351
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Artificial MicroRNAs Promote High-Level Production of Biomolecules Through Metabolic Engineering of Phenylpropanoid Pathway

&

References

  • Abdel-Ghany, S. E., and Pilon, M. 2008. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 283(23): 15932–15945. doi:10.1074/jbc.M801406200.
  • Ai, T., Zhang, L., Gao, Z., Zhu, C. X., and Guo, X. 2011. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol. 13(2): 304–316. doi:10.1111/j.1438-8677.2010.00374.x.
  • Ali, M. B., and McNear, D. H. 2014. Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. BMC Plant Biol. 14(1): 84. doi:10.1186/1471-2229-14-84.
  • Arroyo, J. D., Gallichotte, E. N., and Tewari, M. 2014. Systematic design and functional analysis of artificial microRNAs. Nucleic Acids Res. 42(9): 6064–6077. doi:10.1093/nar/gku171.
  • Asha, S., Nisha, J., and Soniya, E. V. 2013. In silico characterisation and phylogenetic analysis of two evolutionarily conserved miRNAs (miR166 and miR171) from black pepper (Piper nigrum L.). Plant Mol. Biol. Rep. 31: 707–771. doi:10.1007/s11105-012-0532-5.
  • Baxter, H. L. and Stewart Jr., C. N. 2013. Effects of altered lignin biosynthesis on phenylpropanoid metabolism and plant stress. Biofuels 4(6): 635–650. doi:10.4155/bfs.13.56.
  • Bazzini, A. A., Manacorda, C. A., Tohge, T., Conti, G., Rodriguez, M. C., Nunes-Nesi, A., Villanueva, S., Fernie, A. R., Carrari, F., and Asurmendi, S. 2011. Metabolic and miRNA profiling of TMV infected plants reveals biphasic temporal changes. PLoS One 6(12): e28466. doi:10.1371/journal.pone.0028466.
  • Bhattacharyya, D., Sinha, R., Hazra, S., Datta, R., and Chattopadhyay, S. 2013. De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics 14(1): 748. doi:10.1186/1471-2164-14-748
  • Bomal, C., Bedon, F., Caron, S., Mansfield, S. D., Levasseur, C., Cooke, J. E. K, Blais, S., Tremblay, L., Morency, M. J., Pavy, N., Grima-Pettenati, J., Séguin, A., and Mackay, J. 2008. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J. Exp. Bot. 59: 3925–3939. doi:10.1093/jxb/ern234.
  • Boudreau, R. L., Martins, I., and Davidson, B. L. 2008. Artificial MicroRNAs as siRNA Shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol. Ther. 17(1): 169–175. doi:10.1038/mt.2008.231.
  • Broun, P. 2005. Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr. Opin. Plant Biol. 8(3): 272–279. doi:10.1016/j.pbi.2005.03.006.
  • Burgess, S. J., Tredwell, G., Molnàr, A., Bundy, J. G., and Nixon, P. J. 2012. Artificial microRNA-mediated knockdown of pyruvate formate lyase (PFL1) provides evidence for an active 3-hydroxybutyrate production pathway in the green alga Chlamydomonas reinhardtii. J. Biotechnol. 162(1): 57–66. doi:10.1016/j.jbiotec.2012.05.010.
  • Carbonell, A., Takeda, A., Fahlgren, N., Johnson, S. C., Cuperus, J. T., and Carrington, J. C. 2014. New generation of artificial microRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol. 165(1): 15–29.
  • Cavallini, E., Matus, J. T., Finezzo, L., Zenoni, S., Loyola, R., Guzzo, F., Schlechter, R., Ageorges, A., Arce-Johnson, P., and Tornielli, G. B. 2015. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiol. 167(4): 1448–1470. doi:10.1104/pp.114.256172.
  • Chuck, G., Candela, H., and Hake, S. 2009. Big impacts by small RNAs in plant development. Curr. Opin. Plant Biol. 12(1): 81–86. doi:10.1016/j.pbi.2008.09.008.
