1,493
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Recent Advances in the Regulation of Citric Acid Metabolism in Citrus Fruit

, , , , &

References

  • Adinolfi, A., Guarriera-Bobyleva, V., Olezza, S., and Ruffo, A. 1971. Inhibition by oxalomalate of rat liver mitochondrial and extramitochondrial aconitate hydratase. Biochem. J. 125: 557–562.
  • Akihiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., and Matsukura, C. 2008. Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol. 49: 1378–1389.
  • Albertini, M. V., Carcouet, E., Pailly, O., Gambotti, C., Luro, F., and Berti, L. 2006. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J. Agric. Food Chem. 54: 8335–8339.
  • Alva, A. K., Mattos Jr, D., Paramasivam, S., Patil, B., Dou, H., and Sajwan, K. S. 2006. Potassium management for optimizing citrus production and quality. Int. J. Fruit Sci. 6: 3–43.
  • Angioni, A. and Schirra, M. 2011. Long-term frozen storage impact on the antioxidant capacity and chemical composition of Sardinian myrtle (Myrtus communis L.) berries. J. Agric. Sci. Technol. 1: 1168–1175.
  • Antoine, S., Pailly, O., Gibon, Y., Luro, F., Santini, J., Giannettini, J., and Berti, L. 2016. Short- and long-term effects of carbohydrate limitation on sugar and organic acid accumulation during mandarin fruit growth. J. Sci. Food Agric. 96: 3906–3914.
  • Aprile, A., Federici, C., Close, T. J., De Bellis, L., Cattivelli, L., and Roose, M. L. 2011. Expression of the H+-ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells. Funct. Integr. Genomics 11: 551–563.
  • Araujo, W. L., Nunes‐Nesi, A., Nikoloski, Z., Sweetlove, L. J., and Fernie, A. R. 2012. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ. 35: 1–21.
  • Asaoka, M., Segami, S., Ferjani, A., and Maeshima, M. 2016. Contribution of PPi-hydrolyzing function of vacuolar H+-pyrophosphatase in vegetative growth of Arabidopsis: evidenced by expression of uncoupling mutated enzymes. Front. Plant Sci. 7: 415.
  • Bain, J. M. 1958. Morphological, anatomical and physiological changes in the developing fruits of the valencia orange (Citrus sinensis L. Osbeck). Aust. J. Bot. 6: 1–24.
  • Baldwin, E. A. 1993. Citrus fruit. In: Biochemistry of Fruit Ripening (pp. 107–137). Seymour, G., Taylor, J., and Tucker, G. (eds.). London, United Kingdom: Chapman and Hall.
  • Baltscheffsky, M., Schultz, A., and Baltscheffsky, H. 1999. H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Lett. 452: 121–127.
  • Bastías, A., López-Climent, M., Valcárcel, M., Rosello, S., Gómez‐Cadenas, A., and Casaretto, J. A. 2011. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor. Physiol. Plant. 141: 215–226.
  • Bogin, E. and Wallace, A. 1966. Organic acid synthesis in lemon fruits. California Agriculture 20: 10–11.
  • Bown, A. W. and Shelp, B. J. 1997. The Metabolism and Functions of ᵞ-Aminobutyric Acid. Plant Physiol. 115: 1–5.
  • Bruemmer, J., Buslig, B., and Roe, R. 1977. Citrus enzyme system: opportunities for control of fruit quality. Proc. Int. Soc. Citricult. 3: 712–716.
  • Brune, A., Gonzalez, P., Goren, R., Zehavi, U., and Echeverria, E. 1998. Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifolia) juice cells. J. Membr. Biol. 166: 197–203.
  • Brune, A., Müller, M., Taiz, L., Gonzalez, P., and Etxeberria, E. 2002. Vacuolar acidification in citrus fruit: Comparison between acid lime (Citrus aurantifolia) and sweet lime (Citrus limmetioides) juice cells. J. Am. Soc. Hortic. Sci. 127: 171–177.
  • Bugaud, C., Daribo, M. -O., Beauté, M. -P., Telle, N., and Dubois, C. 2009. Relative importance of location and period of banana bunch growth in carbohydrate content and mineral composition of fruit. Fruits 64: 63–74.
  • Caixeta-Filho, J. V. 2006. Orange harvesting scheduling management: a case study. J. Oper. Res. Soc. 57: 637–642.
