 3–43.
  • Bejarano, A., Ramírez-Bahena, M. H., Velázquez, E., and Peix, A. 2014. Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium. Syst Appl Microbiol. In press.
  • Benhizia, Y., Benhizia, H., Benguedouar, A., Muresu, R., Giacomini, A., and Squartini, A. 2004. Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst. Appl. Microbiol. 27: 462–468.
  • Berge, O., Lodhi, A., Brandelet, G., Santaella, C., Roncato, M.A., Christen, R., Heulin, T., and Achouak, W. 2009. Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int. J. Syst. Evol. Microbiol. 59: 367–372.
  • Bibi, F., Chung, E.J., Khan, A., Jeon, C.O., and Chung, Y.R. 2012. Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant. Int. J. Syst. Evol. Microbiol. 62: 1997–2003.
  • Bontemps, C., Elliott, G.N., Simon, M.F., Dos Reis Júnior, F.B., Gross, E., Lawton, R.C., Neto, N.E., Loureiro, M.F, de Faria, S.M., Sprent, J.I., James, E.K., and Young, J.P. 2010. Burkholderia species are ancient symbionts of legumes. Mol. Ecol. 19: 44–52.
  • Bournaud, C., de Faria, S.M., dos Santos, J.M., Tisseyre, P., Silva, M., Chaintreuil, C., Gross, E., James, E.K., Prin, Y., and Moulin, L. 2013. Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (tribe Mimoseae). PLoS One. 8: e63478.
  • Bouzar, H., and Jones, J.B. 2001. Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int. J. Syst. Evol. Microbiol. 51: 1023–1026.
  • Boyd, M., Varney, T., Surette, C., and Surette, J. 2008. Reassessing the northern limit of maize consumption in North America: stable isotope, plant microfossil, and trace element content of carbonized food residue. J. Archaeol. Sci. 35: 2545–2556.
  • Broothaerts, W., Mitchell, H.J., Weir, B., Kaines, S., Smith, L.M., Yang, W., Mayer, J.E., Roa-Rodríguez, C., and Jefferson, R.A. 2005. Gene transfer to plants by diverse species of bacteria. Nature 433: 629–633.
  • Broughton, W.J., Jabbouri, S., and Perret, X. 2000. Keys to symbiotic harmony. J. Bacteriol. 182: 5641–5652.
  • Broughton, W.J., and Perret, X. 1999. Genealogy of legume-Rhizobium symbioses. Curr. Opin. Plant. Biol. 2: 305–311.
  • Buchanan, R.E. 1926. What names should be used for the organisms producing nodules on the roots of leguminous plants? Proc. Iowa Acad. Sci. 33: 81–90.
  • Carro, L., Flores-Felix, J.D., Cerda-Castillo, E., Ramírez-Bahena, M.H., Igual, J.M., Tejedor, C., Velázquez, E., and Peix, A. 2013. Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum in Spain. Int. J. Syst. Evol. Microbiol. 63: 4433–4438.
  • Carro, L., Flores-Felix, J. D., Ramírez-Bahena, M. H., García-Fraile, P., Martínez-Hidalgo, P., Igual, J. M., Tejedor, C., Peix, A., and Velápzquez, E. 2014. Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus. Int. J. Syst. Evol. Microbiol. 64: 3028–3033.
  • Casida, Jr.L. E. 1982. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int. J. Syst. Bacteriol. 32: 339–345.
  • Chahboune, R., Barrijal, S., Moreno, S., and Bedmar, E.J. 2011. Characterization of Bradyrhizobium species isolated from root nodules of Cytisus villosus grown in Morocco. Syst. Appl. Microbiol. 34: 440–445.
  • Chahboune, R., Carro, L., Peix, A., Barrijal, S., Velázquez, E., and Bedmar, E.J. 2011. Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. Int. J. Syst. Evol. Microbiol. 61: 2922–2927.
  • Chahboune, R., Carro, L., Peix, A., Ramírez-Bahena, M.H., Barrijal, S., Velázquez, E., and Bedmar, E.J. 2012. Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. Syst. Appl. Microbiol. 35: 302–305.
  • Chang, Y.L., Wang, J.Y., Wang, E.T., Liu, H.C., Sui, X.H., and Chen, W.X. 2011. Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int. J. Syst. Evol. Microbiol. 61: 2496–2502.
  • Chen, W.M., de Faria, S.M., Chou, J.H., James, E.K., Elliott, G.N., Sprent, J.I., Bontemps, C., Young, J.P., and Vandamme, P. 2008. Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int. J. Syst. Evol. Microbiol. 58: 2174–2179.
  • Chen, W.M., de Faria, S.M., James, E.K., Elliott, G.N., Lin, K.Y., Chou, J.H., Sheu, S.Y., Cnockaert, M., Sprent, J.I., and Vandamme, P. 2007. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int. J. Syst. Evol. Microbiol. 57: 1055–1059.
  • Chen, W.M., de Faria, S.M., Straliotto, R., Pitard, R.M., Simões-Araùjo, J.L., Chou, J.H., Chou, Y.J., Barrios, E., Prescott, A.R., Elliott, G.N., Sprent, J.I., Young, J.P., and James, E.K. 2005a. Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Appl. Environ. Microbiol. 71: 7461–7471.
  • Chen, W.M., James, E.K., Chou, J.H., Sheu, S.Y., Yang, S.Z., and Sprent, J.I. 2005b. Beta-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol. 168: 661–675.
  • Chen, W.M., James, E.K., Coenye, T., Chou, J.H., Barrios, E., de Faria, S.M., Elliott, G.N., Sheu, S.Y., Sprent, J.I., and Vandamme, P. 2006. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int. J. Syst. Evol. Microbiol. 56: 1847–1851.
  • Chen, W.M., James, E.K., Prescott, A.R., Kierans, M., and Sprent, J.I. 2003a. Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis. Mol. Plant Microbe Interact. 16: 1051–1061.
  • Chen, W.M., Moulin, L., Bontemps, C., Vandamme, P., Béna, G., and Boivin-Masson, C. 2003b. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J. Bacteriol. 185: 7266–7272.
  • Chen, W.M., Zhu, W.F., Bontemps, C., Young, J.P., and Wei, G.H. 2010. Mesorhizobium alhagi sp. nov., isolated from wild Alhagi sparsifolia in North-western China. Int. J. Syst. Evol. Microbiol. 60: 958–962.
  • Chen, W.M., Zhu, W.F., Bontemps, C., Young, J.P., and Wei, G.H. 2011. Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. Int. J. Syst. Evol. Microbiol. 61: 574–579.
  • Chen, W.X., Li, G.S., Qi, Y.L., Wang, E.T., Yuan, H.L., and Li, J.L. 1991. Rhizobium huakuii sp. nov., isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Bacteriol. 41: 275–280.
  • Chen, W.X., Tan, Z.Y., Gao, J.L., Li, Y., and Wang, E.T. 1997. Rhizobium hainanense sp. nov., isolated from tropical legumes. Int. J. Syst. Bacteriol. 47: 870–873.
  • Chen, W.X., Wang, E., Wang, S., Li, Y., Chen, X., and Li, Y. 1995. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int. J. Syst. Bacteriol. 45: 153–159.
  • Chen, W.X., Yan, G.H., and Li, J.L. 1988. Numerical taxonomy study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol. 38: 392–397.
  • Chou, Y.J., Elliott, G.N., James, E.K., Lin, K.Y., Chou, J.H., Sheu, S.Y., Sheu, D.S., Sprent, J.I., and Chen, W.M. 2007. Labrys neptuniae sp. nov., isolated from root nodules of the aquatic legume Neptunia oleracea. Int. J. Syst. Evol. Microbiol. 57: 577–581.
  • Cobo-Diaz, J. F., Martinez-Hidalgo, P., Fernandez-Gonzalez, A. J., Martinez-Molina, E., Toro, N., Velazquez, E., and Fernandez-Lopez, M. 2014. The endemic Genista versicolor from Sierra Nevada National Park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Syst. Appl. Microbiol. 37: 177–185.
  • Conn, H.J. 1938. Taxonomic relationships of certain non-sporeforming rods in soil. J. Bacteriol. 36: 320–321.
  • Crossman, L.C., Castillo-Ramírez, S., McAnnula, C., Lozano, L., Vernikos, G.S., Acosta, J.L., Ghazoui, Z.F., Hernández-González, I., Meakin, G., Walker, A.W., Hynes, M.F., Young, J.P. W., Downie, J.A., Romero, D., Johnston, A.W. B., Dávila, G., Parkhill, J., and González, V. 2008. A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria. PLoS One. 2–3: e2567.
  • da Silva, K., Florentino, L.A., Barroso da Silva, K.B., de Brandt, E., Vandamme, P., and de Souza Moreira, F.M. 2012. Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst. Appl. Microbiol. 35(3): 175–182.
  • Dall’agnol, R.F., Ribeiro, R.A., Ormeno-Orrillo, E., Rogel, M.A., Delamuta, J.R., Andrade, D.S., Martínez-Romero, E., and Hungria, M. 2013. Rhizobium freirei, a symbiont of Phaseolus vulgaris very effective in fixing nitrogen. Int. J. Syst. Evol. Microbiol. 63: 4167–4173.
  • Dangeard, P.A. C. 1926. Recherches sur les tubercles radicaux des Légumineuses. 1st ed., Du Botaniste, Paris, France.
