1,120
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Plant F-box Proteins – Judges between Life and Death

, &

REFERENCES

  • Al Atalah, B., De Vleesschauwer, D., Xu, J., Fouquaert, E., Höfte, M., and Van Damme, E.J.M. 2014a. Transcriptional behavior of EUL-related rice lectins toward important abiotic and biotic stresses. J. Plant Physiol. 171: 986–992.
  • Al Atalah, B., Smagghe, G., and Van Damme, E.J.M. 2014b. Orysata, a jacalin-related lectin from rice, could protect plants against biting-chewing and piercing-sucking insects. Plant Sci. 221-222: 21–28.
  • Alcaide-Loridan, C., and Jupin, I. 2012. Ubiquitin and plant viruses, let's play together! Plant Physiol. 160: 72–82.
  • An, F., Zhao, Q., Ji, Y., Li, W., Jiang, Z., Yu, X., Zhang, C., Han, Y., He, W., Liu, Y., Zhang, S., Ecker, J.R., and Guo, H. 2010. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22: 2384–2401.
  • Angot, A., Peeters, N., Lechner, E., Vailleau, F., Baud, C., Gentzbittel, L., Sartorel, E., Genschik, P., Boucher, C., and Genin, S. 2006. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc. Natl. Acad. Sci. U.S.A. 103: 14620–14625.
  • Arabidopsis Interactome Mapping Consortium. 2011. Evidence for network evolution in an Arabidopsis interactome map. Science 333: 601–607.
  • Ariizumi, T., Lawrence, P. K., and Steber, C. M. 2011. The role of two F-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant Physiol. 155: 765–775.
  • Aronson, M.N., Meyer, A.D., Györgyey, J., Katul, L., Vetten, H.J., Gronenborn, B., and Timchenko, T. 2000. Clink, a nanovirus-encoded protein, binds both pRB and SKP1. J. Virol. 74: 2967–2972.
  • Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J. W., and Elledge, S. J. 1996. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86: 263–274.
  • Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D., and Pagano, M. 2004. Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase. Nature 428: 190–193.
  • Baudry, A., Ito, S., Song, Y. H., Strait, A.A., Kiba, T., Lu, S., Henriques, R., Pruneda-Paz, J. L., Chua, N. H., Tobin, E. M., Kay, S. A., and Imaizumi, T. 2010. F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22: 606–622.
  • Baumberger, N., Tsai, C. H., Lie, M., Havecker, E., and Baulcombe, D. C. 2007. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr. Biol. 17: 1609–1614.
  • Bellieny-Rabelo, D., Oliveira, A.E.A., and Venancio, T. M. 2013. Impact of whole-genome and tandem duplications in the expansion and functional diversification of the F-box family in legumes (Fabaceae). PLoS ONE 8: e55127.
  • Berndsen, C. E., and Wolberger, C. 2014. New insights into ubiquitin E3 ligase mechanism. Nat. Struct. Mol. Biol. 21: 301–307.
  • Beveridge, C. A., Ross, J. J., and Murfet, I. C. 1996. Branching in pea (action of genes Rms3 and Rms4). Plant Physiol. 110: 859–865.
  • Book, A. J., Smalle, J., Lee, K. H., Yang, P., Walker, J. M., Casper, S., Holmes, J. H., Russo, L. A., Buzzinotti, Z. W., Jenik, P. D., and Vierstra, R. D. 2009. The RPN5 subunit of the 26S proteasome is essential for gametogenesis, sporophyte development, and complex assembly in Arabidopsis. Plant Cell 21: 460–478.
  • Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P., and Ziegler-Graff, V. 2007. The polerovirus F- box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr. Biol. 17: 1615–1621.
  • Bourbousse, C., Ahmed, I., Roudier, F., Zabulon, G., Blondet, E., Balzergue, S., Colot, V., Bowler, C., and Barneche, F. 2012. Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis. PLoS Genet. 8: e1002825.
  • Brewer, P. B., Koltai, H., and Beveridge, C. A. 2013. Diverse roles of strigolactones in plant development. Mol. Plant. 6: 18–28.
  • Bu, Q., Lv, T., Shen, H., Luong, P., Wang, J., Wang, Z., Huang, Z., Xiao, L., Engineer, C., Kim, T. H., Schroeder, J. I., and Huq, E. 2014. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol. 164: 424–439.
  • Calderón-Villalobos, L. I., Lee, S., De Oliveir, C., Ivetac, A., Brandt, W., Armitage, L., Sheard, L. B., Tan, X., Parry, G., Mao, H., Zheng, N., Napier, R., Kepinski, S., and Estelle, M. 2012. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 8: 477–485.
  • Calderón-Villalobos, L. I., Nill, C., Marrocco, K., Kretsch, T., and Schwechheimer, C. 2007. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress. Gene 392: 106–116.
  • Cao, Y., Dai, Y., Cui, S., and Ma, L. 2008a. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20: 2586–2602.
  • Cao, Y., Yang, Y., Zhang, H., Li, D., Zheng, Z., and Song, F. 2008b. Overexpression of a rice defense related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression. Physiol. Plant 134: 440–452.
  • Cardozo, T., and Pagano, M. 2004. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5: 739–751.
  • Chae, E., Tan, Q. K., Hill, T. A., and Irish, V. F. 2008. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135: 1235–1245.
  • Chandler, P. M., Harding, C. A., Ashton, A. R., Mulcair, M. D., Dixon, N. E., and Mander, L. N. 2008. Characterization of gibberellin receptor mutants of barley (Hordeum vulgare L.). Mol. Plant 1: 285–294.
  • Chen, R. G., Guo, W. L., Yin, Y. X., and Gong, Z. H. 2014. Novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.). Int. J. Mol. Sci. 15: 2413–2430.
  • Chen, Y., Peumans, W. J., Hause, B., Bras, J., Kumar, M., Proost, P., Barre, A., Rougé, P., and Van Damme, E.J.M. 2002. Jasmonic acid methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide-binding lectin in tobacco leaves. FASEB J. 16: 905–907.
  • Chen, Y., Xu, Y., Luo, W., Li, W., Chen, N., Zhang, D., and Chong, K. 2013. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiol. 163: 1673–1685.
  • Cheng, Y. T., Li, Y., Huang, S., Huang, Y., Dong, X., Zhang, Y., and Li, X. 2011. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proc. Natl. Acad. Sci. U.S.A. 108: 14694–14699.
  • Chen, Z. H., Jenkins, G. I., and Nimmo, H. G. 2008. Identification of an F-box protein that negatively regulates P(i) starvation responses. Plant Cell Physiol. 49: 1902–1906.
  • Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F. M., Ponce, M. R., Micol, J. L., and Solano, R. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671.
  • Coates, J. C., Laplaze, L., and Haseloff, J. 2006. Armadillo-related proteins promote lateral root development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 103: 1621–1626.
  • Craig, K. L., and Tyers, M. 1999. The F-box: A new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog. Biophys. Molec. Biol. 72: 299–328.
  • Csorba, T., Lózsa, R., Hutvágner, G., and Burgyán, J. 2010. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J. 62: 463–472.
  • Cui, X., Lu, F., Li, Y., Xue, Y., Kang, Y., Zhang, S., Qiu, Q., Cui, X., Zheng, S., Liu, B., Xu, X., and Cao, X. 2013. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiol. 162: 897–906.
  • Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. 2010. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61: 651–679.
  • D’Angiolella, V., Donato, V., Forrester, F. M., Jeong, Y. T., Pellacani, C., Kudo, Y., Saraf, A., Florens, L., Washburn, M. P., and Pagano, M. 2012. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149: 1023–1034.
  • de Bie, P., and Ciechanover, A. 2011. Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ. 18: 1393–1402.
  • del Pozo, J.C., Boniotti, M. B., and Gutierrez, C. 2002. Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCFAtSKP2 pathway in response to light. Plant Cell 14: 3057–3071.
  • del Pozo, J. C., Diaz-Trivino, S., Cisneros, N., and Gutierrez, C. 2006. The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin SCFSKP2A pathway in Arabidopsis. Plant Cell 18: 2224–2235.
  • del Pozo, J. C., and Manzano, C. 2013. Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action. J. Exp. Bot. 65: 2617–2632.
  • Delporte, A., De Vos, W. H., and Van Damme, E.J.M. 2014. In vivo interaction between the tobacco lectin and the core histone proteins. J. Plant Physiol. 171: 986–992.
  • Delporte, A., Van Holle, S., Lannoo, N., and Van Damme, E.J.M. 2015. The tobacco lectin, prototype of the family of Nictaba-related proteins. Curr. Prot. Pept. Sci 16: 5–16.
  • Deshaies, R. J. 1999. SCF and cullin/RING H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15: 435–467.
  • de Souza Filho, G. A., Ferreira, B. S., Dias, J.M.R., Queiroz, K. S., Branco, A. T., Bressan-Smith, R. E., Oliveira, J. G., and Garcia, A. B. 2003. Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Sci. 164: 623–628.
  • Dezfulian, M. H., Soulliere, D. M., Dhaliwal, R. K., Sareen, M., and Crosby, W. L. 2012. The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development. PloS ONE 7: e50984.
  • Dharmasiri, N., Dharmasiri, S., and Estelle, M. 2005a. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445.
  • Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J. S., Jürgens, G., and Estelle, M. 2005b. Plant development is regulated by a family of auxin receptor F-box proteins. Dev. Cell 9: 109–119.
  • Dharmasiri, S., Jayaweera, T., and Dharmasiri, N. 2013. Plant hormone signalling: Current perspectives on perception and mechanisms of action. Ceylon Sci. Bio. Sci. 42: 1–17.
  • Dhawan, R., Luo, H., Foerster, A. M., Abuqamar, S., Du, H. N., Briggs, S. D., Mittelsten Scheid, O., and Mengiste, T. 2009. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21: 1000–1019.
  • Dielen, A. S., Badaoui, S., Candresse, T., and German-Retana, S. 2010. The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. Mol. Plant Pathol. 11: 293–308.
  • Dieterle, M., Zhou, Y. C., Schafer, E., Funk, M., and Kretsch, T. 2001. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev. 15: 939–944.
  • Di Giacomo, E., Serino, G., and Frugis, G. 2013. Emerging role of the ubiquitin proteasome system in the control of shoot apical meristem function. J. Integr. Plant Biol. 55: 7–20.
  • Dill, A., Thomas, S. G., Hu, J., Steber, C. M., and Sun, T. P. 2004. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16: 1392–1405.
  • Dinant, S., Clark, A. M., Zhu, Y., Vilaine, F., Palauqui, J. C., Kusiak, C., and Thompson, G. A. 2003. Diversity of the superfamily of phloem lectins (phloem protein 2) in Angiosperms. Plant Physiol. 131: 114–128.
  • Dong, L., Wang, L., Zhang, Y., Zhang, Y., Deng, X., and Xue, Y. 2006. An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol. Biol. 60: 599–615.
  • Downes, B. P., Stupar, R. M., Gingerich, D. J., and Vierstra, R. D. 2003. The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis: UPL3 has a specific role in trichome development. Plant J. 35: 729–742.
  • Dreher, K., and Callis, J. 2007. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 99: 787–822.
  • Drummond, R. S., Sheehan, H., Simons, J. L., Martínez-Sánchez, N. M., Turner, R. M., Putterill, J., and Snowden, K. C. 2012. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program. Front. Plant Sci. 2: 115.
  • Duplan, V., and Rivas, S. 2014. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Front. Plant Sci. 13: 42.
  • Dürr, M., Escobar-Henriques, M., Merz, S., Geimer, S., Langer, T., and Westermann, B. 2006. Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. Mol. Biol. Cell 17: 3745–3755.
  • Farrás, R., Ferrando, A., Jásik, J., Kleinow, T., Okrész, L., Tiburcio, A., Salchert, K., del Pozo, C., Schell, J., and Koncz, C. 2001. SKP1–SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J. 20: 2742–2756.
  • Finley, D. 2009. Recognition and processing of ubiquitin protein conjugates by the proteasome. Annu. Rev. Biochem. 78: 477–513.
  • Fornara, F., Panigrahi, K. C., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A., and Coupland, G. 2009. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev. Cell 17: 75–86.
  • Fu, J., Liu, H., Li, Y., Yu, H., Li, X., Xiao, J., and Wang, S. 2011. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol. 155: 589–602.
  • Fu, J., and Wang, S. 2011. Insights into auxin signaling in plant-pathogen interactions. Front. Plant Sci. 2: 74.
  • Fu, X., Richards, D.E., Fleck, B., Xie, D., Burton, N., and Harberd, N. P. 2004. The Arabidopsis mutant sleepy1 gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 16: 1406–1418.
  • Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y., Zheng, N., and Dong, X. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486: 228–232.
  • Fusaro, A. F., Correa, R. L., Nakasugi, K., Jackson, C., Kawchuk, L., Vaslin, M.F.S., and Waterhouse, P. M. 2012. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology 426: 178–187.
  • Gagne, J. M., Downes, B. P., Shiu, S. H., Durski, A. M., and Vierstra, R. D. 2002. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 99: 11519–11524.
  • Gagne, J. M., Smalle, J., Gingerich, D. J., Walker, J. M., Yoo, S. D., Yanagisawa, S., and Vierstra, R. D. 2004. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. U.S.A. 101: 6803–6808.
  • Galan, J.M., and Peter, M. 1999. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc. Natl. Acad. Sci. U.S.A. 96: 9124–9129.
  • Galan, J. M., Wiederkehr, A., Seol, J. H., Haguenauer-Tsapis, R., Deshaies, R. J., Riezman, H., and Peter, M. 2001. Skp1p and the F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARE Snc1p in yeast. Mol. Cell Biol. 21: 3105–3117.
  • Geng, X., Cheng, J., Gangadharan, A., and Mackey, D. 2012. The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense. Plant Cell 24: 4763–7474.
  • Giles, J. 2004. Chemistry Nobel for trio who revealed molecular death-tag. Nature 431: 729.
  • Glenn, K. A., Nelson, R. F., Wen, H. M., Mallinger, A. J., and Paulson, H. L. 2008. Diversity in tissue expression, substrate binding and SCF complex formation for a lectin family of ubiquitin ligases. J. Biol. Chem. 283: 12717–12729.
  • Goldstein, G., Scheid, M., Hammerling, U., Schlesinger, D. H., Niall, H. D., and Boyse, E. A. 1975. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. U.S.A. 72: 11–15.