  • Canel, C., Bailey-Serres, J. N., and Roose, M. L. 1996. Molecular characterization of the mitochondrial citrate synthase gene of an acidless pummelo (Citrus maxima). Plant Mol. Biol. 31: 143–147.
  • Carroll, A. D., Fox, G. G., Laurie, S., Phillips, R., Ratcliffe, R. G., and Stewart, G. R. 1994. Ammonium assimilation and the role of ᵞ-aminobutyric acid in pH homeostasis in carrot cell suspensions. Plant Physiol. 106: 513–520.
  • Cercós, M., Soler, G., Iglesias, D. J., Gadea, J., Forment, J., and Talón, M. 2006. Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol. Biol. 62: 513–527.
  • Chen, M., Jiang, Q., Yin, X. -R., Lin, Q., Chen, J. -Y., Allan, A. C., Xu, C. -J., and Chen, K. -S. 2012. Effect of hot air treatment on organic acid-and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Sci. Hort. 147: 118–125.
  • Chen, M., Xie, X., Lin, Q., Chen, J., Grierson, D., Yin, X., Sun, C., and Chen, K. 2013. Differential expression of organic acid degradation-related genes during fruit development of Navel oranges (Citrus sinensis) in two habitats. Plant Mol. Biol. Rep. 31: 1131–1140.
  • Chen, R. -D. and Gadal, P. 1990. Do the mitochondria provide the 2-oxoglutarate needed for glutamate synthesis in higher plant chloroplasts? Plant Physiol. Biochem. 28: 141–145.
  • Clements, R. L. 1964. Organic acids in citrus fruits. I. varietal differencesa. J. Food Sci. 29: 276–280.
  • Crifò, T., Puglisi, I., Petrone, G., Recupero, G. R., and Piero, A. R. L. 2011. Expression analysis in response to low temperature stress in blood oranges: implication of the flavonoid biosynthetic pathway. Gene 476: 1–9.
  • De Bellis, L., Hayashi, M., Nishimura, M., and Alpi, A. 1995. Subcellular and developmental changes in distribution of aconitase isoforms in pumpkin cotyledons. Planta 195: 464–468.
  • De Bellis, L., Hayashi, M., Biagi, P. P., Hara‐Nishimura, I., Alpi, A., and Nishimura, M. 1994. Immunological analysis of aconitase in pumpkin cotyledons: the absence of aconitase in glyoxysomes. Physiol. Plant. 90: 757–762.
  • De Bellis, L., Tsugeki, R., Alpi, A., and Nishimura, M. 1993. Purification and characterization of aconitase isoforms from etiolated pumpkin cotyledons. Physiol. Plant. 88: 485–492.
  • Degu, A., Hatew, B., Nunes-Nesi, A., Shlizerman, L., Zur, N., Katz, E., Fernie, A. R., Blumwald, E., and Sadka, A. 2011. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. Planta 234: 501–513.
  • Delhaize, E., Ryan, P. R., Hocking, P. J., and Richardson, A. E. 2003. Effects of altered citrate synthase and isocitrate dehydrogenase expression on internal citrate concentrations and citrate efflux from tobacco (Nicotiana tabacum L.) roots. Plant and Soil 248: 137–144.
  • Ding, Z. J., Yan, J. Y., Xu, X. Y., Li, G. X., and Zheng, S. J. 2013. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. Plant J. 76: 825–835.
  • Ebel, R., Dozier, W., Hockema, B., Woods, F., Thomas, R., Wilkins, B., Nesbitt, M., and McDaniel, R. 2004. Fruit quality of Satsuma mandarin grown on the northern coast of the Gulf of Mexico. HortScience 39: 979–982.
  • Echeverria, E., Burns, J., and Felle, H. 1992. Compartmentation and cellular conditions controlling sucrose breakdown in mature acid lime fruits. Phytochemistry 31: 4091–4095.
  • Etienne, A., Génard, M., Lobit, P., Mbeguié-A-Mbéguié, D., and Bugaud, C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 64: 1451–1469.
  • Fallico, B., Lanza, M. C., Maccarone, E., Asmundo, C. N., and Rapisarda, P. 1996. Role of hydroxycinnamic acids and vinylphenols in the flavor alteration of blood orange juices. J. Agric. Food Chem. 44: 2654–2657.
  • Faraco, M., Spelt, C., Bliek, M., Verweij, W., Hoshino, A., Espen, L., Prinsi, B., Jaarsma, R., Tarhan, E., and de Boer, A. H. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep. 6: 32–43.