  • Dazzo, F.B., Truchet, G.L., Hollingsworth, R.I., Hrabak, E.M., Pankratz, H.S., Philip-Hollingsworth, S., Salzwedel, J.L., Chapman, K., Appenzeller, L. and Squartini, A. 1991. Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs. J. Bacteriol. 173: 5371–5384.
  • de Lajudie, P., Laurent-Fulele, E., Willems, A., Torck, U., Coopman, R., Collins, M.D., Kersters, K., Dreyfus, B., and Gillis, M. 1998a. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int. J. Syst. Bacteriol. 42: 93–96.
  • de Lajudie, P., Willems, A., Nick, G., Moreira, F., Molouba, F., Hoste, B., Torck, U., Neyra, M., Collins, M.D., Lindström, K., Dreyfus, B., and Gillis, M. 1998b. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int. J. Syst. Bacteriol. 48: 369–382.
  • de Lajudie, P., Willems, A., Pot, B., Dewettinck, D., Maestrojuan, G., Neyra, M., Collins, M.D., Dreyfus, B., Kersters, K., and Gillis, M. 1994. Polyphasic taxonomy of Rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int. J. Syst. Bacteriol. 44: 715–733.
  • de Meyer, S.E., and Willems, A. 2012. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. Int. J. Syst. Evol. Microbiol. 62: 2505–2510.
  • de Meyer, S.E., Cnockaert, M., Ardley, J.K., Maker, G., Yates, R., Howieson, J.G., and Vandamme, P. 2013a. Burkholderia sprentiae sp. nov. isolated from Lebeckia ambigua root nodules from South Africa. Int. J. Syst. Evol. Microbiol. 63: 2505–2510.
  • de Meyer, S.E., Cnockaert, M., Ardley, J.K., Trengove, R.D., Garau, G., Howieson, J.G., and Vandamme, P. 2013b. Burkholderia rhynchosiae sp. nov. isolated from Rhynchosia ferulifolia root nodules from South Africa. Int. J. Syst. Evol. Microbiol. 63: 3944–3949.
  • de Meyer, S.E., Coorevits, A., and Willems, A. 2012. Tardiphaga robiniae gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from Robinia pseudoacacia in Flanders (Belgium). Syst. Appl. Microbiol. 35: 205–214.
  • de Meyer, S.E., Cnockaert, M., Ardley, J.K., Van Wyk, B.E., Vandamme, P.A., and Howieson, J.G. 2014. Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules. Int. J. Syst. Evol. Microbiol. 64: 1090–1095.
  • Degefu, T., Wolde-Meskel, E., Liu, B., Cleenwerck, I., Willems, A., and Frostegård, Å. 2013. Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov., isolated from root nodules of different agroforestry legume trees. Int. J. Syst. Evol. Microbiol. 63: 1746–1753.
  • Delamuta, J.R., Ribeiro, R.A., Ormeño-Orrillo, E., Melo, I.S., Martínez-Romero, E., and Hungria, M. 2013. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int. J. Syst. Evol. Microbiol. 63: 3342–3351.
  • Denarié, J., Debbelle, F., and Promé, J.C. 1996. Rhizobium lipo-chitin-oligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Ann. Rev. Biochem. 65: 503–535.
  • Deng, Z.S., Zhao, L.F., Kong, Z.Y., Yang, W.Q., Lindström, K., Wang, E.T., and Wei, G.H. 2011a. Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol. Ecol. 76: 463–475.
  • Deng, Z.S., Zhao, L.F., Xu, L., Kong, Z.Y., Zhao, P., Qin, W., Chang, J.L., and Wei, G.H. 2011b. Paracoccus sphaerophysae sp. nov., a siderophore-producing, endophytic bacterium isolated from root nodules of Sphaerophysa salsula. Int. J. Syst. Evol. Microbiol. 61: 665–669.
  • Diange, E.A., and Lee, S.S. 2013. Rhizobium halotolerans sp. nov., Isolated from chloroethylenes contaminated soil. Curr. Microbiol. 66: 599–605.
  • Díaz-Alcántara, C.A., Ramírez-Bahena, M.H., Mulas, D., García-Fraile, P., Gómez-Moriano, A., Peix, A., Velázquez, E., and González-Andres, F. 2013. Analysis of rhizobial strains nodulating Phaseolus vulgaris in the Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe. Int. J. Syst. Evol. Microbiol. 37: 149–156.
  • Diouf, D., Samba-Mbaye, R., Lesueur, D., Ba, A.T., Dreyfus, B., de Lajudie, P., and Neyra, M. 2007. Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microbial Ecol. 54: 553–566.
  • dos Reis, F.B. Jr., Simon, M.F., Gross, E., Boddey, R.M., Elliott, G.N., Neto, N.E., Loureiro, M.F., de Queiroz, L.P., Scotti, M.R., Chen, W.M., Norén, A., Rubio, M.C., de Faria, S.M., Bontemps, C., Goi1, S.R., Young, J.P. W., Sprent, J.I., and James, E.K. 2010. Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol. 186: 934–946.
  • Downie, J.A., and Walker, S.A. 1999. Plant responses to nodulation factors. Curr. Opin. Plant Biol. 2: 483–489.
  • Dreyfus, B., Garcia, J.L., and Gillis, M. 1988. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a Stem-Nodulating Nitrogen-Fixing Bacterium Isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38: 89–98.
  • Durán, D., Rey, L., Mayo, J., Zúñiga-Davila, D., Imperial, J., Ruiz-Argüeso, T., Martínez-Romero, E., and Ormeño-Orrillo, E. 2014a. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int. J. Syst. Evol. Microbiol. 64: 2072–2078.
  • Durán, D., Rey, L., Navarro, A., Busquets, A., Imperial, J., and Ruiz-Argüeso, T. 2014b. Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Syst Appl Microbiol. 37: 336–341.
  • Eckhardt, M.M., Baldwin, I.R., and Fred, E.B. 1931. Studies on the root-nodule bacteria of Lupinus. J. Bacteriol. 21: 273–285.
  • Ejigui, J., Savoie, L., Marin, J., and Desrosiers, T. 2007. Improvement of the nutritional quality of a traditional complementary porridge made of fermented yellow maize (Zea mays): effect of maize-legume combinations and traditional processing methods. Food. Nutr. Bull. 28: 23–34.
  • Elkoca, E., Turan, M., and Donmez, M.F. 2010. Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L). J. Plant Nutr. 33: 2104–2119.
  • Elliott, G.N., Chen, W.M., Bontemps, C., Chou, J.H., Young, J.P., Sprent, J.I., and James, E.K. 2007a. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann. Bot. 100: 1403–1411.
  • Elliott, G.N., Chen, W.M., Chou, J.H., Wang, H.C., Sheu, S.Y., Perin, L., Reis, V.M., Moulin, L., Simon, M.F., Bontemps, C., Sutherland, J.M., Bessi, R., de Faria, S.M., Trinick, M.J., Prescott, A.R., Sprent, J.I., and James, E.K. 2007b. Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol. 173: 168–180.
  • Elliott, G.N., Chou, J.H., Chen, W.M., Bloemberg, G.V., Bontemps, C., Martínez-Romero, E., Velázquez, E., Young, J.P., Sprent, J.I., and James, E.K. 2009. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ. Microbiol. 11: 762–778.
  • Finan, T.M. 2002. Evolving insights: symbiosis islands and horizontal gene transfer. J. Bacteriol. 184: 2855–2856.
  • Finucane, B., Agurto, P.M., and Isbell, W.H. 2006. Human and animal diet at Conchopata, Peru: stable isotope evidence for maize agriculture and animal management practices during the Middle Horizon. J. Archaeol. Sci. 33: 1766–1776.
  • Flores, M., Morales, L., Avila, A., González, V., Bustos, P., García, D., Mora, Y., Guo, X., Collado-Vides, J., Piñero, D., Dávila, G., Mora, J., and Palacios, R. 2005. Diversification of DNA sequences in the symbiotic genome of Rhizobium etli. J. Bacteriol. 187: 7185–7192.
  • Flores-Félix, J.D., Carro, L., Ramírez-Bahena, M.H., Tejedor, C., Igual, J.M., Peix, A., and Velázquez, E. 2014. Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int. J. Syst. Evol. Microbiol. 64: 83–87.
  • Flores-Félix, J.D., Menéndez, E., Rivera, L.P., Marcos-García, M., Martínez-Hidalgo, P., Mateos, P.F., Martínez-Molina, E., Velázquez, E., García-Fraile, P., and Rivas, R. 2013. Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J. Plant Nutr. Soil Sci. 166: 876–882.
  • Flores-Felix, J.D., Mulas, R., Ramírez-Bahena, M.H., Cuesta, M.J., Rivas, R., Brañas, J., Mulas, D., González-Andrés, F., Peix, A., and Velázquez, E. 2014. Fontibacillus phaseoli sp. nov. isolated from Phaseolus vulgaris nodules. Antonie Van Leeuwenhoek. 105: 23–28.
  • Frank, B. 1879. Über die Parasiten in den Wurzelanschwillungen der Papilionaceen. Bet. Dtsch. Bot. Ges. 37: 394–399.
  • Frank, B. 1889. Ueber die Pilzsymbiose der Leguminosen. Bet. Dtsch. Bot. Ges. 7: 332–346.
  • Fuller, D.Q. 2007. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100: 903–924.