  • Gomi, K., Sasaki, A., Itoh, H., Ueguchi-Tanaka, M., Ashikari, M., Kitano, H., and Matsuoka, M. 2004. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J. 37: 626–634.
  • Gou, M., Su, N., Zheng, J., Huai, J., Wu, G., Zhao, J., He, J., Tang, D., Yang, S., and Wang, G. 2009. An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. Plant J. 60: 757–770.
  • Gou, M., Shi, Z., Zhu, Y., Bao, Z., Wang, G., and Hua, J. 2012. The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. Plant J. 69: 411–420.
  • Gray, W. M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271–276.
  • Greenham, K., Santner, A., Castillejo, C., Mooney, S., Sairanen, I., Ljung, K., and Estelle, M. 2011. The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. Curr. Biol. 21: 520–525.
  • Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z. L., Powers, S. J., Gong, F., Phillips, A. L., Hedden, P., Sun, T. P., and Thomas, S. G. 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18: 3399–3414.
  • Groll, M., and Huber, R. 2003. Substrate access and processing by the 20S proteasome core particle. Int. J. Biochem. Cell Biol. 35: 606–616.
  • Gu, X., Jiang, D., Wang, Y., Bachmair, A., and He, Y. 2009. Repression of the floral transition via histone H2B monoubiquitination. Plant J. 57: 522–533.
  • Guo, H., and Ecker, J.R. 2003. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115: 667–677.
  • Guo, L. Q., Nezames, C. D., Sheng, L. X., Deng, X. W., and Wei, N. 2013. Cullin-RING ubiquitin ligase family in plant abiotic stress pathways. J. Integr. Plant Biol. 55: 21–30.
  • Hagihara, S., Totani, S., Matsuo, I., and Ito, Y. 2005. Thermodynamic analysis of interactions between N-linked sugar chains and F-box protein Fbs1. J. Med. Chem. 48: 3126–3129.
  • Harmon, F. G., and Kay, S. A. 2003. The F box protein AFR is a positive regulator of phytochrome A-mediated light signaling. Curr. Biol. 13: 2091–2096.
  • Hatfield, P. M., Gosink, M. M., Carpenter, T. B., and Vierstra, R. D. 1997. The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J. 11: 213–226.
  • Hauvermale, A. L., Ariizumi, T., and Steber, C. M. 2012. Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol. 160: 83–92.
  • Hayashi, K. 2012. The interaction and integration of auxin signaling components. Plant Cell Physiol. 53: 965–975.
  • He, Y., Chung, E.-H., Hubert, D. A., Tornero, P., and Dangl, J. L. 2012. Specific missense alleles of the Arabidopsis jasmonic acid co-receptor COI1 regulate innate immune receptor accumulation and function. PLoS Genetics 8: e1003018.
  • Hedden, P., and Thomas, S. G. 2012. Gibberellin biosynthesis and its regulation. Biochem. J. 444: 11–25.
  • Helenius, A., and Aebi, M. 2004. Roles of N-linked sugars in the endoplasmic reticulum. Annu. Rev. Biochem. 73: 1019–1049.
  • Hepworth, S. R., Klenz, J. E., and Haughn, G. W. 2006. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta 223: 769–778.
  • Heride, C., Urbe, S., and Clague, M. J. 2014. Ubiquitin code assembly and disassembly. Curr. Biol. 24: R215–220.
  • Hermand, D. 2006. F-box proteins: more than baits for the SCF? Cell Div. 1: 30.
  • Hermand, D., Bamps, S., Tafforeau, L., Vandenhaute, J., and Makela, T. P. 2003. Skp1 and the F-box protein Pof6 are essential for cell separation in fission yeast. J. Biol. Chem. 278: 9671–9677.
  • Hershko, A., and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425–479.
  • Hirano, K., Asano, K., Tsuji, H., Kawamura, M., Mori, H., Kitano, H., Ueguchi-Tanaka, M., and Matsuoka, M. 2010. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22: 2680–2696.
  • Hu, M., Pei, B. L., Zhang, L. F., and Li, Y. Z. 2014. Histone H2B monoubiquitination is involved in regulating the dynamics of microtubules during the defense response to Verticillium dahliae toxins in Arabidopsis. Plant Physiol. 164: 1857–1865.
  • Hua, Z., Fields, A., and Kao, T. H. 2008. Biochemical models for S-RNase-based self-incompatibility. Mol. Plant 1: 575–585.
  • Hua, Z., and Vierstra, R. D. 2011. The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol. 62: 299–334.
  • Hua, Z., Zou, C., Shiu, S. H., and Vierstra, R. D. 2011. Phylogenetic comparison of F-box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS ONE 6: e16219.
  • Huang, J., Zhao, L., Yang, Q., and Xue, Y. 2006. AhSSK1, a novel SKP1-like protein that interacts with the S-locus F-box protein SLF. Plant J. 46: 780–793.
  • Hussain, A., Cao, D., Cheng, H., Wen, Z., and Peng, J. 2005. Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein. Plant J. 44: 88–99.
  • Hüttner, S., and Strasser, R. 2012. Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front. Plant Sci 3: 67.
  • Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M., and Yamaguchi, J. 2001. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height regulating gene GAI/RGA/RHT/D8. Plant Cell 13: 999–1010.
  • Ikram, S., Durandet, M., Vesa, S., Pereira, S., Guerche, P., and Bonhomme, S. 2014. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte. Plant Reprod. 27: 95–107.
  • Imaizumi, T., Schultz, T. F., Harmon, F. G., Ho, L. A., and Kay, S. A. 2005. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293–297.
  • Imaizumi, T., Tran, H. G., Swartz, T. E., Briggs, W. R., and Kay, S. A. 2003. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302–306.
  • Ingram, G. C., Doyle, S., Carpenter, R., Schultz, E.A., Simon, R., and Coen, E. S. 1997. Dual role for FIMBRIATA in regulating floral homeotic genes and cell division in Antirrhinum. EMBO J. 16: 6521–6534.
  • Ito, S., Song, Y.H., and Imaizumi, T. 2012. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol. Plant 5: 573–582.
  • Itoh, H., Shimada, A., Ueguchi-Tanaka, M., Kamiya, N., Hasegawa, Y., Ashikari, M., and Matsuoka, M. 2005. Overexpression of a GRAS protein lacking the DELLA domain confers altered gibberellin responses in rice. Plant J. 44: 669–679.
  • Jain, M., Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., Kapoor, S., Tyagi, A. K., and Khurana, J. P. 2007. F-box proteins in rice: genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol. 143: 1467–1483.
  • Ji, Y., and Guo, H. 2013. From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling. Mol. Plant 6: 11–14.
  • Jiang, L., Liu, X., Xiong, G., Liu, H., Chen, F., Wang, L., Meng, X., Liu, G., Yu, H., Yuan, Y., Yi, W., Zhao, L., Ma, H., He, Y., Wu, Z., Melcher, K., Qian, Q., Xu, H.E., Wang, Y., and Li, J. 2013. DWARF53 acts as a repressor of strigolactone signalling in rice. Nature 504: 401–405.
  • Jin, J., Cardozo, T., Lovering, R. C., Elledge, S. J., Pagano, M., and Harper, J. W. 2004. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18: 2573–2580.