  • Fatland, B. L., Ke, J., Anderson, M. D., Mentzen, W. I., Cui, L. W., Allred, C. C., Johnston, J. L., Nikolau, B. J., and Wurtele, E. S. 2002. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol. 130: 740–756.
  • Festa, M., Colonna, A., Pietropaolo, C., and Ruffo, A. 2000. Oxalomalate, a competitive inhibitor of aconitase, modulates the RNA-binding activity of iron-regulatory proteins. Biochem. J. 348: 315–320.
  • Fukuda, A., Chiba, K., Maeda, M., Nakamura, A., Maeshima, M., and Tanaka, Y. 2004. Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J. Exp. Bot. 55: 585–594.
  • Gálvez, S. and Gadal, P. 1995. On the function of the NADP-dependent isocitrate dehydrogenase isoenzymes in living organisms. Plant Sci. 105: 1–14.
  • Gálvez, S., Lancien, M., and Hodges, M. 1999. Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? Trends Plant Sci. 4: 484–490.
  • García-Tejero, I., Romero-Vicente, R., Jiménez-Bocanegra, J., Martínez-García, G., Durán-Zuazo, V., and Muriel-Fernández, J. 2010. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agric. Water Manag. 97: 689–699.
  • Gautier, H., Rocci, A., Buret, M., Grasselly, D., and Causse, M. 2005. Fruit load or fruit position alters response to temperature and subsequently cherry tomato quality. J. Sci. Food Agric. 85: 1009–1016.
  • Gaxiola, R. A., Palmgren, M. G., and Schumacher, K. 2007. Plant proton pumps. FEBS Lett. 581: 2204–2214.
  • Gaxiola, R. A., Sanchez, C. A., Paez-Valencia, J., Ayre, B. G., and Elser, J. J. 2012. Genetic manipulation of a “vacuolar” H+-PPase: from salt tolerance to yield enhancement under phosphorus-deficient soils. Plant Physiol. 159: 3–11.
  • Ginestar, C. and Castel, J. 1996. Responses of young clementine citrus trees to water stress during different phenological periods. J. Hortic. Sci. 71: 551–559.
  • Goren, R. and Monselise, S. 1964. Morphological features and changes in nitrogen content in developing Shamouti orange fruits. Isr. J. Agric. Res. 14: 65–74.
  • Guarriera-Bobyleva, V. and Buffa, P. 1969. The inhibition by fluorocitrate of rat liver mitochondrial and extramitochondrial aconitate hydratase. Biochem. J. 113: 853–860.
  • Guo, L. -X., Shi, C. -Y., Liu, X., Ning, D. -Y., Jing, L. -F., Yang, H., and Liu, Y. -Z. 2016. Citrate accumulation-related gene expression and/or enzyme activity analysis combined with metabolomics provide a novel insight for an orange mutant. Sci. Rep. 6: 29343.
  • Gupta, K. J., Shah, J. K., Brotman, Y., Jahnke, K., Willmitzer, L., Kaiser, W. M., Bauwe, H., and Igamberdiev, A. U. 2012. Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J. Exp. Bot. 63: 1773–1784.
  • Hayashi, M., De Bellis, L., Alpi, A., and Nishimura, M. 1995. Cytosolic aconitase participates in the glyoxylate cycle in etiolated pumpkin cotyledons. Plant Cell Physiol. 36: 669–680.
  • Hu, X. -M., Shi, C. -Y., Liu, X., Jin, L. -F., Liu, Y. -Z., and Peng, S. -A. 2015. Genome-wide identification of citrus ATP-citrate lyase genes and their transcript analysis in fruits reveals their possible role in citrate utilization. Mol. Genet. Genomics 290: 29–38.
  • Huang, D., Zhao, Y., Cao, M., Qiao, L., and Zheng, Z. -L. 2016. Integrated systems biology analysis of transcriptomes reveals candidate genes for acidity control in developing fruits of sweet orange (Citrus sinensis L. osbeck). Front. Plant Sci. 7: 486.
  • Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., Christophe, A., Pervent, M., Bouteillé, M., and Stitt, M. 2010. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 154: 357–372.
  • Hussain, S. B., Anjum, M. A., Hussain, S., Ejaz, S., and Ahmed, M. 2017. Physico-chemical profiling of promising sweet orange cultivars grown under different agro-climatic conditions of Pakistan. Erwerbs-Obstbau: 1–10.