  • Gao, J.L, Turner, S.L., Kan, F.L., Wang, E.T., Tan, Z.Y., Qiu, Y.H., Gu, J., Terefework, Z., Young, J.P., Lindström, K., and Chen, W.X. 2004. Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the Northern regions of China. Int. J. Syst. Evol. Microbiol. 54: 2003–2012.
  • García, L.C., Martinez-Molina, E., and Trujillo, M.E. 2010. Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int. J. Syst. Evol. Microbiol. 60: 331–337.
  • García-Fraile, P., Mulas-García, D., Peix, A., Rivas, R., González-Andrés, F., and Velázquez, E. 2010. Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can. J. Microbiol. 56: 657–666.
  • García-Fraile, P., Rivas, R., Willems, A., Peix, A., Martens, M., Martínez-Molina, E., Mateos, P.F., and Velázquez, E. 2007. Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int. J. Syst. Evol. Microbiol. 57: 844–848.
  • García-Fraile, P., Velázquez, E., Mateos, P.F., Martínez-Molina, E., and Rivas, R. 2008. Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int. J. Syst. Evol. Microbiol. 58: 1855–1859.
  • García-Fraile, P., Carro, L., Robledo, M., Ramírez-Bahena, M.H., Flores-Félix, J.D., Fernández, M.T., Mateos, P.F., Rivas, R., Igual, J.M., Martínez-Molina, E., Peix, A., and Velázquez, E. 2012. Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One. 7: e38122.
  • Gaunt, M.W., Turner, S.L-, Rigottier-Gois, L., Lloyd-Macgilp, S.A., and Young, J.P. W. 2001. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Microbiol. 51: 2037–2048.
  • Ghosh, W., and Roy, P. 2006. Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int. J. Syst. Evol. Microbiol. 56: 91–97.
  • Gibson, K.E, Kobayashi, H., and Walker, G.C. 2008. Molecular determinants of a symbiotic chronic infection. Annu. Rev. Genet. 42: 413–441.
  • Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J.C., Jaubert, M., Simon, D., Cartieaux, F., Prin, Y., Bena, G., Hannibal, L., Fardoux, J., Kojadinovic, M., Vuillet, L., Lajus, A., Cruveiller, S., Rouy, Z., Mangenot, S., Segurens, B., Dossat, C., Franck, W.L., Chang, W.S., Saunders, E., Bruce, D., Richardson, P., Normand, P., Dreyfus, B., Pignol, D., Stacey, G., Emerich, D., Verméglio, A., Médigue, C. and Sadowsky, M. 2007. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science. 316: 1307–1312.
  • Gough, C., and Cullimore, J. 2011. Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Mol. Plant Microbe Interact. 24: 867–878.
  • Gray, J.X., and Rolfe, B.G. 1990. Exopolysaccharide production in Rhizobium and its role in invasion. Mol. Microbiol. 4: 1425–1431.
  • Gu, C.T., Wang, E.T., Tian, C.F., Han, T.X., Chen, W.F., Sui, X.H., and Chen, W.X. 2008. Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int. J. Syst. Evol. Microbiol. 58: 1364–1368.
  • Gu, T., Sun, L.N., Zhang, J., Sui, X., and Li, S.P. 2014. Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos. Int. J. Syst. Evol. Microbiol. 64: 2017–2022.
  • Guan, S.H., Chen, W.F., Wang, E.T., Lu, Y.L., Yan, X.R., Zhang, X.X., and Chen, W.X. 2008. Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int. J. Syst. Evol. Microbiol. 58: 2646–2653.
  • Gubry-Rangin, C., Béna, G., Cleyet-Marel, J.C., and Brunel, B. 2013. Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species. Syst. Appl. Microbiol. 36: 490–496.
  • Guerrouj, K., Ruíz-Díez, B., Chahboune, R., Ramírez-Bahena, M.H., Abdelmoumen, H., Quiñones, M.A., El Idrissi, M.M., Velázquez, E., Fernández-Pascual, M., Bedmar, E.J., and Peix, A. 2013. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst. Appl. Microbiol. 36: 218–223.
  • Gulash, M., Ames, P., Larosiliere, R.C., and Bergman, K. 1984. Rhizobia are attracted to localized sites on legume roots. Appl. Environ. Microbiol. 48: 149–152.
  • Gyaneshwar, P., Hirsch, A.M., Moulin, L., Chen, W.M., Elliott, G.N., Bontemps, C., Estrada-de Los Santos, P., Gross, E., Dos Reis, F.B., Sprent, J.I., Young, J.P., and James, E.K. 2011. Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol. Plant Microbe Interact. 24: 1276–1288.
  • Györgypal, Z., Kondorosi, E., and Kondorosi, A. 1991. Diverse signal sensitivity of NodD protein homologs from narrow and broad host range rhizobia. Mol. Plant Microbe Interact. 4: 356–364.
  • Han, L.L., Wang, E.T., Han, T.X., Liu, J., Sui, X.H., Chen, W.F., and Chen, W.X. 2009. Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant Soil. 324: 291–305.
  • Han, T.X., Han, L.L., Wu, L.J., Chen, W.F., Sui, X.H., Gu, J.G., Wang, E.T., and Chen, W.X. 2008a. Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int. J. Syst. Evol. Microbiol. 58: 2610–2618.
  • Han, T.X., Wang, E.T., Wu, L.J., Chen, W.F., Gu, J.G., Gu, C.T., Tian, C.F., and Chen, W.X. 2008b. Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int. J. Syst. Evol. Microbiol. 58: 1693–1699.
  • Hildebrand, E.M. 1940. Cane gall of brambles caused by Phytomonas rubi N. sp. J. Agric. Res. 61: 685–696.
  • Hirsch, P., and Müller, M. 1985. Blastobacter aggregatus sp. nov., Blastobacter capsulatus sp. nov., and Blastobacter denitrificans sp. nov., new budding bacteria from freshwater habitats. Syst. Appl. Microbiol. 6: 281–286.
  • Hoque, M.S., Broadhurst, L.M., and Thrall, P.H. 2011. Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across South-Eastern Australia. Int. J. Syst. Evol. Microbiol. 61: 299–309.
  • Hou, B.C., Wang, E.T., Li, Y., Jia, R.Z., Chen, W.F., Gao, Y., Dong, R.J., and Chen, W.X. 2009. Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. Int. J. Syst. Evol. Microbiol. 59: 3051–3057.
  • Howieson, J.G., De Meyer, S.E., Vivas-Marfisi, A., Ratnayake, S., Ardley, J.K., and Yates, R.J. 2013. Novel Burkholderia bacteria isolated from Lebeckia ambigua – A perennial suffrutescent legume of the fynbos. Soil Biol. Biochem. 60: 55–64.
  • Hunter, W.J., Kuykendall, L.D., and Manter, D.K. 2007. Rhizobium selenireducens sp. nov.: A Selenite-Reducing alpha-Proteobacteria Isolated From a Bioreactor. Curr. Microbiol. 55: 455–460.
  • Ibáñez, F., Angelini, J., Taurian, T., Tonelli, M.L., and Fabra, A. 2009. Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. System. Appl. Microbiol. 32: 49–55.
  • Iglesias, O., Rivas, R., García-Fraile, P., Abril, A., Mateos, P.F., Martinez-Molina, E., and Velázquez, E. 2007. Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North Spain. FEMS Microbiol. Lett. 277: 210–216.
  • Imran, A., Hafeez, F.Y., Frühling, A., Schumann, P., Malik, K.A., and Stackebrandt, E. 2010. Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int. J. Syst. Evol. Microbiol. 60: 1548–1553.
  • Islam, M.S., Kawasaki, H., Muramatsu, Y., Nakagawa, Y., and Seki, T. 2008. Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci. Biotechnol. Biochem. 72: 1416–1429.
  • Jarvis, B.D. W., Downer, H.L., and Young, J.P. W. 1992. Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int. J. Syst. Bacteriol. 42: 93–96.
  • Jarvis, B.D. W., Pankhurst, C.E., and Patel, J.J. 1982. Rhizobium loti, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 32: 378–380.
  • Jarvis, B.D. W., van Berkum, P., Chen, W.X., Nour, S.M., Fernandez, M.P., Cleyet-Marel, J.C., and Gillis, M. 1997. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Evol. Microbiol. 47: 895–898.
  • Jordan D.C. 1982. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32: 136–139.
  • Jordan, D.C. 1984 Family III. Rhizobiaceae. In: Bergey's Manual of Systematic Bacteriology Vol. 34. pp. 234–242. Krieg, N.R., and Holt, J.G. Eds., Williams and Wilkins Co, Baltimore, USA.
  • Jordan, D.C., and Allen, O.N. 1974. Family 111. Rhizobiaceae Conn, 1938. In: Bergey's Manual of Determinative Bacteriology, 8th edition. pp. 261–264. Buchanan, R.E., and Gibbons, N.E., Eds., The Williams & Wilkins Co., Baltimore, USA.
  • Jourand, P., Giraud, E., Béna, G., Sy, A., Willems, A., Gillis, M., Dreyfus, B., and de Lajudie, P. 2004. Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int. J. Syst. Evol. Microbiol. 54: 2269–2273.
  • Judicial Commission of the International Committee on Systematics of Prokaryotes 2008. The genus name Sinorhizobium Chen et al. 1988 is a later synonym of Ensifer Casida 1982 and is not conserved over the latter genus name, and the species name ‘Sinorhizobium adhaerens’ is not validly published. Opinion 84. Int. J. Syst. Evol. Microbiol. 58: 1973.