  • Debat, H. J., and Ducasse, D. 2014. Plant microRNAs: Recent advances and future challenges. Plant Mol. Biol. Rep. 32(6): 1257–1269. doi:10.1007/s11105-014-0727-z.
  • Deng, Y. and Lu, S. 2017. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 36(4): 257–290. doi:10.1080/07352689.2017.1402852.
  • Devers, E. A., Teply, J., Reinert, A., Gaude, N., and Krajinski, F. 2013. An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula. BMC Plant Biol. 13(1): 82. doi:10.1186/1471-2229-13-82.
  • Eamens, A. L., McHale, M., and Waterhouse, P. M. 2014. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana. Arabidopsis Protoc. 1062:211–24. doi:10.1007/978-1-62703-580-4_11.
  • Eamens, A., Wang, M. B., Smith, N. A., and Waterhouse, P. M. 2008. RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol. 147(2): 456–468. doi:10.1104/pp.108.117275.
  • Feng, J., Wang, J., Fan, P., Jia, W., Nie, L., Jiang, P., Chen, X., Lv, S., Wan, L., Chang, S., Li, S., and Li, Y. 2015. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC Plant Biol. 15(1): 63. doi:10.1186/s12870-015-0451-3.
  • Ferdous, J., Hussain, S. S., and Shi, B. J. 2015. Role of microRNAs in plant drought tolerance. Plant Biotechnol. J. 13(3): 293–305. doi:10.1111/pbi.12318.
  • Ferry, N., and Gatehouse, A. M. R. 2010. Transgenic crop plants for resistance to biotic stress. In Transgenic Crop Plants (pp. 1–65). Springer, Berlin, Heidelberg.
  • Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., Leyva, A., Weigel, D., García, J. A., and Paz-Ares, J. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39(8): 1033–1037. doi:10.1038/ng2079.
  • Frazier, T. P., Xie, F., Freistaedter, A., Burklew, C. E., and Zhang, B. 2010. Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum). Planta 232: 1289–1308. doi:10.1007/s00425-010-1255-1.
  • Fu, C., Sunkar, R., Zhou, C., Shen, H., Zhang, J. Y., Matts, J., Wolf, J., Mann, D. G., Stewart Jr., C. N., Tang, Y., and Wang, Z. Y. 2012. Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol. J. 10(4): 443–452. doi:10.1111/j.1467-7652.2011.00677.x.
  • Gasparis, S., Kała, M., Przyborowski, M., Orczyk, W., and Nadolska-Orczyk, A. 2017. Artificial microRNA-based specific gene silencing of grain hardness genes in polyploid cereals appeared to be not stable over transgenic plant generations. Front. Plant Sci. 7. doi:10.3389/fpls.2016.02017.
  • Gou, J. Y., Felippes, F. F., Liu, C. J., Weigel, D., and Wang, J. W. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23(4): 1512–1522. doi:10.1105/tpc.111.084525.
  • Guillaumie, S., Mzid, R., Me´chin, V., Le´on, C., Hichri, I., Destrac-Irvine, A., Trossat-Magnin, C., Delrot, S., and Lauvergeat, V. 2010. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol. Biol. 72: 215–234. doi:10.1007/s11103-009-9563-1.
  • Guo, Y., Han, Y., Ma, J., Wang, H., Sang, X., and Li, M. 2014. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida). PLoS One 9(6): e98783. doi:10.1371/journal.pone.0098783.
  • Ha, C. M., Escamilla-Trevino, L., Yarce, J. C. S., Kim, H., Ralph, J., Chen, F., and Dixon, R. A. 2016. An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula. Plant J. 86(5): 363–375. doi:10.1111/tpj.13177.