  • Iglesias, D. J., Cercós, M., Colmenero-Flores, J. M., Naranjo, M. A., Ríos, G., Carrera, E., Ruiz-Rivero, O., Lliso, I., Morillon, R., and Tadeo, F. R. 2007. Physiology of citrus fruiting. Braz. J. Plant Physiol. 19: 333–362.
  • Ishfaq, M., Hafiz, I. A., Hussain, A., and Chaudhary, G. A. 1999. Growth yield and fruit quality of sweet orange varieties under rainfed conditions of Chakwal. Int. J. Agric. Biol. 1: 100–102.
  • Jiang, N., Jin, L. -F., Teixeira da Silva, J. A., Islam, M. Z., Gao, H. -W., Liu, Y. -Z., and Peng, S. -A. 2014. Activities of enzymes directly related with sucrose and citric acid metabolism in citrus fruit in response to soil plastic film mulch. Sci. Hort. 168: 73–80.
  • Kallsen, C. E., Sanden, B., and Arpaia, M. L. 2011. Early navel orange fruit yield, quality, and maturity in response to late-season water stress. HortScience 46: 1163–1169.
  • Katz, E., Boo, K. H., Kim, H. Y., Eigenheer, R. A., Phinney, B. S., Shulaev, V., Negre-Zakharov, F., Sadka, A., and Blumwald, E. 2011. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. J. Exp. Bot. 62: 5367–5384.
  • Katz, E., Fon, M., Lee, Y., Phinney, B., Sadka, A., and Blumwald, E. 2007. The citrus fruit proteome: insights into citrus fruit metabolism. Planta 226: 989–1005.
  • Kim, H. J. and Park, J. -W. 2005. Oxalomalate, a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase, regulates heat shock-induced apoptosis. Biochem. Biophys. Res. Commun. 337: 685–691.
  • Kliewer, W. 1973. Berry composition of Vitis vinifera cultivars as influenced by photo-and nycto-temperatures during maturation. J. Am. Soc. Hortic. Sci. 98: 153–159.
  • Kriegel, A., Andrés, Z., Medzihradszky, A., Krüger, F., Scholl, S., Delang, S., Patir-Nebioglu, M. G., Gute, G., Yang, H., and Murphy, A. S. 2015. Job sharing in the endomembrane system: Vacuolar acidification requires the combined activity of V-ATPase and V-PPase. The Plant Cell 27: 3383–3396.
  • Ladaniya, M. S. 2008. Fruit biochemistry. In: Citrus Fruit: Biology, Technology and Evaluation (pp. 135–137). USA: Academic Press.
  • Lakso, A. N. and Kliewer, W. M. 1975. The influence of temperature on malic acid metabolism in grape berries I. Enzyme responses. Plant Physiol. 56: 370–372.
  • Lauble, H., Kennedy, M., Emptage, M., Beinert, H., and Stout, C. 1996. The reaction of fluorocitrate with aconitase and the crystal structure of the enzyme-inhibitor complex. Proc. Natl. Acad. Sci. 93: 13699–13703.
  • Lez-Altozano, P. G. and Castel, J. 1999. Regulated deficit irrigation in Clementina de Nules' citrus trees. I. Yield and fruit quality effects. J. Hortic. Sci. Biotechnol. 74: 706–713.
  • Li, D., Wang, P., Luo, Y., Zhao, M., and Chen, F. 2017a. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr. 57: 1729–1741.
  • Li, S. -J., Liu, X. -J., Xie, X. -L., Grierson, D., Yin, X. -R., and Chen, K. -S. 2015. CrMYB73, a PH-like gene, contributes to citric acid accumulation in citrus fruit. Sci. Hort. 197: 212–217.
  • Li, S. -J., Yin, X. -R., Wang, W. -L., Liu, X. -F., Zhang, B., and Chen, K. -S. 2017b. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3. J. Exp. Bot.
  • Li, S. -J., Yin, X. -R., Xie, X. -L., Allan, A. C., Ge, H., Shen, S. -L., and Chen, K. -S. 2016. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Sci. Rep. 6.
  • Lin, Q., Qian, J., Zhao, C., Wang, D., Liu, C., Wang, Z., Sun, C., and Chen, K. 2016. Low Temperature Induced Changes in Citrate Metabolism in Ponkan (Citrus reticulata Blanco cv. Ponkan) Fruit during Maturation. PloS One 11: e0156703.