  • Kaiya, S., Rubaba, O., Yoshida, N., Yamada, T., and Hiraishi, A. 2012. Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J. Gen. Appl. Microbiol. 58: 211–224.
  • Kaneko, T., Nakamura, Y., Sato, S., Minamisawa, K., Uchiumi, T., Sasamoto, S., Watanabe, A., Idesawa, K., Iriguchi, M., Kawashima, K., Kohara, M., Matsumoto, M., Shimpo, S., Tsuruoka, H., Wada, T., Yamada, M., and Tabata, S. 2002. Complete genomic sequence of nitrogen- fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 9: 189–197.
  • Kaur, J., Verma, M., and Lal, R. 2011. Rhizobium rosettiformans sp. nov., isolated from hexachlorocyclohexane (HCH) dump site in India, and reclassification of Blastobacter aggregatus Hirsch and Müller (1985) as Rhizobium aggregatum comb. nov. Int. J. Syst. Evol. Microbiol. 61: 1218–1225.
  • Kesari, V., Ramesh, A.M., and Rangan, L. 2013. Rhizobium pongamiae sp. nov. from Root Nodules of Pongamia pinnata. Biomed. Res Int. 2013: 165198.
  • Kirchner, O. 1896. Die Wurzelknöllchen der Sojabohne. Beitr. Biol. Pflanz. 7: 213–224.
  • Kittiwongwattana, C., and Thawai, C. 2013. Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). Int. J. Syst. Evol. Microbiol. 63: 3823–3828.
  • Kittiwongwattana, C., and Thawai, C. 2014. Rhizobium lemnae sp. nov., a bacterial endophyte of Lemna aequinoctialis. Int. J. Syst. Evol. Microbiol. 64: 2455–2460.
  • Kuykendall, L.D. 2005. Order VI. Rhizobiales ord. nov. In: Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). p. 324. Brenner, D.J., Krieg, N.R., Staley, J.T., and Garrity, G.M. Eds., Springer, New York, USA.
  • Kuykendall, L.D., Saxena, B., Devine, T.E., and Udell, S.E. 1992. Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can. J. Microbiol. 38: 501–505.
  • Laguerre, G., Nour, S.M., Macheret, V., Sanjuan, J., Drouin, P., and Amarger, N. 2001. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology. 147: 981–993.
  • Lang, E., Schumann, P., Adler, S., Spröer, C., and Sahin, N. 2013. Azorhizobium oxalatiphilum sp. nov., and emended description of the genus Azorhizobium. Int. J. Syst. Evol. Microbiol. 63: 1505–1511.
  • Laranjo, M., Alexandre, A., Rivas, R., Velázquez, E., Young, J.P., and Oliveira, S. 2008. Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol. Ecol. 66: 391–400.
  • Latif, S., Khan, S., Naveed, M., Mustafa, G., Bashir, T., and Mumtaz, A.S. 2013. The diversity of Rhizobia, Sinorhizobia and novel non-Rhizobial Paenibacillus nodulating wild herbaceous legumes. Arch. Microbiol. 195: 647–653.
  • Lei, X., Wang, E.T., Chen, W.F., Sui, X.H., and Chen, W.X. 2008. Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch. Microbiol. 190: 657–671.
  • Leon-Barrios, M., Lorite, M.J., Donate-Correa, J., and Sanjuan, J. 2009. Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range. Syst. Appl. Microbiol. 32: 413–420.
  • Li, J.H., Wang, E.T., Chea, W.F., and Chen, W.X. 2008. Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol. Biochem. 40: 238–246.
  • Li, Q.Q., Wang, E.T., Chang, Y.L., Zhang, Y.Z., Zhang, Y.M., Sui, X.H., Chen, W.F., and Chen, W.X. 2011. Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int. J. Syst. Evol. Microbiol. 61: 1981–1988.
  • Li, L., Sinkko, H., Montonen, L., Wei, G., Lindström, K., and Räsänen, L.A. 2011. Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol. Ecol. 79: 46–68.
  • Lin, D.X., Chen, W.F., Wang, F.Q., Hu, D., Wang, E.T., Sui, X.H., and Chen, W.X. 2009. Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int. J. Syst. Evol. Microbiol. 59: 1919–1923.
  • Lin, D.X., Wang, E.T., Tang, H., Han, T.X., He, Y.R., Guan, S.H., and Chen, W.X. 2008. Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int. J. Syst. Evol. Microbiol. 58: 1409–1413.
  • Lin, S.Y., Hsu, Y.H., Liu Y.C., Hung, M.H., Hameed, A., Lai, W.A., Yen, W.S., and Young, C.C. 2014. Rhizobium straminoryzae sp. nov., a novel species isolated from surface of rice-straw in Taiwan. Int. J. Syst. Evol. Microbiol. 64: 2962–2968.
  • Lindström, K. 1989. Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39: 365–367.
  • Liu, T.Y., Li, Y. Jr., Liu, X.X., Sui, X.H., Zhang, X.X., Wang, E.T., Chen, W.X., Chen, W.F., Puławska, J. 2012a. Rhizobium cauense sp. nov., isolated from root nodules of the herbaceous legume Kummerowia stipulacea grown in campus lawn soil. Syst Appl Microbiol. 35: 415–420.
  • Liu, X.Y., Wu, W., Wang, E.T., Zhang, B., Macdermott, J., and Chen, W.X. 2011. Phylogenetic relationships and diversity of β-rhizobia associated with Mimosa species grown in Sishuangbanna, China. Int. J. Syst. Evol. Microbiol. 61: 334–342.
  • Liu, X., Wei, S., Wang, F., James, E.K., Guo, X., Zagar, C., Xia, L.G., Dong, X., and Wang, Y.P. 2012b. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China. FEMS Microbiol. Ecol. 80: 417–426.
  • Lloret, L., Ormeño-Orrillo, E., Rincón, R., Martínez-Romero, J., Rogel-Hernández, M.A., and Martínez-Romero, E. 2007. Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst. Appl. Microbiol. 30: 280–290.
  • López-López, A., Rogel, M.A., Ormeño-Orrillo, E., Martínez-Romero, J., and Martínez-Romero, E. 2010. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst. Appl. Microbiol. 33: 322–327.
  • López-López, A., Rogel-Hernández, M.A., Barois, I., Ortiz Ceballos, A.I., Martínez, J., Ormeño-Orrillo, E., and Martínez-Romero, E. 2012. Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int. J. Syst. Evol. Microbiol. 62: 2264–2271.
  • Lortet, G., Mear, N., Lorquin, J., Dreyfus, B., de Lajudie, P., Rosenberg, C., and Boivin, C. 1996. Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: Application to Sinorhizobium saheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol. Plant Microbe Interact. 9: 736–747.
  • Lu, J.K., He, X.H., Huang, L.B., Kang, L.H., and Xu D.P. 2012. Two Burkholderia strains from nodules of Dalbergia odorifera T. Chen in Hainan Island, Southern China. New Forests. 43: 397–409.
  • Lu, Y.L., Chen, W.F., Han, L.L., Wang, E.T., and Chen, W.X. 2009a. Rhizobium alkalisoli sp. nov., isolated from Caragana intermedia growing in saline-alkaline soils in the North of China. Int. J. Syst. Evol. Microbiol. 59: 3006–3011.
  • Lu, Y.L., Chen, W.F., Han, L.L., Wang, E.T., Zhang, X.X., Chen, W.X., and Han, S.Z. 2009b. Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana spp. Int. J. Syst. Evol. Microbiol. 59: 3012–3018.
  • Lu, Y.L., Chen, W.F., Wang, E.T., Guan, S.H., Yan, X.R., Chen, W.X. 2009c. Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst. Appl. Microbiol. 32: 351–361.
  • Lu, J.K., Dou, Y.J., Zhu, Y.J., Wang, S.K., Sui, X.H., and Kang, L.H. 2014. Bradyrhizobium ganzhouense sp. nov., effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int. J. Syst. Evol. Microbiol. 64: 1900–1905.
  • Marek-Kozaczuk, M., Leszcz, A., Wielbo, J., Wdowiak-Wróbel, S., and Skorupsk, A. 2013. Rhizobium pisi sv. trifolii K3.22 harboring nod genes of the Rhizobium leguminosarum sv. trifolii cluster. Syst. Appl. Microbiol. 36: 252–258.
  • Martínez, E., Pardo, M.A., Palacios, R., and Cevallos, M.A. 1985. Reiteration of nitrogen fixation gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. J. Gen. Microbiol. 131: 1779–1786.
  • Martínez-Aguilar, L., Salazar-Salazar, C., Méndez, R.D., Caballero-Mellado, J., Hirsch, A.M., Vásquez-Murrieta, M.S., and Estrada de los Santos, P. 2013. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie Van Leeuwenhoek. 104: 1063–1071.
  • Martínez-Romero, E., Segovia, L., Mercante, F.M., Franco, A.A., Graham, P., and Pardo, M.A. 1991. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41: 417–426.
  • Maynaud, G., Willems, A., Soussou, S., Vidal, C., Mauré, L., Moulin, L., Cleyet-Marel, J.C., and Brunel, B. 2012. Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst. Appl. Microbiol. 35: 65–72.
  • Merabet, C., Martens, M., Mahdhi, M., Zakhia, F., Sy, A., Le Roux, C., Domergue, O., Coopman, R., Bekki, A., Mars, M., Willems, A., and de Lajudie, P. 2010. Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int. J. Syst. Evol. Microbiol. 60: 664–674.