  • Hauser, F., Chen, W., Deinlein, U., Chang, K., Ossowski, S., Fitz, J., Hannon, G. J., and Schroeder, J. I. 2013. A genomic-scale artificial microRNA library as a tool to investigate the functionally redundant gene space in Arabidopsis. Plant Cell 25(8): 2848–2863. doi:10.1105/tpc.113.112805.
  • He, H., He, L., and Gu, M. 2014. Role of microRNAs in aluminum stress in plants. Plant Cell Rep. 33: 831–836. doi:10.1007/s00299-014-1565-z.
  • Hoffmann, L., Besseau, S., Geoffroy, P., Ritzenthaler, C., Meyer, D., Lapierre, C., Pollet, B., and Legrand, M. 2004. Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16(6): 1446–1465. doi:10.1105/tpc.020297.
  • Hu, J., Deng, X., Shao, N., Wang, G., and Huang, K. 2014. Rapid construction and screening of artificial microRNA systems in Chlamydomonas reinhardtii. Plant J. 79(6): 1052–1064. doi:10.1111/tpj.12606.
  • Jelly, N. S., Schellenbaum, P., Walter, B., and Maillot, P. 2012. Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Res. 21(6): 1319–1327. doi:10.1007/s11248-012-9611-5.
  • Jia, L., Zhang, D., Qi, X., Ma, B., Xiang, Z., and He, N. 2014. Identification of the conserved and novel miRNAs in mulberry by high-throughput sequencing. PLoS One 9(8): e104409. doi:10.1371/journal.pone.0104409.
  • Jones-Rhoades, M. W. 2012. Conservation and divergence in plant microRNAs. Plant Mol. Biol. 80(1): 3–16. doi:10.1007/s11103-011-9829-2.
  • Jones-Rhoades, M. W., Bartel, D. P., and Bartel, B. 2006. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant. Biol. 57: 19–53. doi:10.1146/annurev.arplant.57.032905.105218.
  • Joy, N., Asha, S., Mallika, V., and Soniya, E. V. 2013. De novo transcriptome sequencing reveals a considerable bias in the incidence of simple sequence repeats towards the downstream of “Pre-miRNAs” of black pepper. PLoS One 8(3): e56694. doi:10.1371/journal.pone.0056694.
  • Kamthan, A., Chaudhuri, A., Kamthan, M., and Datta, A. 2015. Small RNAs in plants: recent development and application for crop improvement. Front. Plant Sci. 6: 208. doi:10.3389/fpls.2015.00208.
  • Khan, N., Adhami, V. M., and Mukhtar, H. 2010. Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr.-Relat. Cancer 17: 39–52. doi:10.1677/ERC-09-0262.
  • Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R., and Frank, W. 2008. Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol. 148(2): 684–693. doi:10.1104/pp.108.128025.
  • Kullan, J. B., Pinto, D. L. P., Bertolini, E., Fasoli, M., Zenoni, S., Tornielli, G. B., Pezzotti, M, Meyers, B. C., Farina, L., Pè, M. E., and Mica, E. 2015. MiRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics 16(1): 393. doi:10.1186/s12864-015-1610-5.
  • Lennox, K. A. and Behlke, M. A. 2011. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 18(12): 1111–1120. doi:10.1038/gt.2011.100.
  • Li, J. F., Chung, H. S., Niu, Y., Bush, J., McCormack, M., and Sheen, J. 2013. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25(5): 1507–1522. doi:10.1105/tpc.113.112235.
  • Li, S. 2014. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signal. Behav. 9: e27522. doi: 10.4161/psb.27522.
  • Li, J. F., Zhang, D., and Sheen, J. 2014a. Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat. Protoc. 9(4): 939–949. doi:10.1038/nprot.2014.061.
  • Li, Y. F., Zheng, Y., Addo-Quaye, C., Zhang, L., Saini, A., Jagadeeswaran, G., Axtell, M. J., Zhang, W., and Sunkar, R. 2010. Transcriptome-wide identification of microRNA targets in rice. Plant J. 62(5): 742–759. doi:10.1111/j.1365-313X.2010.04187.x.