  • Lin, Q., Wang, C., Dong, W., Jiang, Q., Wang, D., Li, S., Chen, M., Liu, C., Sun, C., and Chen, K. 2015. Transcriptome and metabolome analyses of sugar and organic acid metabolism in Ponkan (Citrus reticulata) fruit during fruit maturation. Gene 554: 64–74.
  • Liu, Q., Xu, J., Liu, Y., Zhao, X., Deng, X., Guo, L., and Gu, J. 2007. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J. Exp. Bot. 58: 4161–4171.
  • Liu, X., Hu, X. -M., Jin, L. -F., Shi, C. -Y., Liu, Y. -Z., and Peng, S. -A. 2014. Identification and transcript analysis of two glutamate decarboxylase genes, CsGAD1 and CsGAD2, reveal the strong relationship between CsGAD1 and citrate utilization in citrus fruit. Mol. Biol. Rep. 41: 6253–6262.
  • Lo Piero, A. R., Puglisi, I., Rapisarda, P., and Petrone, G. 2005. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J. Agric. Food Chem. 53: 9083–9088.
  • Long, A., Williams, L. E., Nelson, S., and Hall, J. 1995. Localization of membrane pyrophosphatase activity in Ricinus communis seedlings. J. Plant Physiol. 146: 629–638.
  • Lu, X., Cao, X., Li, F., Li, J., Xiong, J., Long, G., Cao, S., and Xie, S. 2016. Comparative transcriptome analysis reveals a global insight into molecular processes regulating citrate accumulation in sweet orange (Citrus sinensis). Physiol. Plant. 158: 463–482.
  • Maeshima, M. 2000. Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465: 37–51.
  • Maeshima, M., Nakanishi, Y., Matsuura-Endo, C., and Tanaka, Y. 1996. Proton pumps of the vacuolar membrane in growing plant cells. J. Plant Res. 109: 119–125.
  • Maeshima, M. and Yoshida, S. 1989. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J. Biol. Chem. 264: 20068–20073.
  • Marenco, S., Savostyanova, A. A., Van Der Veen, J. W., Geramita, M., Stern, A., Barnett, A. S., Kolachana, B., Radulescu, E., Zhang, F., and Callicott, J. H. 2010. Genetic modulation of GABA levels in the anterior cingulate cortex by GAD1 and COMT. Neuropsychopharmacology 35: 1708–1717.
  • Mariko, N., Hassimotto, A., and Lajolo, F. M. 2017. Brazilian native fruits as a source of phenolic compounds. In: Global Food Security and Wellness, pp. 105–124. Barbosa-Cánovas, G.V., María Pastore, G., Candoğan, K., Medina Meza, I.G., Caetano da Silva Lannes, S., Buckle, K., Yada, R.Y., and Rosenthal, A. (eds.). New York, NY: Springer New York.
  • Medina-Torres, R., Salazar-García, S., and Gómez-Aguilar, J. R. 2004. Fruit quality indices in eight nance [Byrsonima crassifolia (L.) HBK] selections. HortScience 39: 1070–1073.
  • Mirdehghan, S. H. and Rahemi, M. 2007. Seasonal changes of mineral nutrients and phenolics in pomegranate (Punica granatum L.) fruit. Sci. Hort. 111: 120–127.
  • Mitsuda, N., Enami, K., Nakata, M., Takeyasu, K., and Sato, M. H. 2001. Novel type Arabidopsis thaliana H+-PPase is localized to the Golgi apparatus. FEBS Lett. 488: 29–33.
  • Mohammed, S. A., Nishio, S., Takahashi, H., Shiratake, K., Ikeda, H., Kanahama, K., and Kanayama, Y. 2012. Role of vacuolar H+-inorganic pyrophosphatase in tomato fruit development. J. Exp. Bot. 63: 5613–5621.
  • Muller, M. and Taiz, L. 2002. Regulation of the lemon-fruit V-ATPase by variable stoichiometry and organic acids. J. Membr. Biol. 185: 209–220.
  • Muller, M. L., Rubinstein, B., and Taiz, L. 1996. On the mechanism of hyperacidification in lemon: comparison of the vacuolar H+-ATPase activities of fruits and epicotyls. J. Biol. Chem. 271: 1916–1924.
  • Nawaz, M. A., Ahmed, W., Maqbool, M., Saleem, B. A., Hussain, Z., Aziz, M., and Shafique, A. 2012. Characteristics of some potential cultivars for diversification of citrus industry of Pakistan. Int. J. Agric. Appl. Sci. 4: 58–62.