  • Jonkers, W., and Rep, M. 2009. Lessons from fungal F-box proteins. Eukaryot. Cell 8: 677–695.
  • Ju, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., Garrett, W. M., Kessenbrock, M., Groth, G., Tucker, M. L., Cooper, B., Kieber, J. J., and Chang, C. 2012. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 109: 19486–19491.
  • Jurado, S., Abraham, Z., Manzano, C., Lopez-Torrejon, G., Pacios, L. F., and Del Pozo, J. C. 2010. The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. Plant Cell 22: 3891–3904.
  • Katsir, L., Schilmiller, A. L., Staswick, P. E., He, S. Y., and Howe, G. A. 2008. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. U.S.A. 105: 7100–7105.
  • Kelley, D. R., and Estelle, M. 2012. Ubiquitin-mediated control of plant hormone signaling. Plant Physiol. 160: 47–55.
  • Kepinski, S., and Leyser, O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446–451.
  • Kerscher, O., Felberbaum, R., and Hochstrasser, M. 2006. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell. Dev. Biol. 22: 159–180.
  • Kiba, T., Henriques, R., Sakakibara, H., and Chua, N.-H. 2007. Targeted degradation of PSEUDO-RESPONSE REGULATOR 5 by SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19: 2516–2530.
  • Kim, H. S., and Delaney, T. P. 2002. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14: 1469–1482.
  • Kim, H. J., Oh, S. A., Brownfield, L., Hong, S. H., Ryu, H., Hwang, I., Twell, D., and Nam, H. G. 2008. Control of plant germline proliferation by SCFFBL17 degradation of cell cycle inhibitors. Nature 455: 1134–1137.
  • Kim, W. Y., Geng, R., and Somers, D. E. 2003. Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc. Natl. Acad. Sci. U.S.A. 100: 4933–4938.
  • Kipreos, E. T., and Pagano, M. 2000. The F-box protein family. Genome Biol. 1: 1–7.
  • Kitagawa, K., Skowyra, D., Elledge, S. J., Harper, J. W., and Hieter, P. 1999. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 4: 21–33.
  • Klitzing, C., Huss, R., Illert, A.L., Froschl, A., Wötzel, S., Peschel, C., Bassermann, F., and Duyster, J. 2011. APC/CCdh1-mediated degradation of the F-box protein NIPA is regulated by its association with Skp1. PLoS ONE 6: e2899.
  • Koltai, H. 2014. Receptors, repressors, PINs: a playground for strigolactone signaling. Trends Plant Sci. 19: 727–733.
  • Komander, D. 2009. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37: 937–953.
  • Komander, D., and Rape, M. 2012. The ubiquitin code. Annu. Rev. Biochem. 81: 203–229.
  • Kondo-Okamoto, N., Ohkuni, K., Kitagawa, K., McCaffery, J. M., Shaw, J. M., and Okamoto, K. 2006. The novel F-box protein Mfb1p regulates mitochondrial connectivity and exhibits asymmetric localization in yeast. Mol. Biol. Cell 17: 3756–3767.
  • Kong, H., Landherr, L. L., Frohlich, M. W., Leebens-Mack, J., Ma, H., and dePamphilis, C. W. 2007. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J. 50: 873–885.
  • Kong, H., Leebens-Mack, J., Ni, W., dePamphilis, C. W., and Ma, H. 2004. Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implication. Mol. Biol. Evol. 21: 117–128.
  • Koops, P., Pelser, S., Ignatz, M., Klose, C., Marrocco-Selden, K., and Kretsch, T. 2011. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J. Exp. Bot. 62: 5547–5560.
  • Kraft, E., Stone, S. L., Ma, L., Su, N., Gao, Y., Lau, O. S., Deng, X. W., and Callis, J. 2005. Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol. 139: 1597–1611.
  • Kubo, K., Entani, T., Takara, A., Wang, N., Fields, A. M., Hua, Z., Toyoda, M., Kawashima, S., Ando, T., Isogai, A., Kao, T. H., and Takayama, S. 2010. Collaborative non-self recogntion system in S-RNase-based self-incompatibility. Science 330: 769–799.
  • Kubo, K., Paape, T., Hatakeyama, M., Entani, T., Takara, A., Kajihara, K., Tsukahara, M., Shimizu-Inatsugi, R., Shimizu, K.K., Takayama, S. 2015. Gene duplication and genetic exchange drive the evolution of S-RNase based self-incompatibility in Petunia. Nat. Plants 1: 14005.
  • Kurepa, J., and Smalle, J. A. 2008. Structure, function and regulation of plant proteasomes. Biochimie 90: 324–335.
  • Kuroda, H., Takahashi, N., Shimada, H., Seki, M., Shinozaki, K., and Matsui, M. 2002. Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol. 43: 1073–1085.
  • Kuroda, H., Yanagawa, Y., Takahashi, N., Horii, Y., and Matsui, M. 2012. A comprehensive analysis of interaction and localization of Arabidopsis SKP1-LIKE (ASK) and F-Box (FBX) proteins. PLoS ONE 7: e50009.
  • Lageix, S., Catrice, O., Deragon, J.-M., Gronenborn, B., Pélissier, T., and Ramírez, B. C. 2007. The nanovirus-encoded Clink protein affects plant cell cycle regulation through interaction with the retinoblastoma-related protein. J. Virol. 81: 4177–4185.
  • Lai, C. P., Lee, C. L., Chen, P. H., Wu, S. H., Yang, C. C., and Shaw, J. F. 2004. Molecular analyses of the Arabidopsis TUBBY-like protein gene family. Plant Physiol. 1: 1586–1597.
  • Lannoo, N. 2007. Functional characterization of a jasmonate-inducible carbohydrate-binding protein in tobacco plants. PhD thesis, Ghent University.
  • Lannoo, N., Peumans, W. J., and Van Damme, E.J.M. 2008. Do F-box proteins with a C-terminal domain homologous with the tobacco lectin play a role in protein degradation in plants? Biochem. Soc. Trans. 36: 843–847.
  • Lannoo, N., Peumans, W. J., Van Pamel, E., Alvarez, R., Xiong, T. C., Hause, G., Mazars, C., and Van Damme, E.J.M. 2006. Localization and in vitro binding studies suggest that the cytoplasmic/nuclear tobacco lectin can interact in situ with high-mannose and complex N-glycans. FEBS Lett. 580: 6329–6337.
  • Lannoo, N., and Van Damme, E.J.M. 2010. Nucleocytoplasmic plant lectins. Biochim. Biophys. Acta 1800: 190–201.
  • Lechner, E., Achard, P., Vansiri, A., Potuschak, T., and Genschik, P. 2006. F-box proteins everywhere. Curr. Opin. Plant Biol. 9: 1–8.
  • Lee, S. C., and Luan, S. 2012. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 35: 53–60.
  • Li, B., Lu, D., and Shan, L. 2014a. Ubiquitination of pattern recognition receptors in plant innate immunity. Mol. Plant Pathol. 15: 737–746.
  • Li, N., and Li, Y. 2014. Ubiquitin-mediated control of seed size in plants. Front. Plant Sci. 5: 332.
  • Li, S., Sun, P., Williams, J. S., and Kao, T. H. 2014b. Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata. Plant Reprod. 27: 31–45.