  • Michiels, J., Dombrecht, B., Vermeiren, N., Xi, C., Luyten, E., and Vanderleyden, J. 1998. Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol. Ecol. 26: 193–205.
  • Mishra, R.P., Tisseyre, P., Melkonian, R., Chaintreuil, C., Miché, L., Klonowska, A., Gonzalez, S., Bena, G., Laguerre, G., and Moulin, L. 2012. Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. FEMS Microbiol. Ecol. 79: 487–503.
  • Mnasri, B., Mrabet, M., Laguerre, G., Aouani, M.E., and Mhamdi, R. 2007. Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch. Microbiol. 187: 79–85.
  • Mnasri, B., Saïdi, S., Chihaoui, S.A., and Mhamdi, R. 2012. Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Syst. Appl. Microbiol. 35: 263–269.
  • Mnasri, B., Liu, T.Y., Saidi, S., Chen, W.F., Chen, W.X., Zhang, X.X., and Mhamdi, R. 2014. Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int. J. Syst. Evol. Microbiol. 64: 1501–1506.
  • Moulin, L., Munive, A., Dreyfus, B., and Boivin-Masson, C. 2001. Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411: 948–950. Erratum in: Nature 412:926.
  • Muresu, R., Polone, E., Sulas, L., Baldan, B., Tondello, A., Delogu, G., Cappuccinelli, P., Alberghini, S., Benhizia, Y., Benhizia, H., Benguedouar, A., Mori, B., Calamassi, R., Dazzo, F.B., and Squartini, A. 2008. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol. Ecol. 63: 383–400.
  • Muresu, R., Tondello, A., Polone, E., Sulas, L., Baldan, B., and Squartini, A. 2013. Antioxidant treatments counteract the non-culturability of bacterial endophytes isolated from legume nodules. Arch. Microbiol. 195: 385–391.
  • Nakatsukasa, H., Uchiumi, T., Kucho, K., Suzuki, A., Higashi, S., and Abe, M. 2008. Transposon mediation allows a symbiotic plasmid of Rhizobium leguminosarum bv. trifolii to become a symbiosis island in Agrobacterium and Rhizobium. J. Gen. Appl. Microbiol. 54: 107–118.
  • Nandasena, K.G., O’Hara, G.W., Tiwari, R.P., Willems, A., and Howieson, J.G. 2007. Mesorhizobium ciceri biovar biserrulae, a novel biovar nodulating the pasture legume Biserrula pelecinus L. Int. J. Syst. Evol. Microbiol. 57: 1041–1045.
  • Nandasena, K.G., O’Hara, G.W., Tiwari, R.P., Willems, A., and Howieson, J.G. 2009. Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int. J. Syst. Evol. Microbiol. 59: 2140–2147.
  • Nick, G., de Lajudie, P., Eardly, B.D., Suomalainen, S., Paulin, L., Zhang, X., Gillis, M., and Lindström, K. 1999. Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int. J. Syst. Bacteriol. 49: 1359–1368.
  • Nour, S.M., Cleyet-Marel, J.C., Normand, P., and Fernandez, M.P. 1995. Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int. J. Syst. Bacteriol. 45: 640–648.
  • Nour, S.M., Fernandez, M.P., Normand, P., and Cleyet-Marel, J.C. 1994. Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int. J. Syst. Bacteriol. 44: 511–522.
  • Ohta, H., and Hattori, T. 1983. Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 49: 429–446.
  • Oldroyd, G.E. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11: 252–263.
  • Ophel, K., and Kerr, A. 1990. Agrobacterium vitis sp. nov. for Strains of Agrobacterium biovar 3 from Grapevines. Int. J. Syst. Bacteriol. 40: 236–241.
  • Ormeño-Orrillo, E., Menna, P., Almeida, L.G., Ollero, F.J., Nicolás, M.F., Pains Rodrigues, E., Shigueyoshi Nakatani, A., Silva Batista, J.S., Oliveira Chueire, L.M., Souza, R.C., Ribeiro Vasconcelos, A.T., Megías, M., Hungria, M., and Martínez-Romero, E. 2012a. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics. 13: 735.
  • Ormeño-Orrillo, E., Rogel, M.A., Chueire, L.M., Tiedje, J.M., Martínez-Romero, E., and Hungria, M. 2012b. Genome sequences of Burkholderia sp. strains CCGE1002 and H160, isolated from legume nodules in Mexico and Brazil. J. Bacteriol. 194: 6927–6927.
  • Ott, T., van Dongen, J.T., Günther, C., Krusell, L., Desbrosses, G., Vigeolas, H., Bock, V., Czechowski, T., Geigenberger, P., and Udvardi, M.K. 2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol. 15: 531–535.
  • Palaniappan, P., Chauhan, P.S., Saravanan, V.S., Anandham, R. and Sa, T. 2010. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol. Fertil. Soils. 46: 807–816.
  • Panday, D., Schumann, P. and Das, S.K. 2011. Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). Int. J. Syst. Evol. Microbiol. 61: 2632–2639.
  • Pandey, A., Kang, S.C., and Maheshwari, D.K. 2005. Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr. Sci. 89: 177–180.
  • Pandya M., Naresh Kumar, G., and Rajkumar, S. 2013. Invasion of rhizobial infection thread by non rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol. Lett. 348: 58–65.
  • Parag, B., Sasikala, C., and Ramana, C.V. 2013. Molecular and culture dependent characterization of endolithic bacteria in two beach sand samples and description of Rhizobium endolithicum sp. nov. Antonie Van Leeuwenhoek. 104: 1235–1244.
  • Paul, K.H., Dickin, K.L., Ali, N.S., Monterrosa, E.C., and Stoltzfus, R.J. 2008. Soy and rice-based processed complementary food increases nutrient intakes in infants and is equally acceptable with or without added milk powder. J. Nutr. 138: 1963–1968.
  • Peng, G., Yuan, Q., Li, H., Zhang, W., and Tan, Z. 2008. Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int. J. Syst. Evol. Microbiol. 58: 2158–2163.
  • Perret, X., Staehelin, C., and Broughton, W.J. 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64: 180–201.
  • Prowse, T., Schwarcz, H.P., Saunders, S., Macchiarelli, R., and Bondioli, L. 2003. Isotopic paleodiet studies of skeletons from the Imperial Roman-age cemetery of Isola Sacra, Rome, Italy. J. Archaeol. Sci. 31: 259–272.
  • Pueppke, S.G., and Broughton, W.J. 1999. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant Microbe Interact. 12: 293–318.
  • Puławska, J., Willems, A., and Sobiczewski, P. 2012b. Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. Int. J. Syst. Evol. Microbiol. 62: 895–899.
  • Puławska, J., Willems, A., de Meyer, S.E., and Süle, S. 2012a. Rhizobium nepotum sp. nov. isolated from tumors on different plant species. Syst. Appl. Microbiol. 35: 215–220.
  • Qin, W., Deng, Z.S., Xu, L., Wang, N.N., and Wei, G.H. 2012. Rhizobium helanshanense sp. nov., a bacterium that nodulates Sphaerophysa salsula (Pall.) DC. in China. Arch. Microbiol. 194: 371–378.
  • Quan, Z.X., Bae, H.S., Baek, J.H., Chen, W.F., Im, W.T., and Lee, S.T. 2005. Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int. J. Syst. Evol. Microbiol. 55: 2543–2549.
  • Radeva, G., Jurgens, G., Niemi, M., Nick, G., Suominen, L., and Lindström, K. 2001. Description of two biovars in the Rhizobium galegae species: Biovar orientalis and biovar officinalis. Syst. Appl. Microbiol. 24: 192–205.
  • Radl, V., Simões-Araújo, J.L., Leite, J., Passos, S.R., Martins, L.M., Xavier, G.R., Rumjanek, N.G., Baldani, J.I., and Zilli, J.E. 2014. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int. J. Syst. Evol. Microbiol. 64: 725–730.
  • Rajendran, G., Patel, M.H., and Joshi, S.J. 2012. Isolation and characterization of nodule-associated exiguobacterium sp. from the root nodules of fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int J. Microbiol. 2012: 693982.
  • Ramana, C.V., Parag, B., Girija, K.R., Ram, B.R., Ramana, V.V., and Sasikala, C. 2013. Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int. J. Syst. Evol. Microbiol. 63: 581–585.
  • Ramírez-Bahena, M.H., Chahboune, R., Peix, A., and Velázquez, E. 2013a. Reclassification of Agromonas oligotrophica into the genus Bradyrhizobium as Bradyrhizobium oligotrophicum comb. nov. Int. J. Syst. Evol. Microbiol. 63: 1013–1016.
  • Ramírez-Bahena, M.H., Chahboune, R., Velázquez, E., Gómez-Moriano, A., Mora, E., Peix, A., and Toro, M. 2013b. Centrosema is a promiscuous legume nodulated by several new putative species and symbiovars of Bradyrhizobium in various American countries. Syst. Appl. Microbiol. 36: 392–400.
  • Ramírez-Bahena, M.H., García-Fraile, P., Peix, A., Valverde, A., Rivas, R., Igual, J.M., Mateos, P.F., Martínez-Molina, E., and Velázquez, E. 2008. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889 AL, Rhizobium phaseoli Dangeard 1926 AL and Rhizobium trifolii Dangeard 1926 AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int. J. Syst. Evol. Microbiol. 58: 2484–2490.