  • Li, Y., Zhao, S., Zhong, S., Wang, Z., Ding, B., and Li, Y. 2014b. A simple method for construction of artificial microRNA vector in plant. Biotechnol. Lett. 36(10): 2117–2123. doi:10.1007/s10529-014-1570-x.
  • Liang, G., He, H., Li, Y., and Yu, D. 2012. A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 235(6): 1421–1429. doi:10.1007/s00425-012-1610-5.
  • Lin, J. K., and Weng, M. H. 2006. Flavonoids as nutraceuticals. In The Science of Flavonoids. Grotewold, E., Ed., pp. 213–238. Springer, New York.
  • Lin, J. S., Lin, C. C., Lin, H. H., Chen, Y. C., and Jeng, S. T. 2012. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol. 196(2): 427–440.
  • Lise, J., Serge, B., Julien, M., Nathalie, D. C., Brice, A., Philippe, L. B., Davy, B., Charles, L. J., and Catherine, L. 2011. Identification of laccases involved in lignin polymerization and strategies to deregulate their expression in order to modify lignin content in Arabidopsis and poplar. BMC Proc. 5(7): O39. doi:10.1186/1753-6561-5-S7-O39.
  • Liu, Q., Wang, F., and Axtell, M. J. 2014a. Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell 26(2): 741–753. doi:10.1105/tpc.113.120972.
  • Liu, W., Mazarei, M., Peng, Y., Fethe, M. H., Rudis, M. R., Lin, J., Millwood, R. J., Arelli, P. R., and Stewart Jr., C. N. 2014b. Computational discovery of soybean promoter cis-regulatory elements for the construction of soybean cyst nematode-inducible synthetic promoters. Plant Biotechnol. J. 12(8): 1015–1026. doi:10.1111/pbi.12206.
  • Llave, C., Kasschau, K. D., Rector, M. A., and Carrington, J. C. 2002. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14(7): 1605–1619. doi:10.1105/tpc.003210.
  • Lu, S., Li, Q., Wei, H., Chang, M. J., Tunlaya-Anukit, S., Kim, H., Liu, J., Song, J., Sun, Y. H., Yuan, L., Yeh, T. F., Peszlen, I., Ralph, J., Sederoff, R. R., and Chiang, V. L. 2013. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc. Natl. Acad. Sci. USA 110(26): 10848–10853. doi:10.1073/pnas.1308936110.
  • Luo, Y., Zhang, X., Luo, Z., Zhang, Q., and Liu, J. 2015. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC Plant Biol. 15(1): 11. doi:10.1186/s12870-014-0400-6.
  • Macovei, A., Gill, S. S., and Tuteja, N. 2012. MicroRNAs as promising tools for improving stress tolerance in rice. Plant Signal. Behav. 7(10): 1296–1301. doi:10.4161/psb.21586.
  • Mallory, A. C., Reinhart, B. J., Jones-Rhoades, M. W., Tang, G., Zamore, P. D., Barton, M. K., and Bartel, D. P. 2004. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23(16): 3356–3364. doi:10.1038/sj.emboj.7600340.
  • Marín-González, E., and Suárez-López, P. 2012. “And yet it moves”: cell-to-cell and long-distance signaling by plant microRNAs. Plant Sci. 196: 18–30. doi:10.1016/j.plantsci.2012.07.009.
  • McCarthy, R. L., Zhong, R., Fowler, S., Lyskowski, D., Piyasena, H., Carleton, K., Spicer, C., and Ye, Z. H. 2010. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiol. 51(6): 1084–1090. doi:10.1093/pcp/pcq064.
  • McHale, M., Eamens, A. L., Finnegan, E. J., and Waterhouse, P. M. 2013. A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis. Plant J. 76(3): 519–529. doi:10.1111/tpj.12306.