  • Li, Y., Jia, F., Yu, Y., Luo, L., Huang, J., Yang, G., Wu, C., and Zheng, C. 2014c. The SCF E3 ligase AtPP2-B11 plays a negative role in response to drought stress in Arabidopsis. Plant Mol. Biol. Rep. 32: 943–956.
  • Lin, D. I., Barbash, O., Kumar, K. G., Weber, J. D., Harper, J. W., Klein-Szanto, A. J., Rustgi, A., Fuchs, S. Y., and Diehl, J. A. 2006. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCFFBX4-αB crystallin complex. Mol. Cell 24: 355–366.
  • Liu, Y., and Li, J. 2014. Endoplasmic reticulum-mediated protein quality control in Arabidopsis. Front. Plant Sci. 5: 162.
  • Liu, W., Fan, J., Li, J., Song, Y., Li, Q., Zhang, Y., and Xue, Y. 2014. SCFSLF-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrid. Front. Genet. 5: 228.
  • Lumba, S., Cutler, S., and McCourt, P. 2010. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions. Annu. Rev. Cell Dev. Biol. 26: 445–469.
  • Magori, S., and Citovsky, V. 2011. Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens. Front. Plant Sci. 22: 87.
  • Magori, S., and Citovsky, V. 2012. The role of the ubiquitin-proteasome system in Agrobacterium tumefaciens–mediated genetic transformation of plants. Plant Physiol. 160: 65–71.
  • Maldonado-Calderón, M. T., Sepúlveda-García, E., and Rocha-Sosa, M. 2012. Characterization of novel F-box proteins in plants induced by biotic and abiotic stress. Plant Sci. 185: 208–217.
  • Margottin‑Goguet, F., Hsu, J. Y., Loktev, A., Hsieh, H. M., Reimann, J. D., and Jackson, P. K. 2003. Prophase destruction of Emi1 by the SCFβTrCP/Slimb ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell 4: 813–826.
  • Marino, D., Peeters, N., and Rivas, S. 2012. Ubiquitination during plant immune signaling. Plant Physiol. 160: 15–27.
  • Marrocco, K., Lecureuil, A., Nicolas, P., and Guerche, P. 2003. The Arabidopsis SKP1-like genes present a spectrum of expression profiles. Plant Mol. Biol. 52: 715–727.
  • Marrocco, K., Zhou, Y., Bury, E., Dieterle, M., Funk, M., Genschik, P., Krenz, M., Stolpe, T., and Kretsch, T. 2006. Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J. 45: 423–438.
  • Mas, P., Kim, W. Y., Somers, D. E., and Kay, S. A. 2003. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426: 567–570.
  • Mazzucotelli, E., Belloni, S., Marone, D., De Leonardi, A. M., Guerra, D., Di Fonzo, N., Cattivelli, L., and Mastrangelo, A. M. 2006. The E3 ubiquitin ligase family in plants: regulation by degradation. Curr. Genomics 7: 509–522.
  • McGinnis, K. M., Thomas, S. G., Soule, J. D., Strader, L. C., Zale, J. M., Sun, T. P., and Steber, C. M. 2003. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15: 1120–1130.
  • Merchante, C., Alonso, J. M., and Stepanova, A. N. 2013. Ethylene signaling: simple ligand, complex regulation. Curr. Opin. Plant Biol. 16: 554–560.
  • Meusser, B., Hirsch, C., Jarosch, E., and Sommer, T. 2005. ERAD: the long road to destruction. Nat. Cell Biol. 7: 766–772.
  • Mizushima, T., Hirao, T., Yoshida, Y., Lee, S. J., Chiba, T., Iwai, K., Yamaguchi, Y., Kato, K., Tsukihara, T., and Tanaka, K. 2004. Structural basis of sugar-recognizing ubiquitin ligase. Nat. Struct. Mol. Biol. 11: 365–370.
  • Mizushima, T., Yoshida, Y., Kumanomidou, T., Hasegawa, Y., Suzuki, A., Yamane, T., and Tanaka, K. 2007. Structural basis for the selection of glycosylated substrates by SCFFbs1 ubiquitin ligase. Proc. Natl. Acad. Sci. U.S.A. 104: 5777–5781.
  • Moon, J., Parry, G., and Estelle, M. 2004. The ubiquitin–proteasome pathway and plant development. Plant Cell 16: 3181–3195.
  • Moons, A., Prinsen, E., Bauw, G., and Van Montagu, M. 1997. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9: 2243–2259.
  • Murase, K., Hirano, Y., Sun, T.-P., and Hakoshima, T. 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456: 459–463.
  • Muthamilarasan, M., and Prasad, M. 2013. Plant innate immunity: an updated insight into defense mechanism. J. Biosci. 38: 433–449.
  • Mutka, A. M., Fawley, S., Tsao, T., and Kunkel, B. N. 2013. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Plant J. 74: 746–754.
  • Nakajima, M., Shimada, A., Takashi, Y., Kim, Y. C., Park, S. H., Ueguchi-Tanaka, M., Suzuki, H., Katoh, E., Iuchi, S., Kobayashi, M., Maeda, T., Matsuoka, M., and Yamaguchi, I. 2006. Identification and characterization of Arabidopsis gibberellin receptors. Plant J. 46: 880–888.
  • Navarro, L., Bari, R., Achard, P., Lison, P., Nemri, A., Harberd, N. P., and Jones, J. D. 2008. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18: 650–655.
  • Nelson, D. C., Lasswell, J., Rogg, L. E., Cohen, M. A., and Bartel, B. 2000. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331–340.
  • Nelson, D. E., Randle, S. J., and Laman, H. 2013. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol. 3: 130131.
  • Ni, W., Xie, D., Hobbie, L., Feng, B., Zhao, D., Akkara, J., and Ma, H. 2004. Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol. 134: 1574–1585.
  • Pagnussat, G. C., Yu, H. J., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S., Capron, A., Xie, L. F., Ye, D., and Sundaresan, V. 2005. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132: 603–614.
  • Patra, B., Pattanaik, S., and Yuan, L. 2013. Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. Plant J. 74: 435–447.
  • Pauwels, L., Barbero, G. F., Geerinck, J., Tilleman, S., Grunewald, W., Pérez, A. C., Chico, J. M., Bossche, R. V., Sewell, J., Gil, E., García-Casado, G., Witters, E., Inzé, D., Long, J. A., De Jaeger, G., Solano, R., and Goossens, A. 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464: 788–791.
  • Pazhouhandeh, M., Dieterle, M., Marrocco, K., Lechner, E., Berry, B., Brault, V., Hemmer, O., Kretsch, T., Richards, K. E., Genschik, P., and Ziegler-Graff, V. 2006. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc. Natl. Acad. Sci. U.S.A. 103: 1994–1999.
  • Peer, W. A. 2013. From perception to attenuation: auxin signalling and responses. Curr. Opin. Plant Biol. 16: 561–568.
  • Pérez, A. C., and Goossens, A. 2013. Jasmonate signalling: a copycat of auxin signalling? Plant Cell Environ. 36: 2071–2084.
  • Petroski, M. D., and Deshaies, R. J. 2005. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6: 9–20.
  • Pieterse, C.M.J., van der Does, D., Zamioudis, C., Leon-Reyes, A., and van Wees, S.C.M. 2012. Hormonal modulation of plant immunity. Ann. Rev. Cell Dev. Biol. 28: 489–521.