  • Ramírez-Bahena, M.H., Hernández, M., Peix, A., Velázquez, E., and León-Barrios, M. 2012. Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. Syst. Appl. Microbiol. 35: 334–341.
  • Ramírez-Bahena, M.H., Peix, A., Rivas, R., Camacho, M., Rodríguez-Navarro, D.N., Mateos, P.F., Martínez-Molina, E., Willems, A., and Velázquez, E. 2009. Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int. J. Syst. Evol. Microbiol. 59: 1929–1934.
  • Ramírez-Bahena, M.H., Tejedor, C., Martín, I., Velázquez, E., and Peix, A. 2013c. Endobacter medicaginis gen. nov., sp. nov., isolated from alfalfa nodules in an acidic soil. Int. J. Syst. Evol. Microbiol. 63: 1760–1765.
  • Rasolomampianina, R., Bailly, X., Fetiarison, R., Rabevohitra, R., Béna, G., Ramaroson, L., Raherimandimby, M., Moulin, L., De Lajudie, P., Dreyfus, B., and Avarre, J.C. 2005. Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to alpha- and beta-Proteobacteria. Mol. Ecol. 14: 4135–4146.
  • Rees, D.C., Akif Tezcan, F., Haynes, C.A., Walton, M.Y., Andrade, S., Einsle, O., and Howard, J.B. 2005. Structural basis of biological nitrogen fixation. Philos. Trans. A Math. Phys. Eng. Sci. 363: 971–984.
  • Relic, B., Perret, X., Estrada-García, M.T., Kopcinska, J., Golinowski, W., Krishnan, H.B., Pueppke, S.G., and Broughton, W.J. 1994. Nod factors of Rhizobium are a key to the legume door. Mol. Microbiol. 13: 171–178.
  • Ren da, W., Chen, W.F., Sui, X.H., Wang, E.T., and Chen, W.X. 2011a. Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species. Int. J. Syst. Evol. Microbiol. 61: 580–586.
  • Ren da, W., Wang, E.T., Chen, W.F., Sui, X.H., Zhang, X.X., Liu, H.C., and Chen, W.X. 2011b. Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int. J. Syst. Evol. Microbiol. 61: 1912–1920.
  • Ribeiro, R.A., Rogel, M.A., López-López, A., Ormeño-Orrillo, E., Barcellos, F.G., Martínez, J., Thompson, F.L., Martínez-Romero, E., and Hungria, M. 2012. Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int. J. Syst. Evol. Microbiol. 62: 1179–1184.
  • Riker, A.J., Banfield, W.M., Wright, W.H., Keitt, G.W., and Sagen, H.E. 1930. Studies on infectious hairy root of nursery apple trees. Jour. Agr. Research (U. S.) 41: 507–540.
  • Rincón-Rosales, R., Villalobos-Escobedo, J.M., Rogel, M.A., Martinez, J., Ormeño-Orrillo, E., and Martínez-Romero, E. 2013. Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int. J. Syst. Evol. Microbiol. 63: 3423–3429.
  • Rivas, R., Laranjo, M., Mateos, P.F., Oliveira, S., Martínez-Molina, E., and Velázquez, E. 2007. Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett. Appl. Microbiol. 44: 412–418.
  • Rivas, R., Velázquez, E., Willems, A., Vizcaíno, N., Subba-Rao, N.S., Mateos, P.F., Gillis, M., Dazzo, F.B., and Martínez-Molina, E. 2002. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl. Environ. Microbiol. 68: 5217–5222.
  • Rivas, R., Willems, A., Palomo, J.L., García-Benavides, P., Mateos, P.F., Martínez-Molina, E., Gillis, M., and Velázquez, E. 2004. Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int. J. Syst. Evol. Microbiol. 54: 1271–1275.
  • Rivas, R., Willems, A., Subba-Rao, N.S., Mateos, P.F., Dazzo, F.B., Kroppenstedt, R.M., Martínez-Molina, E., Gillis, M., and Velázquez, E. 2003. Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst. Appl. Microbiol. 26: 47–53.
  • Robledo, M., Velázquez, E., Ramírez-Bahena, M.H., Garcia-Fraile, P., Perez-Alonso, A., Rivas, R., Martinez-Molina, E., and Mateos, P.F. 2011. The celC gene, a new phylogenetic marker useful for taxonomic studies in Rhizobium. Syst. Appl. Microbiol. 34: 393–399.
  • Roche, P., Maillet, F., Plazanet, C., Debelle, F., Ferro, M., Truchet, G., Promé, J.C., and Denarié, J. 1996. The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc. Natl. Acad. Sci. USA. 93: 15305–15310.
  • Rogel, M.A., Hernández-Lucas, I., Kuykendall, L.D., Balkwill, D.L., and Martínez-Romero, E. 2001. Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl. Environ. Microbiol. 67: 3264–3268.
  • Rogel, M.A., Ormeño-Orrillo, E., and Martinez Romero, E. 2011. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. App. Microbiol. 34: 96–104.
  • Rome, S., Fernandez, M.P., Brunel, B., Normand, P., and Cleyet-Marel, J.C. 1996. Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int. J. Syst. Bacteriol. 46: 972–980.
  • Ruiz-Díez, B., Quiñones, M.A., Fajardo, S., López-Berdonces, M.A., Higueras, P., and Fernández-Pascual, M. 2012a. Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl. Microbiol. Biotechnol. 96: 543–554.
  • Ruiz-Díez, B., Fajardo, S. and Fernández-Pascual, M. 2012b. Selection of rhizobia from agronomic legumes grown in semiarid soils to be employed as bioinoculants. Agron. J. 104: 550–559.
  • Saïdi, S., Ramírez-Bahena, M.H., Santillana, N., Zúñiga, D., Alvarez-Martínez, E., Peix, A., Mhamdi, R., and Velázquez, E. 2014. Rhizobium laguerreae sp. nov. nodulates Vicia faba in several continents. Int. J. Syst. Evol. Microbiol. 64: 242–247.
  • Sánchez, M., Ramírez-Bahena, M.H., Peix, A., Lorite, M.J., Sanjuán, J., Velázquez, E., and Monza, J. 2014. Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. Int. J. Syst. Evol. Microbiol. 64: 781–786.
  • Sawada, H., Ieki, H., Oyaizu, H., and Matsumoto, S. 1993. Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int. J. Syst. Bacteriol. 43: 694–702.
  • Scholla, M.H., and Elkan, G.H. 1984. Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int. J. Syst.Bacteriol. 34: 484–486.
  • Schuldes, J., Rodriguez Orbegoso, M., Schmeisser, C., Krishnan, H.B., Daniel, R., and Streit, W.R. 2012. Complete genome sequence of the broad-host-range strain Sinorhizobium fredii USDA257. J. Bacteriol. 194: 4483.
  • Segovia, L., Young, J.P., and Martínez-Romero, E. 1993. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43: 374–377.
  • Sheu, S.Y., Chou, J.H., Bontemps, C., Elliott, G.N., Gross, E., dos Reis Junior, F.B., Melkonian, R., Moulin, L., James, E.K., Sprent, J.I., Young, J.P., and Chen, W.M. 2013. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int. J. Syst. Evol. Microbiol. 63: 435–441.
  • Sheu, S.Y., Chou, J.H., Bontemps, C., Elliott, G.N., Gross, E., James, E.K., Sprent, J.I., Young, J.P., and Chen, W.M. 2012. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int. J. Syst. Evol. Microbiol. 62: 2272–2878.
  • Shiraishi, A., Matsushita, N., and Hougetsu, T. 2010. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst. Appl. Microbiol. 33: 269–274.
  • Smyth, E.M., McCarthy, J., Nevin, R., Khan, M.R., Dow, J.M., O’Gara, F., and Doohan, F.M. 2011. In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J. Appl. Microbiol. 111: 683–692.
  • Souza Moreira, M.F., Cruz, L., Miana de Faria, S., Marsh, T., Martínez-Romero, E., de Oliveira Pedrosa, F., Maria Pitard, R., and Young, J.P. W. 2006. Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst. Appl. Microbiol. 29: 197–206.
  • Sprent, J.I. 2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174: 11–25.
  • Squartini, A., Struffi, P., Döring, H., Selenska-Pobell, S., Tola, E., Giacomini, A., Vendramin, E., Velázquez, E., Mateos, P.F., Martínez-Molina, E., Dazzo, F.B., Casella, S., and Nuti, M.P. 2002. Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int. J. Syst. Evol. Microbiol. 52: 1267–1276.
  • Stajković, O., de Meyer, S., Mili, B., Willems, A., and Deli, D. 2009. Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Botanica Serbica. 33: 107–114.
  • Sturz, A.V., Christie, B.R., Matheson B.G., and Nowak, J. 1997. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol. Fertil. Soils. 25: 13–19.
  • Sullivan, J.T., Trzebiatowski, J.R., Cruickshank, R.W., Gouzy, J., Brown, S.D., Elliot, R.M., Fleetwood, D.J., McCallum, N.G., Rossbach, U., Stuart, G.S., Weaver, J.E., Webby, R.J., De Bruijn, F.J., and Ronson, C.W. 2002. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J. Bacteriol. 184: 3086–3095.
  • Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., de Lajudie, P., Prin, Y., Neyra, M., Gillis, M., Boivin-Masson, C., and Dreyfus, B. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 183: 214–220.