  • Misra, P., Pandey, A., Tiwari, M., Chandrashekar, K., Sidhu, O. P., Asif, M. H., Chakrabarty, D., Singh, P. K., Trivedi, P. K., Nath, P., and Tuli, R. 2010. Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol. 152(4): 2258–2268. doi:10.1104/pp.109.150979.
  • Mittal, P., Yadav, R., Devi, R., Sharma, S., Goyal, A. 2012. Phenomenal RNA interference: from mechanism to application. In Crop Plant. Aakash, Goyal, Ed. InTech, London. ISBN: 978-953-51-0527-5, Available at: http://www.intechopen.com/books/crop-plant/phenomenal-rna-interference-frommechanism-to-application.
  • Nakatsuka, T., Mishiba, K. I., Kubota, A., Abe, Y., Yamamura, S., Nakamura, N., Tanaka, Y., and Nishihara, M. 2010. Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J. Plant Physiol. 167(3): 231–237. doi:10.1016/j.jplph.2009.08.007.
  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and Jones, J. D. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772): 436–439. doi:10.1126/science.1126088.
  • Nishihara, M. and Nakatsuka, T. 2010. Genetic engineering of novel flower colors in floricultural plants: recent advances via transgenic approaches. Methods Mol. Biol. 589: 325–347. doi:10.1007/978-1-60327-114-1_29.
  • Nishihara, M., Nakatsuka, T., and Yamamura, S. 2005. Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett. 579(27): 6074–6078. doi:10.1016/j.febslet.2005.09.073.
  • Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., and Chua, N. H. 2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24(11): 1420–1428. doi:10.1038/nbt1255.
  • Ong, S. S., and Wickneswari, R. 2011. Expression profile of small RNAs in Acacia mangium secondary xylem tissue with contrasting lignin content-potential regulatory sequences in monolignol biosynthetic pathway. BMC Genomics 12(3): S13. doi:10.1186/1471-2164-12-S3-S13.
  • Ong, S. S., and Wickneswari, R. 2012. Characterization of microRNAs expressed during secondary wall biosynthesis in Acacia mangium. PLoS One 7(11): e49662. doi:10.1371/journal.pone.0049662.
  • Ossowski, S., Schwab, R., and Weigel, D. 2008. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 53(4): 674–690. doi:10.1111/j.1365-313X.2007.03328.x.
  • Pandey, A., Misra, P., Bhambhani, S., Bhatia, C., and Trivedi, P. K. 2014. Expression of Arabidopsis MYB transcription factor, AtMYB111, in tobacco requires light to modulate flavonol content. Sci. Rep. 4: 5018. doi:10.1038/srep05018.
  • Peng, Z., Lu, Y., Li, L., Zhao, Q., Feng, Q., Gao, Z., Lu, H., Hu, T., Yao, N., Liu, K., Li, Y., Fan, D., Guo, Y., Li, W., Lu, Y., Weng, Q., Zhou, C., Zhang, L., Huang, T., Zhao, Y., Zhu, C., Liu, X., Yang, X., Wang, T., Miao, K., Zhuang, C., Cao, X., Tang, W., Liu, G., Liu, Y., Chen, J., Liu, Z., Yuan, L., Liu, Z., Huang, X., Lu, T., Fei, B., Ning, Z., Han, B., and Jiang, Z. 2013. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat. Genet. 45(4): 456–461. doi:10.1038/ng.2569.
  • Pérez-Quintero, Á. L., and López, C. 2010. Artificial microRNAs and their applications in plant molecular biology. Agron. Colomb. 28(3): 367–374.
  • Poovaiah, C. R., Nageswara-Rao, M., Soneji, J. R., Baxter, H. L., and Stewart, C. N. 2014. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant Biotechnol. J. 12(9): 1163–1173. doi:10.1111/pbi.12225.