  • Pilobello, K. T., and Mahal, L. 2007. Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol. 11: 300–305.
  • Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., and Genschik, P. 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 11: 679–689.
  • Poueymiro, M., and Genin, S. 2009. Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Curr. Opin. Microbiol. 12: 44–52.
  • Pratt, J. M., Petty, J., Riba-Garcia, I., Robertson, D. H., Gaskell, S. J., Oliver, S. G., and Beynon, R. J. 2002. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell Proteomics 1: 579–591.
  • Qiao, H., Chang, K. N., Yazaki, J., and Ecker, J. R. 2009. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 23: 512–521.
  • Qiao, H., Shen, Z., Huang, S. C., Schmitz, R. J., Urich, M. A., Briggs, S. P., and Ecker, J. R. 2012. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338: 390–393.
  • Qiao, H., Wang, F., Zhao, L., Zhou, J., Lai, Z., Zhang, Y., Robbins, T. P., and Xue, Y. 2004a. The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell 16: 2307–2322.
  • Qiao, H., Wang, H., Zhao, L., Zhou, J., Huang, J., Zhang, Y., and Xue, Y. 2004b. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16: 582–595.
  • Qin, Q. M., Zhang, Q., Zhao, W. S., Wang, Y. Y., and Peng, Y. L. 2003. Identification of a lectin gene induced in rice in response to Magnaporthe grisea infection. Acta Bot. Sin. 45: 76–81.
  • Ralhan, A., Schöttle, S., Thurow, C., Iven, T., Feussner, I., Polle, A., and Gatz, C. 2012. The vascular pathogen Verticillium longisporum requires a jasmonic acid-independent COI1 function in roots to elicit disease symptoms in Arabidopsis shoots. Plant Physiol. 159: 1192–1203.
  • Ravid, T., and Hochstrasser, M. 2008. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9: 679–690.
  • Ren, H., Santner, A., del Pozo, J. C., Murray, J. A., and Estelle, M. 2008. Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J. 53: 705–716.
  • Risseeuw, E. P., Daskalchuk, T. E., Banks, T. W., Liu, E., Cotelesage, J., Hellmann, H., Estelle, M., Somers, D. E., and Crosby, W. L. 2003. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J. 34: 753–767.
  • Rossi, M., Duan, S., Jeong, Y. T., Horn, M., Saraf, A., Florens, L., Washburn, M. P., Antebi, A., and Pagano, M. 2013. Regulation of the CRL4 Cdt2 ubiquitin ligase and cell-cycle exit by the SCFFbxo11 ubiquitin ligase. Mol. Cell 49: 1159–1166.
  • Rüdiger, H., and Gabius, H. J. 2009. The biochemical basis and coding capacity of the sugar code. In: The Sugar Code. Fundamentals of glycosciences. pp. 3–13. Gabius, H. J., Ed., Wiley-VCH, Weinheim.
  • Samach, A., Klenz, J. E., Kohalmi, S. E., Risseeuw, E., Haughn, G. W., and Crosby, W. L. 1999. The UNUSUAL FLORAL ORGAN S gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 20: 433–445.
  • Santner, A., Calderón-Villalobos, L. I., and Estelle, M. 2009. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 5: 301–307.
  • Saracco, S. A., Hansson, M., Scalf, M., Walker, J. M., Smith, L. M., and Vierstra, R. D. 2009. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant J. 59: 344–358.
  • Sastry, M.V.K., Banerjee, P., Patanjali, S. R., Swamy, M. J., Swarnalatha, G. V., and Surolia, A. 1986. Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (β-D-Gal(1,3)D-GalNAc). J. Biol. Chem. 261: 11726–11733.
  • Sawa, M., Nusinow, D. A., Kay, S. A., and Imaizumi, T. 2007. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261–265.
  • Scaglione, K. M., Bansal, P. K., Deffenbaugh, A. E., Kiss, A., Moore, J. M., Korolev, S., Cocklin, R., Goebl, M., Kitagawa, K., and Skowyra, D. 2007. SCF E3-mediated autoubiquitination negatively regulates activity of Cdc34 E2 but plays a nonessential role in the catalytic cycle in vitro and in vivo. Mol. Cell Biol. 27: 5860–5870.
  • Schouppe, D., Ghesquière, B., Menschaert, G., De Vos, W. H., Bourque, S., Trooskens, G., Proost, P., Gevaert, K., and Van Damme, E.J.M. 2011. Interaction of the tobacco lectin with histone proteins. Plant Physiol. 155: 1091–1102.
  • Schouppe, D., Rougé, P., Lasanajak, Y., Barre, A., Smith, D. F., Proost, P., and Van Damme, E.J.M. 2010. Mutational analysis of the carbohydrate binding activity of the tobacco lectin. Glycoconjugate J. 27: 613–623.
  • Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-Tuink, T. J., Crosby, W. L., and Hooykaas, P. J. 2001. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol. 11: 258–262.
  • Schultz, T. F., Kiyosue, T., Yanovsky, M., Wada, M., and Kay, S. A. 2001. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13: 2659–2670.
  • Schwager, K. M., Calderón-Villalobos, L.I., Dohmann, E. M., Willige, B. C., Knierer, S., Nill, C., and Schwechheimer, C. 2007. Characterization of the VIER F‑BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development. Plant Cell 19: 1163–1178.
  • Schwechheimer, C., and Calderón-Villalobos, L. I. 2004. Cullin-containing E3 ubiquitin ligases in plant development. Curr. Opin. Plant Biol. 7: 677–686.
  • Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., Kobayashi, Y., Hsu, F. F., Sharon, M., Browse, J., He, S. Y., Rizo, J., Howe, G. A., and Zheng, N. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400–405.
  • Shen, H., Zhu, L., Bu, Q. Y., and Huq, E. 2012. MAX2 affects multiple hormones to promote photomorphogenesis. Mol. Plant 5: 750–762.
  • Shinjo, A., Araki, Y., Hirano, K., Arie, T., Ugaki, M., and Teraoka, T. 2011. Transgenic rice plants that over-express the mannose-binding rice lectin have enhanced resistance to rice blast. J. Gen. Plant Pathol. 77: 85–92.
  • Shyu, C., Figueroa, P., Depew, C. L., Cooke, T. F., Sheard, L. B., Moreno, J. E., Katsir, L., Zheng, N., Browse, J., and Howe, G. A. 2012. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24: 536–550.
  • Sijacic, P., Wang, X., Skirpan, A. L., Wang, Y., Dowd, P. E., McCubbin, A. G., Huang, S., and Kao, T. H. 2004. Identification of the pollen determinant of SRNase-mediated self-incompatibility. Nature 429: 302–305.
  • Skaar, J. R., Pagan, J. K., and Pagano, M. 2009. SnapShot: F-box proteins I. Cell 137: 1160.e1.
  • Skaar, J. R., Pagan, J. K., and Pagano, M. 2013. Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol. 14: 369–381.
  • Smaldone, S., Laub, F., Else, C., Dragomir, C., and Ramirez, F. 2004. Identification of MoKA, a novel F-box protein that modulates Kruppel-like transcription factor 7 activity. Mol. Cell Biol. 24: 1058–1069.
  • Smalle, J., and Vierstra, R. D. 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55: 555–590.