  • Nishawy, E., Sun, X., Ewas, M., Ziaf, K., Xu, R., Wang, D., Amar, M., Zeng, Y., and Cheng, Y. 2015. Overexpression of Citrus grandis DREB gene in tomato affects fruit size and accumulation of primary metabolites. Sci. Hort. 192: 460–467.
  • Obenland, D., Collin, S., Mackey, B., Sievert, J., Fjeld, K., and Arpaia, M. L. 2009. Determinants of flavor acceptability during the maturation of navel oranges. Postharvest Biol. Technol. 52: 156–163.
  • Oleski, N., Mahdavi, P., and Bennett, A. B. 1987. Transport properties of the tomato fruit tonoplast II. Citrate transport. Plant Physiol. 84: 997–1000.
  • Pan, Z., Li, Y., Deng, X., and Xiao, S. 2014. Non-targeted metabolomic analysis of orange (Citrus sinensis [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLC-electrospray mass spectrometry. Metabolomics 10: 508–523.
  • Park, S., Li, J., Pittman, J. K., Berkowitz, G. A., Yang, H., Undurraga, S., Morris, J., Hirschi, K. D., and Gaxiola, R. A. 2005. Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc. Nat. Acad. Sci. United States Am. 102: 18830–18835.
  • Pereira, C., López Corrales, M., Martín, A., Villalobos, M. d. C., Córdoba, M. d. G., and Serradilla, M. J. 2017. Physicochemical and nutritional characterization of brebas for fresh consumption from nine fig varieties (Ficus carica L.) grown in Extremadura (Spain). J. Food Qual. 2017.
  • Pérez-Pérez, J., Robles, J., and Botía, P. 2009. Influence of deficit irrigation in phase III of fruit growth on fruit quality in ‘lane late’ sweet orange. Agric. Water Manag. 96: 969–974.
  • Perotti, V. E., Figueroa, C. M., Andreo, C. S., Iglesias, A. A., and Podestá, F. E. 2010. Cloning, expression, purification and physical and kinetic characterization of the phosphoenolpyruvate carboxylase from orange (Citrus sinensis osbeck var. Valencia) fruit juice sacs. Plant Sci. 179: 527–535.
  • Peyret, P., Perez, P., and Alric, M. 1995. Structure, genomic organization, and expression of the Arabidopsis thaliana aconitase gene plant aconitase show significant homology with mammalian iron-responsive element-binding protein. J. Biol. Chem. 270: 8131–8137.
  • Piero, A. R. L., Cicero, L. L., and Puglisi, I. 2014. The metabolic fate of citric acid as affected by cold storage in blood oranges. J. Plant Biochem. Biotechnol. 23: 161–166.
  • Porat, R., Daus, A., Weiss, B., Cohen, L., and Droby, S. 2002. Effects of combining hot water, sodium bicarbonate and biocontrol on postharvest decay of citrus fruit. J. Hortic. Sci. Biotechnol. 77: 441–445.
  • Rangasamy, D. and Ratledge, C. 2000. Compartmentation of ATP:Citrate Lyase in Plants. Plant Physiol. 122: 1225–1230.
  • Rapisarda, P., Bellomo, S. E., and Intelisano, S. 2001. Storage temperature effects on blood orange fruit quality. J. Agric. Food Chem. 49: 3230–3235.
  • Ratajczak, R., Hinz, G., and Robinson, D. G. 1999. Localization of pyrophosphatase in membranes of cauliflower inflorescence cells. Planta 208: 205–211.
  • Ratajczak, R., Lüttge, U., Gonzalez, P., and Etxeberria, E. 2003. Malate and malate-channel antibodies inhibit electrogenic and ATP-dependent citrate transport across the tonoplast of citrus juice cells. J. Plant Physiol. 160: 1313–1317.
  • Rentsch, D. and Martinoia, E. 1991. Citrate transport into barley mesophyll vacuoles: Comparison with malate-uptake activity. Planta 184: 532–537.
  • Romero, P., Navarro, J., Pérez-Pérez, J., García-Sánchez, F., Gómez-Gómez, A., Porras, I., Martinez, V., and Botía, P. 2006. Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiol. 26: 1537–1548.
  • Rothan, C., Duret, S., Chevalier, C., and Raymond, P. 1997. Suppression of ripening-associated gene expression in tomato fruits subjected to a high CO2 concentration. Plant Physiol. 114: 255–263.