  • Qiu, J., Gao, F., Shen, G., Li, C., Han, X., Zhao, Q., Zhao, D., Hua, X., and Pang, Y. 2013. Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS One 8(8): e70665. doi:10.1371/journal.pone.0070665.
  • Qu, J., Ye, J., and Fang, R. 2007. Artificial microRNA-mediated virus resistance in plants. J. Virol. 81(12): 6690–6699. doi:10.1128/JVI.02457-06.
  • Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. 2004. Rational siRNA design for RNA interference. Nat. Biotechnol. 22(3): 326–330. doi:10.1038/nbt936.
  • Rubinelli, P. M., Chuck, G., Li, X., and Meilan, R. 2013. Constitutive expression of the Corngrass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass Bioenerg. 54: 312–321. doi:10.1016/j.biombioe.2012.03.001
  • Sablok, G., Pérez-Quintero, Á. L., Hassan, M., Tatarinova, T. V., and López, C. 2011. Artificial microRNAs (amiRNAs) engineering–on how microRNA-based silencing methods have affected current plant silencing research. Biochem. Biophys. Res. Commun. 406(3): 315–319. doi:10.1016/j.bbrc.2011.02.045.
  • Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. 2006. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18: 1121–1133. doi:10.1105/tpc.105.039834.
  • Schwab, R., Ossowski, S., Warthman, N., and Weigel, D. 2010. Directed gene silencing with artificial microRNAs. Methods Mol. Biol. 592: 71–88. doi:10.1007/978-1-60327-005-2_6.
  • Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., Weigel, D. 2005. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 8: 517–527. doi:10.1016/j.devcel.2005.01.018.
  • Shen, H., He, X., Poovaiah, C. R., Wuddineh, W. A., Ma, J., Mann, D. G., Wuddineh, W. A., Ma, J., Mann, D. G., Wang, H., Jackson, L., Tang, Y., Stewart Jr., C. N., Chen, F., and Dixon, R. A. 2012. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol. 193(1): 121–136. doi:10.1111/j.1469-8137.2011.03922.x.
  • Shi, R., Yang, C., Lu, S., Sederoff, R., and Chiang, V. L. 2010. Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232(6): 1281–1288. doi:10.1007/s00425-010-1253-3.
  • Skirycz, A., Jozefczuk, S., Stobiecki, M., Muth, D., Zanor, M. I., Witt, I., and Mueller-Roeber, B. 2007. Transcription factor AtDOF4; 2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New Phytol. 175(3): 425–438. doi:10.1111/j.1469-8137.2007.02129.x.
  • Smith, R. A., Schuetz, M., Roach, M., Mansfield, S. D., Ellis, B., and Samuels, L. 2013. Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell 25(10): 3988–3999. doi:10.1105/tpc.113.117176.
  • Song, C., Fang, J., Li, X., Liu, H., and Chao, C. T. 2009. Identification and characterization of 27 conserved microRNAs in citrus. Planta 230(4): 671–685. doi:10.1007/s00425-009-0971-x.
  • Stenvang, J., Petri, A., Lindow, M., Obad, S., and Kauppinen, S. 2012. Inhibition of microRNA function by antimiR oligonucleotides. Silence 3(1): 1. doi:10.1186/1758-907X-3-1.
  • Stommel, J. R., Lightbourn, G. J., Winkel, B. S., and Griesbach, R. J. 2009. Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J. Am. Soc. Hortic. Sci. 134(2): 244–251.
  • Stracke, R., Ishihara, H., Barsch, G. H. A., Mehrtens, F., Niehaus, K., and Weisshaar, B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50(4): 660–677. doi:10.1111/j.1365-313X.2007.03078.x.
  • Sun, G. 2012. MicroRNAs and their diverse functions in plants. Plant Mol. Biol. 80: 17–36. doi:10.1007/s11103-011-9817-6.
  • Sun, G., Stewart Jr., C. N., Xiao, P., and Zhang, B. 2012. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One 7(3). doi:10.1371/journal.pone.0032017.