  • Talbi, C., Delgado, M.J., Girard, L., Ramírez-Trujillo, A., Caballero-Mellado, J., and Bedmar, E.J. 2010. Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl. Environ. Microbiol. 76: 4587–4591.
  • Tan, Z.Y., Kan, F., Peng, G.X., Wang, E.T., Reinhold-Hurek, B., and Chen, W.X. 2001. Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int. J. Syst. Evol. Microbiol. 51: 909–914.
  • Taulé, C., Zabaleta, M., Mareque, C., Platero, R., Sanjurjo, L., Sicardi, M., Frioni, L., Battistoni, F., and Fabiano, E. 2012 New betaproteobacterial Rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl Environ Microbiol. 78: 1692–1700.
  • Tian, C.F., Wang, E.T., Wu, L.J., Han, T.X., Chen, WF, Gu, C.T., Gu, J.G., and Chen, W.X. 2009. Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int. J. Syst. Evol. Microbiol. 58: 2871–2875.
  • Tokala, R.K., Strap, J.L., Jung, C.M., Crawford, D.L., Salove, M.H., Deobald, L.A., Bailey, J.F., and Morra, M.J. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl. Environ. Microbiol. 68: 2161–2171.
  • Toledo, I., Lloret, L., and Martinez-Romero, E. 2003. Sinorhizobium americanus sp.nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst. Appl. Microbiol. 26: 54–64.
  • Trujillo, M.E., Alonso-Vega, P., Rodríguez, R., Carro, L., Cerda, E., Alonso, P., and Martínez-Molina, E. 2010. The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J. 4: 1265–1281.
  • Trujillo, M.E., Kroppenstedt, R.M., Fernández-Molinero, C., Schumann, P., and Martínez-Molina, E. 2007. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int. J. Syst. Evol. Microbiol. 57: 2799–2804.
  • Trujillo, M.E., Kroppenstedt, R.M., Schumann, P., and Martínez-Molina, E. 2006. Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius. Int. J. Syst. Evol. Microbiol. 56: 407–411.
  • Trujillo, M.E., Willems, A., Abril, A., Planchuelo, A.M., Rivas, R., Ludeña, D., Mateos, P.F., Martínez-Molina, E., and Velázquez, E. 2005. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl. Environ. Microbiol. 71: 1318–1327.
  • Turdahon, M., Osman, G., Hamdun, M., Yusuf, K., Abdurehim, Z., Abaydulla, G., Abdukerim, M., Fang, C., and Rahman, E. 2013. Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. Int. J. Syst. Evol. Microbiol. 63: 2424–2429.
  • Uchiumi, T., Ohwada, T., Itakura, M., Mitsui, H., Nukui, N., Dawadi, P., Kaneko, T., Tabata, S., Yokoyama, T., Tejima, K., Saeki, K., Omori, H., Hayashi, M., Maekawa, T., Sriprang, R., Murooka, Y., Tajima, S., Simomura, K., Nomura, M., Suzuki, A., Shimoda, Y., Sioya, K., Abe, M., and Minamisawa, K. 2004. Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J. Bacteriol. 186: 2439–2448.
  • Valverde, A., Fterich, A., Mahdhi, M., Ramírez-Bahena, M.H., Caviedes, M.A., Mars, M., Velázquez, E., and Rodriguez-Llorente, I.D. 2010. Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. Int. J. Syst. Evol. Microbiol. 60: 2182–2186.
  • Valverde, A., Igual, J.M., Peix, A., Cervantes, E., and Velázquez, E. 2006. Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int. J. Syst. Evol. Microbiol. 56: 2631–2637.
  • Valverde, A., Velázquez, E., Fernández-Santos, F., Vizcaíno, N., Rivas, R., Mateos, P.F., Martínez-Molina, E., Igual, J.M., and Willems, A. 2005. Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int. J. Syst. Evol. Microbiol. 55: 1985–1989.
  • Valverde, A., Velázquez, E., Gutiérrez, C., Cervantes, E., Ventosa, A., and Igual, J.M. 2003. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int. J. Syst. Evol. Microbiol. 53: 1979–1983.
  • van Berkum, P., and Eardly, B.D. 2002. The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl. Environ. Microbiol. 68: 1132–1136.
  • van Berkum, P., Beyene, D., Bao, G., Campbell, T.A., and Eardly, B.D. 1998. Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int. J. Syst. Bacteriol. 48: 13–22.
  • van Berkum, P., Leibold, J.M., and Eardly, B.D. 2006. Proposal for combining Bradyrhizobium spp. (Aeschynomene indica) with Blastobacter denitrificans and to transfer Blastobacter denitrificans (Hirsch and Muller, 1985) to the genus Bradyrhizobium as Bradyrhizobium denitrificans (comb. nov.). Syst. Appl. Microbiol. 29: 207–215.
  • Van Damme, E.J. M., Barre, A., Rougé, P., and Peumans, W.J. 2004. Cytoplasmic/ nuclear plant lectins: a new story. Trends Plant Sci. 9: 484–489.
  • van Rhijn, P.J., Feys, B., Verreth, C., and Vanderleyden, J. 1993. Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J. Bacteriol. 175: 438–447.
  • Vandamme, P., and Coenye, T. 2004. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int. J. Syst. Evol. Microbiol. 54: 2285–2289.
  • Vandamme, P., Goris, J., Chen, W.M., de Vos, P., and Willems, A. 2002. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst. Appl. Microbiol. 25: 507–512.
  • Velázquez, E., Igual, J.M., Willems, A., Fernández, M.P., Muñoz, E., Mateos, P.F., Abril, A., Toro, N., Normand, P., Cervantes, E., Gillis, M., and Martínez-Molina, E. 2001. Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int. J. Syst. Evol. Microbiol. 51: 1011–1021.
  • Velázquez, E., Martínez-Hidalgo, P., Carro, L., Alonso, P., Peix, A., Trujillo, M.E., and Martínez-Molina, E. 2013. Nodular endophytes: an untapped diversity. In: Beneficial Plant-Microbial Interactions: Ecology and Applications. pp. 214–235. Rodelas-González, M.B., González-López, J. Eds., CRC Press, Boca Raton, FL.
  • Velázquez, E., Silva, L., and Peix, A. 2010a. Legumes: A healthy and ecological source of flavonoids. Current Nutrition & Food Science. 6: 109–144.
  • Velázquez, E., Valverde, A., Rivas, R., Gomis, V., Peix, A., Gantois, I., Igual, J.M., León-Barrios, M., Willems, A., Mateos, P.F., and Martínez-Molina, E. 2010b. Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium. Antonie Van Leeuwenhoek. 97: 363–376.
  • Venancio Silva, F., De Meyer, S.E., Simões de Araujo, J.L., da Costa Barbé, T., Xavier, G.R., O’Hara, G., Ardley, J., Rumjanek, N.G., Willems, A., and Zilli, J.E. 2014. Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazon rainforest soils. Int. J. Syst. Evol. Microbiol. 64: 2358–2363.
  • Verma, S.H., Chowdhury, S.P., and Tripathi, A.K. 2004. Phylogeny based on 16S rDNA and nifH sequences of Ralstonia taiwanensis strains isolated from nitrogen-fixing nodules of Mimosa pudica, in India. Can. J. Microbiol. 50: 313–322.
  • Vidal, C., Chantreuil, C., Berge, O., Maure, L., Escarre, J., Bena, G., Brunel, B., Cleyet-Marel, J.C. 2009. Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol. 59: 850–855.
  • Villegas, M.C., Rome, S., Maure, L., Domergue, O., Gardan, L., Bailly, X., Cleyet-Marel, J.C., and Brunel, B. 2006. Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti. Syst. Appl. Microbiol. 29: 526–538.
  • Vinuesa, P., León-Barrios, M., Silva, C., Willems, A., Jarabo-Lorenzo, A., Pérez-Galdona, R., Werner, D., and Martínez-Romero, E. 2005. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int. J. Syst. Evol. Microbiol. 55: 569–575.
  • Wang, E.T., Rogel, M.A., García-de los Santos, A., Martínez-Romero, J., Cevallos, M.A., and Martínez-Romero, E. 1999a. Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int. J. Syst. Bacteriol. 49: 1479–1491.
  • Wang, E.T., Tan, Z.Y., Willems, A., Fernández-López, M., Reinhold-Hurek, B., and Martínez-Romero, E. 2002. Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int. J. Syst. Evol. Microbiol. 52: 1687–1693.
  • Wang, E.T., van Berkum, P., Beyene, D., Sui, X.H., Dorado, O., Chen, W.X., and Martínez-Romero, E. 1998. Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int. J. Syst. Bacteriol. 48: 687–699.
  • Wang, E.T., van Berkum, P., Sui, X.H., Beyene, D., Chen, W.X., and Martínez-Romero, E. 1999b. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int. J. Syst. Bacteriol. 49: 51–65.
  • Wang, F., Wang, E.T., Wu, L.J., Sui, X.H., Li, Y. Jr., and Chen, W.X. 2011. Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int. J. Syst. Evol. Microbiol. 61: 2582–2588.
  • Wang, F.Q., Wang, E.T., Liu, J., Chen, Q., Sui, X.H., Chen, W.F., and Chen, W.X. 2007. Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int. J. Syst. Evol. Microbiol. 57: 1192–1199.