  • Ruffner, H. 1982. Metabolism of tartaric and malic acids in Vitis: a review. Vitis 21: 247–259.
  • Sadka, A., Dahan, E., Cohen, L., and Marsh, K. B. 2000a. Aconitase activity and expression during the development of lemon fruit. Physiol. Plant. 108: 255–262.
  • Sadka, A., Dahan, E., Or, E., and Cohen, L. 2000b. NADP+-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci. 158: 173–181.
  • Sadka, A., Dahan, E., Or, E., Roose, M. L., Marsh, K. B., and Cohen, L. 2001. Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties. Funct. Plant Biol. 28: 383–390.
  • Saidani, F., Giménez, R., Aubert, C., Chalot, G., Betrán, J. A., and Gogorcena, Y. 2017. Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. J. Food Compost. Anal. 62: 126–133.
  • Scherer, R., Rybka, A. C. P., Ballus, C. A., Meinhart, A. D., Teixeira Filho, J., and Godoy, H. T. 2012. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem. 135: 150–154.
  • Shang, H., Cao, S., Yang, Z., Cai, Y., and Zheng, Y. 2011. Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. J. Agric. Food Chem. 59: 1264–1268.
  • Sheng, L., Shen, D., Luo, Y., Sun, X., Wang, J., Luo, T., Zeng, Y., Xu, J., Deng, X., and Cheng, Y. 2017a. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chem. 216: 138–145.
  • Sheng, L., Shen, D., Yang, W., Zhang, M., Zeng, Y., Xu, J., Deng, X., and Cheng, Y. 2017b. GABA pathway rate-limit citrate degradation in postharvest citrus fruit evidence from HB pumelo (Citrus grandis)× Fairchild (Citrus reticulata) hybrid population. J. Agric. Food Chem. 65: 1669–1676.
  • Shi, C. -Y., Song, R. -Q., Hu, X. -M., Liu, X., Jin, L. -F., and Liu, Y. -Z. 2015. Citrus PH5-like H+-ATPase genes: identification and transcript analysis to investigate their possible relationship with citrate accumulation in fruits. Front. Plant Sci. 6: 135.
  • Shimada, T., Nakano, R., Shulaev, V., Sadka, A., and Blumwald, E. 2006. Vacuolar citrate/H+ symporter of citrus juice cells. Planta 224: 472–480.
  • Shimajiri, Y., Oonishi, T., Ozaki, K., Kainou, K., and Akama, K. 2013. Genetic manipulation of the γ‐aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ‐aminobutyric acid transaminase (GABA‐T) lead to sustained and high levels of GABA accumulation in rice kernels. Plant Biotechnol. J. 11: 594–604.
  • Shiratake, K., Kanayama, Y., Maeshima, M., and Yamaki, S. 1997. Changes in H+-pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit. Plant Cell Physiol. 38: 1039–1045.
  • Shlizerman, L., Marsh, K., Blumwald, E., and Sadka, A. 2007. Iron‐shortage‐induced increase in citric acid content and reduction of cytosolic aconitase activity in Citrus fruit vesicles and calli. Physiol. Plant. 131: 72–79.
  • Sinclair, W. B. 1984. The biochemistry and physiology of the lemon and other citrus fruits. Oakland, CA: University of California, pp. 114–141.
  • Slavin, J. L. and Lloyd, B. 2012. Health benefits of fruits and vegetables. Adv. Nutr.: Int. Rev. J. 3: 506–516.
  • Song, H., Xu, X., Wang, H., Wang, H., and Tao, Y. 2010. Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J. Sci. Food Agric. 90: 1410–1416.
  • Soost, R. and Cameron, J. 1961. Contrasting effects of acid and nonacid pummelos on the acidity of hybrid citrus progenies. California Agriculture 30: 351–357.
  • Sun, X., Zhu, A., Liu, S., Sheng, L., Ma, Q., Zhang, L., Nishawy, E. M. E., Zeng, Y., Xu, J., and Ma, Z. 2013. Integration of metabolomics and subcellular organelle expression microarray to increase understanding the organic acid changes in post-harvest citrus fruit. J. Integr. Plant Biol. 55: 1038–1053.
  • Suzuki, Y., Maeshima, M., and Yamaki, S. 1999. Molecular cloning of vacuolar H+-pyrophosphatase and its expression during the development of pear fruit. Plant Cell Physiol. 40: 900–904.