  • Tanaka, Y., and Ohmiya, A. 2008. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr. Opin. Biotechnol. 19(2): 190–197. doi:10.1016/j.copbio.2008.02.015.
  • Tiwari, M., Sharma, D., and Trivedi, P. K. 2014. Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol. Biol. 86(1–2): 1–18. doi:10.1007/s11103-014-0224-7.
  • Todesco, M., Rubio-Somoza, I., Paz-Ares, J., and Weigel, D. 2010. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet. 6: e1001031. doi:10.1371/journal.pgen.1001031.
  • Trumbo, J. L., Zhang, B., and Stewart, C. N. 2015. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks. Plant Biotechnol. J. 13(3): 337–354. doi:10.1111/pbi.12319.
  • Tsuji, Y., Vanholme, R., Tobimatsu, Y., Ishikawa, Y., Foster, C. E., Kamimura, N., Hishiyama, S., Hashimoto, S., Shino, A., Hara, H., Sato-Izawa, K., Oyarce, P., Goeminne, G., Morreel, K., Kikuchi, J., Takano, T., Fukuda, M., Katayama, Y., Boerjan, W., Ralph, J., Masai, E., and Kajita, S. 2015. Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα-dehydrogenase from Sphingobium sp. strain SYK-6. Plant Biotechnol. J. 13(6): 821–832. doi:10.1111/pbi.12316.
  • Tuan, P. A., Park, W. T., Xu, H., Park, N. I., and Park, S. U. 2012. Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J. Agric. Food Chem. 60(23): 5945–5951. doi:10.1021/jf300833m.
  • Vanholme, R., Demedts, B., Morreel, K., Ralph, J., and Boerjan, W. 2010. Lignin biosynthesis and structure. Plant Physiol. 153(3): 895–905. doi:10.1104/pp.110.155119.
  • Voinnet, O. 2005. Non-cell autonomous RNA silencing. FEBS Lett. 579(26): 5858–5871. doi:10.1016/j.febslet.2005.09.039.
  • Vom Endt, D., Kijne, J. W., and Memelink, J. 2002. Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61(2): 107–114. doi:10.1016/S0031-9422(02)00185-1.
  • Wang, C. Y., Zhang, S., Yu, Y., Luo, Y. C., Liu, Q., Ju, C., Zhang, Y. C., Qu, L. H., Lucas, W. J., Wang, X., and Chen, Y. Q. 2014. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol. J. 12(8): 1132–1142. doi:10.1111/pbi.12222.
  • Wang, X., Yang, Y., Zhou, J., Yu, C., Cheng, Y., Yan, C., and Chen, J. 2012. Two-step method for constructing Arabidopsis artificial microRNA vectors. Biotechnol. Lett. 34(7): 1343–1349. doi:10.1007/s10529-012-0901-z.
  • Warthmann, N., Chen, H., Ossowski, S., Weigel, D., and Hervé, P. 2008. Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3(3): e1829. doi:10.1371/journal.pone.0001829.
  • Winkel-Shirley, B. 2002. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5(3): 218–223. doi:10.1016/S1369-5266(02)00256-X.
  • Wong, M. M., Cannon, C. H., and Wickneswari, R. 2011. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing. BMC Genomics 12(1): 342. doi:10.1186/1471-2164-12-342.
  • Wu, J., Wang, D., Liu, Y., Wang, L., Qiao, X., and Zhang, S. 2014. Identification of miRNAs involved in pear fruit development and quality. BMC Genomics 15(1): 953. doi:10.1186/1471-2164-15-953.
  • Xia, R., Zhu, H., An, Y. Q., Beers, E. P., and Liu, Z. 2012. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol. 13(6): R47. doi:10.1186/gb-2012-13-6-r47.