  • Smith, D. M., Kafri, G., Cheng, Y., Ng, D., Walz, T., and Goldberg, A. L. 2005. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 20: 687–698.
  • Smith, S. M., and Li, J. 2014. Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol. 21: 23–29.
  • Somers, D. E., Kim, W. Y., and Geng, R. 2004. The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16: 769–782.
  • Somers, D. E., Schultz, T. F., Milnamow, M., and Kay, S. A. 2000. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319–329.
  • Song, M., Xu, W., Xiang, Y., Jia, H., Zhang, L., and Ma, Z. 2014. Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling. Plant Mol. Biol. 84: 95–110.
  • Sonneveld, T., Tobutt, K. R., Vaughan, S. P., and Robbins, T. P. 2005. Loss of pollen S-function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype specific F-box gene. Plant Cell 17: 37–51.
  • Stefanowicz, K., Lannoo, N., Proost, P., and Van Damme, E.J.M. 2012. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures. FEBS Open Bio 2: 151–158.
  • Stirnberg, P., Furner, I. J., and Leyser, H.M.O. 2007. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50: 80–94.
  • Stirnberg, P., van De Sande, K., and Leyser, H. M. 2002. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129: 1131–1141.
  • Stone, S. L. 2014. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front. Plant Sci. 16: 135.
  • Stone, S. L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. 2005. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137: 13–30.
  • Strader, L. C., Ritchie, S., Soule, J. D., McGinnis, K. M., and Steber, C. M. 2004. Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homolog, SNEEZY. Proc. Natl. Acad. Sci. U.S.A. 101: 12771–12776.
  • Sun, P., and Kao, T. H. 2013. Self-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases. Plant Cell 25: 470–485.
  • Szemenyei, H., Hannon, M., and Long, J. A. 2008. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319: 1384–1386.
  • Takahara, M., Magori, S., Soyano, T., Okamoto, S., Yoshida, C., Yano, K., Sato, S., Tabata, S., Yamaguchi, K., Shigenobu, S., Takeda, N., Suzaki, T., and Kawaguchi, M. 2013. Too much love, a novel Kelch repeat-containing F-box protein, functions in the long-distance regulation of the legume-Rhizobium symbiosis. Plant Cell Physiol. 54: 433–447.
  • Takahashi, N., Kuroda, H., Kuromori, T., Hirayama, T., Seki, M., Shinozaki, K., Shimada, H., and Matsui, M. 2004. Expression and interaction analysis of Arabidopsis Skp1-related genes. Plant Cell Physiol. 45: 83–91.
  • Takase, T., Nishiyama, Y., Tanihigashi, H., Ogura, Y., Miyazaki, Y., Yamada, Y., and Kiyosue, T. 2011. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J. 67: 608–621.
  • Takayama, S., and Isogai, A. 2005. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56: 467–489.
  • Tan, X., Calderón-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C. V., Estelle, M., and Zheng, N. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640–645.
  • Tanz, S. K., Castleden, I., Hooper, C. M., Vacher, M., Small, I., and Millar, H. A. 2013. SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res. 41: D1185–D1191.
  • Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S. Y., Howe, G. A., and Browse, J. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661–665.
  • Thrower, J. S., Hoffman, L., Rechsteiner, M., and Pickart, C. M. 2000. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19: 94–102.
  • Tomanov, K., Luschnig, C., and Bachmair, A. 2014. Ubiquitin Lys 63-chains second-most abundant, but poorly understood in plants. Front. Plant. Sci. 5: 15.
  • Toyama, B. H., and Hetzer, M. W. 2013. Protein homeostasis: live long, won't prosper. Nat. Rev. Mol. Cell Biol. 14: 55–61.
  • Trujillo, M., and Shirasu, K. 2010. Ubiquitination in plant immunity. Curr. Opin. Plant Biol. 13: 402.
  • Tzfira, T., Vaidya, M., and Citovsky, V. 2001. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J. 20: 3596–3607.
  • Tzfira, T., Vaidya, M., and Citovsky, V. 2004. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431: 87–92.
  • Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T. Y., Hsing, Y. I., Kitano, H., Yamaguchi, I., and Matsuoka, M. 2005. Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature 437: 693–698.
  • Uppalapati, S. R., Ishiga, Y., Wangdi, T., Kunkel, B. N., Anand, A., Mysore, K. S., and Bender, C. L. 2007. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe Interact. 20: 955–965.
  • Van Damme, E.J.M., Lannoo, N., and Peumans, W. J. 2008. Plant lectins. Adv. Bot. Res. 48: 107–209.
  • van den Burg, H. A., Tsitsigiannis, D. I., Rowland, O., Lo, J., Rallapalli, G., Maclean, D., Takken, F. L., and Jones, J. D. 2008. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20: 697–719.
  • Vierstra, R. D. 2009. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 10: 385–397.
  • Vierstra, R. D. 2012. The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol. 160: 2–14.
  • Voges, D., Zwickl, P., and Baumeister, W. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68: 1015–1068.
  • Walsh, C. K., and Sadanandom, A. 2014. Ubiquitin chain topology in plant cell signaling: a new facet to an evergreen story. Front. Plant. Sci. 5: 122.
  • Wang, Y., Hou, Y., Gu, H., Kang, D., Chen, Z. L., Liu, J., and Qu, L. J. 2013a. The Arabidopsis anaphase-promoting complex/cyclosome subunit 1 is critical for both female gametogenesis and embryogenesis. J. Integr. Plant Biol. 55: 64–74.
  • Wang, Y., Peng, W., Zhou, X., Huang, F., Shao, L., and Luo, M. 2014. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus. New Phytol. 203: 1266–1281.
  • Wang, Y., Shirogane, T., Liu, D., Harper, J. W., and Elledge, S. J. 2003. Exit from exit: resetting the cell cycle through Amn1 inhibition of G protein signaling. Cell 112: 697–709.
  • Wang, Y., Sun, S., Zhu, W., Jia, K., Yang, H., and Wang, X. 2013b. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev. Cell 27: 681–688.
  • Wang, F., Zhu, D., Huang, X., Li, S., Gong, Y., Yao, Q., Fu, X., Fan, L. M., and Deng, X. W. 2009. Biochemical insights on degradation of Arabidopsis DELLA proteins gained form a cell-free assay system. Plant Cell 21: 2378–2390.
  • Wasternack, C., and Hause, B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111: 1021–1058.
  • Wei, W., Ayad, N. G., Wan, Y., Zhang, G. J., Kirschner, M. W., and Kaelin, W. G. Jr. 2004. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428: 194–198.
  • Welcker, M., and Clurman, B. E. 2007. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2: 7.
  • Wen, X., Zhang, C., Ji, Y., Zhao, Q., He, W., An, F., Jiang, L., and Guo, H. 2012. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 22: 1613–1616.
  • Wilk, S., and Orlowski, M. 1980. Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme. J. Neurochem. 35: 1172–1182.
  • Williams, J. S., Natale, C. A., Wang, N., Li, S., Brubaker, T. R., Sun, P., and Kao, T.-H. 2014a. Four previously identified Petunia inflata S-locus F-box genes are involved in pollen specificity in self-incompatibility. Mol. Plant 7: 567–569.
  • Williams, J. S., Der, J. P., dePamphilis, C. W., and Kao, T.-H. 2014b. Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata. Plant Cell 26: 2873–2888.