  • Terol, J., Soler, G., Talon, M., and Cercos, M. 2010. The aconitate hydratase family from Citrus. BMC Plant Biol. 10: 222.
  • Terrier, N., Deguilloux, C., Sauvage, F. -X., Martinoia, E., and Romieu, C. 1998. Proton pumps and anion transport in Vitis vinifera: the inorganic pyrophosphatase plays a predominant role in the energization of the tonoplast. Plant Physiol. Biochem, 36: 367–377.
  • Terrier, N., Sauvage, F. -X., Ageorges, A., and Romieu, C. 2001. Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213: 20–28.
  • Topuz, A., Topakci, M., Canakci, M., Akinci, I., and Ozdemir, F. 2005. Physical and nutritional properties of four orange varieties. J. Food Eng. 66: 519–523.
  • Treeby, M., Henriod, R., Bevington, K., Milne, D., and Storey, R. 2007. Irrigation management and rootstock effects on navel orange [Citrus sinensis (L.) Osbeck] fruit quality. Agric. Water Manag. 91: 24–32.
  • Verniquet, F., Gaillard, J., Neuburger, M., and Douce, R. 1991. Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem Journal 276 (Pt 3): 643–648.
  • Verweij, W., Spelt, C., Di Sansebastiano, G. -P., Vermeer, J., Reale, L., Ferranti, F., Koes, R., and Quattrocchio, F. 2008. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat. Cell Biol. 10: 1456–1462.
  • Wang, Q. Y., Gong, J. J., and Zhong, H. Y. 2010. Research progress of heating treatment for citrus fruits postharvest. Food Sci. 31: 316–319.
  • Wang, S. Y. and Camp, M. J. 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Sci. Hort. 85: 183–199.
  • Wang, X. -Y., Wang, P., Qi, Y. -P., Zhou, C. -P., Yang, L. -T., Liao, X. -Y., Wang, L. -Q., Zhu, D. -H., and Chen, L. -S. 2014. Effects of granulation on organic acid metabolism and its relation to mineral elements in Citrus grandis juice sacs. Food Chem. 145: 984–990.
  • Wang, Y., Xu, H., Zhang, G., Zhu, H., Zhang, L., Zhang, Z., Zhang, C., and Ma, Z. 2009. Expression and responses to dehydration and salinity stresses of V-PPase gene members in wheat. J. Genet. Genomics 36: 711–720.
  • Wehner, G. G., Balko, C. C., Enders, M. M., Humbeck, K. K., and Ordon, F. F. 2015. Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biol. 15: 125.
  • Xie, X. -L., Yin, X. -R., and Chen, K. -S. 2016. Roles of APETALA2/ethylene-response factors in regulation of fruit quality. Crit. Rev. Plant Sci. 35: 120–130.
  • Xu, Q., Yu, K., Zhu, A., Ye, J., Liu, Q., Zhang, J., and Deng, X. 2009. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. BMC Genomics 10: 540.
  • Yakushiji, H., Nonami, H., Fukuyama, T., Ono, S., Takagi, N., and Hashimoto, Y. 1996. Sugar accumulation enhanced by osmoregulation in Satsuma mandarin fruit. J. Am. Soc. Hortic. Sci. 121: 466–472.
  • Yang, H., Knapp, J., Koirala, P., Rajagopal, D., Peer, W. A., Silbart, L. K., Murphy, A., and Gaxiola, R. A. 2007. Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol. J. 5: 735–745.
  • Yousef, A. R., Ahmed, D. M., and Sarrwy, S. 2016. Effect of different harvest dates on the quality of beauty and japanese plum fruits after ripening. Int. J. Chem. Technol. Res. 9: 8–17.
  • Yu, C., Zeng, L., Sheng, K., Chen, F., Zhou, T., Zheng, X., and Yu, T. 2014. γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chem. 159: 29–37.
  • Zhang, G. and Xie, S. 2014. Influence of water stress on the citric acid metabolism related gene expression in the ponkan fruits. Agric. Sci. 5: 1513–1521.
  • Zhao, X., Lu, X., Yin, Z., Wang, D., Wang, J., Fan, W., Wang, S., Zhang, T., and Ye, W. 2016. Genome-wide identification and structural analysis of pyrophosphatase gene family in cotton. Crop Sci. 56: 1831–1840.
  • Zhen, R. -G., Kim, E., and Rea, P. 1997. The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. Adv. Bot. Res. 25: 297–337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.