  • Xie, F., Stewart, C. N., Taki, F. A., He, Q., Liu, H., and Zhang, B. 2014. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnol. J. 12(3): 354–366. doi:10.1111/pbi.12142<./bib>
  • Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Han, P. L., and Fan, H. Q. 2005. Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep. 23(9): 639–646. doi:10.1007/s00299-004-0887-7.
  • Xu, P., Zhang, Y., Kang, L., Roossinck, M. J., and Mysore, K. S. 2006. Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol. 142(2): 429–440. doi:10.1104/pp.106.083295.
  • Xu, W., Dubos, C., and Lepiniec, L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci. 20(3): 176–185. doi:10.1016/j.tplants.2014.12.001.
  • Xu, Y., Zhou, X., and Zhang, W. 2008. MicroRNA prediction with a novel ranking algorithm based on random walks. Bioinformatics 24: i50–i58. doi:10.1093/bioinformatics/btn175.
  • Yan, H., Zhong, X., Jiang, S., Zhai, C., and Ma, L. 2011. Improved method for constructing plant amiRNA vectors with blue–white screening and MAGIC. Biotechnol. Lett. 33(8): 1683–1688. doi:10.1007/s10529-011-0607-7.
  • Yang, F., Mitra, P., Zhang, L., Prak, L., Verhertbruggen, Y., Kim, J. S., Sun, L., Zheng, K., Tang, K., Auer, M., and Scheller, H. V. 2013. Engineering secondary cell wall deposition in plants. Plant Biotechnol. J. 11(3): 325–335.
  • Yang, R., Zeng, Y., Yi, X., Zhao, L., and Zhang, Y. 2015. Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica. Plant Biotechnol. J. 13(3): 395–408. doi:10.1111/pbi.12337.
  • Yuan, L., and Grotewold, E. 2015. Metabolic engineering to enhance the value of plants as green factories. Metab. Eng. 27: 83–91. doi:10.1016/j.ymben.2014.11.005.
  • Zeng, H., Wang, G., Hu, X., Wang, H., Du, L., and Zhu, Y. 2014. Role of microRNAs in plant responses to nutrient stress. Plant Soil 374(1–2): 1005–1021. doi:10.1007/s11104-013-1907-6.
  • Zeng, Y., Wagner, E. J., and Cullen, B. R. 2002. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9(6): 1327–1333. doi:10.1016/S1097-2765(02)00541-5.
  • Zhang, X., Li, H., Zhang, J., Zhang, C., Gong, P., Ziaf, K., Xiao, F., and Ye, Z. 2011. Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res. 20(3): 569–581. doi:10.1007/s11248-010-9440-3.
  • Zhang, Z. J. 2014. Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. Planta 239(6): 1139–1146. doi:10.1007/s00425-014-2054-x.
  • Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Ruan, K., and Jin, Y. 2007. Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun. 354(2): 585–590. doi:10.1016/j.bbrc.2007.01.022.
  • Zhao, S., Tuan, P. A., Li, X., Kim, Y. B., Kim, H., Park, C. G., Yang, J., Li, C. H., and Park, S. U. 2013. Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics 14: 802. doi:10.1186/1471-2164-14-802.
  • Zhou, J., Lee, C., Zhong, R., and Ye, Z. H. 2009. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21(1): 248–266. doi:10.1105/tpc.108.063321.
  • Zhou, M. and Luo, H. 2013. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol. Biol. 83(1–2): 59–75. doi:10.1007/s11103-013-0089-1.
  • Zhu, H., Xia, R., Zhao, B., An, Y. Q., Dardick, C. D., Callahan, A. M., and Liu, Z. 2012. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol. 12(1): 149. doi:10.1186/1471-2229-12-149.
  • Zuo, J., Fu, D., Zhu, Y., Qu, G., Tian, H., Zhai, B., Ju, Z., Gao, C., Wang, Y., Luo, Y., and Zhu, B. 2013. sRNAome parsing yields insights into tomato fruit ripening control. Physiol. Plant 149(4): 540–553. doi:10.1111/ppl.12055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.