  • Wang, J.Y., Wang, R., Zhang, Y.M., Liu, H.C., Chen, W.F., Wang, E.T., Sui, X.H., and Chen, W.X. 2013a. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int. J. Syst. Evol. Microbiol. 63: 616–624.
  • Wang, R., Chang, Y.L., Zheng, W.T., Zhang, D., Zhang, X.X., Sui, X.H., Wang, E.T., Hu, J.Q., Zhang, L.Y., and Chen, W.X. 2013b. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol. 36: 101–105.
  • Wang, Y.C., Wang, F., Hou, B.C., Wang, E.T., Chen, W.F., Sui, X.H., Chen, W.X., Li, Y., and Zhang, Y.B. 2013c. Proposal of Ensifer psoraleae sp. nov., Ensifer sesbaniae sp. nov., Ensifer morelense comb. nov. and Ensifer americanum comb. nov. Syst. Appl. Microbiol. 36: 467–473.
  • Wei, G.H., Tan, Z.Y., Zhu, M.E., Wang, E.T., Han, S.Z., and Chen, W.X. 2003. Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int. J. Syst. Evol. Microbiol. 53: 1575–1583.
  • Wei, G.H., Wang, E.T., Tan, Z.Y., Zhu, M.E., and Chen, W.X. 2002. Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int. J. Syst. Evol. Microbiol. 52: 2231–2239.
  • Weiss, V.A., Faoro, H., Tadra-Sfeir, M.Z., Raittz, R.T., de Souza, E.M., Monteiro, R.A., Cardoso, R.L., Wassem, R., Chubatsu, L.S., Huergo, L.F., Müller-Santos, M., Steffens, M.B., Rigo, L.U., Pedrosa, F.O., and Cruz, L.M. 2012. Draft genome sequence of Herbaspirillum lusitanum P6-12, an endophyte isolated from root nodules of Phaseolus vulgaris. J. Bacteriol. 194: 4136–4137.
  • Wen, Y., Zhang, J., Yan, Q., Li, S., and Hong, Q. 2011. Rhizobium phenanthrenilyticum sp. nov., a novel phenanthrene-degrading bacterium isolated from a petroleum residue treatment system. J. Gen. Appl. Microbiol. 57: 319–329.
  • Winsor, B.A. 1989. A nod at differentiation: the nodD gene product and initiation of Rhizobium nodulation. Trends Genet. 5: 199–201.
  • Woese, C.R., Stackebrandt, E., Weisburg, W.G., Paster, B,J., Madigan, M.T., Fowler, V.J., Hahn, C.M., Blanz, P., Gupta, R., Nealson, K.H., and Fox, G.E. 1984. The phylogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol. 5: 315–326.
  • Xu, L.M., Ge, C., Cui, Z., Li, J., and Fan, H. 1995. Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int. J. Syst. Bacteriol. 45: 706–711.
  • Xu, L., Shi, J.F., Zhao, P., Chen, W.M., Qin, W., Tang, M., and Wei, G.H. 2011. Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie Van Leeuwenhoek. 99: 845–854.
  • Xu, L., Zhang, Y., Deng, Z.S., Zhao, L., Wei, X.L., and Wei, G.H. 2013. Rhizobium qilianshanense sp. nov., a novel species isolated from root nodule of Oxytropis ochrocephala Bunge in China. Antonie Van Leeuwenhoek. 103: 559–565.
  • Yao, L.J., Shen, Y.Y., Zhan, J.P., Xu, W., Cui, G.L., and Wei, G.H. 2012. Rhizobium taibaishanense sp. nov., isolated from a root nodule of Kummerowia striata. Int. J. Syst. Evol. Microbiol. 62: 335–341.
  • Yao, Z.Y., Kan, F.L., Wang, E.T., Wei, G.H., and Chen, W.X. 2002. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int. J. Syst. Evol. Microbiol. 52: 2219–2230.
  • Yoon, J.H., Kang, S.J., Yi, H.S., Oh, T.K., and Ryu, C.M. 2010. Rhizobium soli sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 60: 1387–1393.
  • Young, J.M. 2003. The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination “Sinorhizobium adhaerens” Casida 1982 Willems et al. 2003 legitimate? Request for an Opinion. Int. J. Syst. Evol. Microbiol. 53: 2107–2110.
  • Young, J.M. 2004. Renaming of Agrobacterium larrymoorei Bouzar and Jones 2001 as Rhizobium larrymoorei (Bouzar and Jones 2001) comb. nov. Int. J. Syst. Evol. Microbiol. 54: 149.
  • Young, J.M., Kuykendall, L.D., Martínez-Romero, E., Kerr, A., and Sawada, H. 2001. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol. 51: 89–103.
  • Young, J.P., Crossman, L.C., Johnston, A.W., Thomson, N.R., Ghazoui, Z.F., Hull, K.H., Wexler, M., Curson, A.R., Todd, J.D., Poole, P.S., Mauchline, T.H., East, A.K., Quail, M.A., Churcher, C., Arrowsmith, C., Cherevach, I., Chillingworth, T., Clarke, K., Cronin, A., Davis, P., Fraser, A., Hance, Z., Hauser, H., Jagels, K., Moule, S., Mungall, K., Norbertczak, H., Rabbinowitsch, E., Sanders, M., Simmonds, M., Whitehead, S., and Parkhill, J. 2006. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 7: R34.
  • Zakhia F., Jeder, H. Willems, A. Gillis, M., Dreyfus, B., and de Lajudie, P. 2006. Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb. Ecol. 51: 375–393.
  • Zhang, G.X., Ren, S.Z., Xu, M.Y., Zeng, G.Q., Luo, H.D.L. ,Chen, J.L., Tan, Z.Y., and Sun, G.P. 2011a. Rhizobium borbori sp. nov., an aniline-degrading bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 61: 816–822.
  • Zhang, J.J., Liu, T.Y., Chen, W.F., Wang, E.T., Sui, X.H., Zhang, X.X., Li, Y., Li, Y., and Chen, W.X. 2012a. Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. Int. J. Syst. Evol. Microbiol. 62: 2737–2742.
  • Zhang, R.J., Hou, B.C., Wang, E.T., Li,Y. Jr., Zhang, X.X., and Chen, W.X. 2011b. Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int. J. Syst. Evol. Microbiol. 61: 512–517.
  • Zhang, X., Li, B., Wang, H., Sui, X., Ma, X., Hong, Q., and Jiang, R. 2012b. Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 62: 1871–1876.
  • Zhang, X., Sun, L., Ma, X., Sui, X.H., and Jiang, R. 2011c. Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int. J. Syst. Evol. Microbiol. 61: 2425–2429.
  • Zhang, Y.M., Li, Y. Jr, Chen, W.F., Wang, E.T., Tian, C.F., Li, Q.Q., Zhang, Y.Z., Sui, X.H., Chen, W.X. 2011d. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl. Environ. Microbiol. 77: 6331–6342.
  • Zhang, X. X., Tang, X., Sheirdil, R. A., Sun, L., and Ma, X. T. 2014. Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int. J. Syst. Evol. Microbiol. 64: 1373–1377.
  • Zhang, Y.M., Li, Y. Jr., Chen, W.F., Wang, E.T., Sui, X.H., Li, Q.Q., Zhang, Y.Z., Zhou, Y.G., and Chen, W.X. 2012c. Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int. J. Syst. Evol. Microbiol. 62: 1951–1957.
  • Zhao, C.T., Wang, E.T., Zhang, Y.M., Chen, W.F., Sui, X.H., Chen, W.X., Liu, H.C., and Zhang, X.X. 2012. Mesorhizobium silamurunense sp. nov., isolated from root nodules of Astragalus species. Int. J. Syst. Evol. Microbiol. 62: 2180–2186.
  • Zheng, W.T., Li, Y.Jr., Wang, R., Sui, X.H., Zhang, X.X., Zhang, J.J., Wang, E.T., and Chen, W.X. 2013. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int. J. Syst. Evol. Microbiol. 63: 2002–2007.
  • Zhou, P.F., Chen, W.M., and Wei, G.H. 2010. Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. Int. J. Syst. Evol. Microbiol. 60: 2552–2556.
  • Zhou, S., Li, Q., Jiang, H., Lindström, K., and Zhang, X. 2013. Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. Int. J. Syst. Evol. Microbiol. 63: 2794–2799.
  • Zurdo-Piñeiro, J.L., Rivas, R., Trujillo, M.E., Vizcaíno, N., Carrasco, J.A., Chamber, M., Palomares, A., Mateos, P.F., Martínez-Molina, E., and Velázquez, E. 2007. Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int. J. Syst. Evol. Microbiol. 57: 784–788.
  • Zurdo-Piñeiro, J.L., Velázquez, E., Lorite, M.J., Brelles-Mariño, G., Schröder, E.C., Bedmar, E.J., Mateos, P.F., and Martínez-Molina, E. 2004. Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Syst. Appl. Microbiol. 27: 469–477.
  • Zurdo-Piñeiro, J.L., García-Fraile, P., Rivas, R., Peix, A., León-Barrios, M., Willems, A., Mateos, P.F., Martínez-Molina, E., Velázquez, E., and van Berkum, P. 2009. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with Sinorhizobium meliloti from mainland Spain. Appl. Environ. Microbiol. 75: 2354–2359.
  • Zurkowski, W., and Lorkiewicz, Z. 1979. Plasmid-mediated control of nodulation in Rhizobium trifolii. Arch. Microbiol. 123: 195–201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.