  • Williams, J. S., Wu, L., Li, S., Sun, P., and Kao, T.-H. 2015. Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. Front. Plant Sci. 6: 41.
  • Willige, B. C., Ghosh, S., Nill, C., Zourelidou, M., Dohmann, E. M., Maier, A., and Schwechheimer, C. 2007. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19: 1209–1220.
  • Wirthmueller, L., Maqbool, A., and Banfield, M. J. 2013. On the front line: structural insights into plant–pathogen interactions. Nat. Rev. Microbiol. 11: 761–776.
  • Woo, H. R., Chung, K. M., Park, J. H., Oh, S. A., Ahn, T., Hong, S. H., Jang, S. K., and Nam, H. G. 2001. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13: 1779–1790.
  • Woodward, A. W., and Bartel, B. 2005. Auxin: regulation, action, and interaction. Ann. Bot. 95: 707–735.
  • Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M., and Turner, J. G. 1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091–1094.
  • Xu, G., Ma, H., Nei, M., and Kong, H. 2009. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc. Natl. Acad. Sci. U.S.A. 106: 835–840.
  • Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W. L., Ma, H., Peng, W., Huang, D., and Xie, D. 2002. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919–1935.
  • Yan, H., Saika, H., Maekawa, M., Takamure, I., Tsutsumi, N., Kyozuka, J., and Nakazono, M. 2007. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. Genes Genet. Syst. 82: 361–366.
  • Yan, J., Li, H., Li, S., Yao, R., Deng, H., Xie, Q., and Xie, D. 2013. The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell 25: 486–498.
  • Yang, P., Fu, H., Walker, J., Papa, C.M., Smalle, J., Ju, Y. M., and Vierstra, R. D. 2004. Purification of the Arabidopsis 26S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J. Biol. Chem. 279: 6401–6413.
  • Yang, X., Kalluri, U. C., Jawdy, S., Gunter, L. E., Yin, T., Tschaplinski, T. J., Weston, D. J., Ranjan, P., and Tuskan, G. A. 2008. The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol. 148: 1189–1200.
  • Yao, I., Takagi, H., Ageta, H., Kahyo, T., Sato, S., Hatanaka, K., Fukuda, Y., Chiba, T., Morone, N., Yuasa, S., Inokuchi, K., Ohtsuka, T., Macgregor, G. R., Tanaka, K., and Setou, M. 2007. SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Mol. Cell 49: 1159–1166.
  • Yee, D., and Goring, D. R. 2009. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J. Exp. Bot. 60: 1109–1121.
  • Yen, H. C., and Elledge, S. J. 2008. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 322: 923–929.
  • Yoshida, Y. 2007. F-box proteins that contain sugar-binding domains. Biosci. Biotechnol. Biochem. 71: 2623–2631.
  • Yoshida, Y., Adachi, E., Fukiya, K., Iwai, K., and Tanaka, K. 2005. Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates. EMBO Rep. 6: 239–244.
  • Yoshida, Y., Chiba, T., Tokunaga, F., Kawasaki, H., Iwai, K., Suzuki, T., Ito, Y., Matsuoka, K., Yoshida, M., Tanaka, K., and Tai, T. 2002. E3 ubiquitin ligase that recognizes sugar chains. Nature 418: 438–442.
  • Yoshida, Y., Murakami, A., Iwai, K., and Tanaka, K. 2007. A neural-specific F-box protein FBS1 functions as a chaperone suppressing glycoprotein aggregation. J. Biol. Chem. 282: 7137–7144.
  • Yoshida, Y., and Tanaka, K. 2010. Lectin-like ERAD players in ER and cytosol. Biochim. Biophys. Acta 1800: 172–180.
  • Yoshida, Y., Tokunaga, F., Chiba, T., Iwai, K., Tanaka, K., and Tai, T. 2003. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J. Biol. Chem. 278: 43877–43884.
  • Zaltsman, A., Krichevsky, A., Loyter, A., and Citovsky, V. 2010. Agrobacterium induces expression of a host F-box protein required for tumorigenicity. Cell Host Microbe 7: 197–209.
  • Zhang, Y., Xu, W., Li, Z., Deng, X. W., Wu, W., and Xue, Y. 2008. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol. 148: 2121–2133.
  • Zhang, Z., Li, J., Liu, H., Chong, K., and Xu, Y. 2014. Roles of ubiquitination-mediated protein degradation in plant responses to abiotic stresses. Environ. Exp. Bot.: in press.
  • Zhao, D., Ni, W., Feng, B., Han, T., Petrasek, M. G., and Ma, H. 2003. Members of the Arabidopsis-SKP1-like gene family exhibit a variety of expression patterns and may play diverse roles in Arabidopsis. Plant Physiol. 133: 203–217.
  • Zhao, X., Harashima, H., Dissmeyer, N., Pusch, S., Weimer, A.K., Bramsiepe, J., Bouyer, D., Rademacher, S., Nowack, M. K., Novak, B., Sprunck, S., and Schnittger, A. 2012. A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genet. 8: e1002847.
  • Zhang, X., Gou, M., and Liu, C. J. 2013. Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase. Plant Cell 25: 4994–5010.
  • Zhang, X., Gou, M., Guo, C., Yang, H., and Liu, C. J. 2015. Down-regulation of the kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to UV-radiation. Plant Physiol. 167: 337–350.
  • Zheng, N., Schulman, B.A., Song, L., Miller, J. J., Jeffrey, P. D., Wang, P., Chu, C., Koepp, D. M., Elledge, S. J., Pagano, M., Conaway, R. C., Conaway, J. W., Harper, J. W., and Pavletich, N. P. 2002. Structure of the Cul1–Rbx1–Skp1–F box Skp2 SCF ubiquitin ligase complex. Nature 416: 703–709.
  • Zheng, X., Miller, N. D., Lewis, D. R., Christians, M. J., Lee, K. H., Muday, G. K., Spalding, E. P., and Vierstra, R. D. 2011. AUXIN UP-REGULATED F-BOX PROTEIN1 regulates the cross talk between auxin transport and cytokinin signaling during plant root growth. Plant Physiol. 156: 1878–1893.
  • Zhou, F., Lin, Q., Zhu, L., Ren, Y., Zhou, K., Shabek, N., Wu, F., Mao, H., Dong, W., Gan, L., Ma, W., Gao, H., Chen, J., Yang, C., Wang, D., Tan, J., Zhang, X., Guo, X., Wang, J., Jiang, L., Liu, X., Chen, W., Chu, J., Yan, C., Ueno, K., Ito, S., Asami, T., Cheng, Z., Wang, J., Lei, C., Zhai, H., Wu, C., Wang, H., Zheng, N., and Wan, J. 2013. Degradation of DWARF53 by the D14-SCF D3 complex is essential for strigolactone signalling. Nature 504: 406–410.
  • Zhou, S., Sun, X., Yin, S., Kong, X., Zhou, S., Xu, Y., Luo, Y., and Wang, W. 2014. The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance. Plant Physiol. Biochem. 84C: 213–223.
  • Zou, B., Yang, D. L., Shi, Z., Dong, H., and Hua, J. 2014. Monoubiquitination of histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in Arabidopsis. Plant Physiol. 165: 309–318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.