932
Views
9
CrossRef citations to date
0
Altmetric
Articles

CRISPR/Cas-Mediated Genome Editing for the Improvement of Oilseed Crop Productivity

, , , &

References

  • Abbruscato, P., Nepusz, T., Mizzi, L., Del Corvo, M., Morandini, P., Fumasoni, I., Michel, C., Paccanaro, A., Guiderdoni, E., Schaffrath, U., Morel, J.-B., Piffanelli, P., and Faivre-Rampant, O. 2012. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Mol. Plant Pathol. 13: 828–841. doi:10.1111/j.1364-3703.2012.00795.x
  • Acevedo-Garcia, J., Gruner, K., Reinstädler, A., Kemen, A., Kemen, E., Cao, L., Takken, F. L. W., Reitz, M. U., Schäfer, P., O’Connell, R. J., Kusch, S., Kuhn, H., and Panstruga, R. 2017. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Sci. Rep. 7: 9319. doi:10.1038/s41598-017-07188-7
  • AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., and Sadegh, M. 2020. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 48: 519–530. doi:10.1146/annurev-earth-071719-055228
  • Allen, G. J., Murata, Y., Chu, S. P., Nafisi, M., and Schroeder, J. I. 2002. Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell. 14: 1649–1662.
  • Andersson, M., Turesson, H., Olsson, N., Fält, A. S., Ohlsson, P., Gonzalez, M. N., Samuelsson, M., and Hofvander, P. 2018. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant. 164: 378–384.
  • Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., and Liu, D. R. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 576: 149–157.
  • Arnaud, N., Girin, T., Sorefan, K., Fuentes, S., Wood, T. A., Lawrenson, T., Sablowski, R., and Østergaard, L. 2010. Gibberellins control fruit patterning in Arabidopsis thaliana. Genes Dev. 24: 2127–2132.
  • Arshad, M., Feyissa, B. A., Amyot, L., Aung, B., and Hannoufa, A. 2017. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci. 258: 122–136.
  • Asaduzzaman, M., Pratley, J. E., Luckett, D., Lemerle, D., and Wu, H. 2020. Weed management in canola (Brassica napus L): a review of current constraints and future strategies for Australia. Arch. Agron. Soil Sci. 66: 427–444. doi:10.1080/03650340.2019.1624726
  • Asgher, M., Per, T. S., Masood, A., Fatma, M., Freschi, L., Corpas, F. J., and Khan, N. A. 2017. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ. Sci. Pollut. Res. Int. 24: 2273–2285.
  • Bai, Y., Pavan, S., Zheng, Z., Zappel, N. F., Reinstadler, A., Lotti, C., Giovanni, C., Ricciardi, L., Lindhout, P., Visser, R., Theres, K., and Panstruga, R. 2008. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol. Plant Microbe Interact. 21: 30–39.
  • Bao, A., Chen, H., Chen, L., Chen, S., Hao, Q., Guo, W., Qiu, D., Shan, Z., Yang, Z., Yuan, S., Zhang, C., Zhang, X., Liu, B., Kong, F., Li, X., Zhou, X., Tran, L. P., and Cao, D. 2019. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 19: 131.
  • Bastet, A., Robaglia, C., and Gallois, J. C. 2017. eIF4E resistance: natural variation should guide gene editing. Trends Plant Sci. 22: 411–419.
  • Bastet, A., Zafirov, D., Giovinazzo, N., Guyon-Debast, A., Nogué, F., Robaglia, C., and Gallois, J. L. 2019. Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses . Plant Biotechnol. J. 17: 1736–1750.
  • Boem, F. H. G., Lavado, R. S., and Porcelli, C. A. 1996. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crop Res. 47: 175–179. doi:10.1016/0378-4290(96)00025-1
  • Bolton, M. D., Thomma, B. P., and Nelson, B. D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7: 1–16.
  • Bonny, S. 2008. Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review. Agron. Sustain. Dev. 28: 21–32. doi:10.1051/agro:2007044
  • Bowman, J. L., Alvarez, J., Weigel, D., Meyerowitz, E. M., and Smyth, D. R. 1993. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development. 119: 721–743.
  • Braatz, J., Harloff, H.-J., Emrani, N., Elisha, C., Heepe, L., Gorb, S. N., and Jung, C. 2018. The effect of INDEHISCENT point mutations on silique shatter resistance in oilseed rape (Brassica napus). Theor. Appl. Genet. 131: 959–971.
  • Braatz, J., Harloff, H.-J., Mascher, M., Stein, N., Himmelbach, A., and Jung, C. 2017. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 174: 935–942.
  • Cai, Y., Chen, L., Liu, X., Guo, C., Sun, S., Wu, C., Jiang, B., Jiang, B., and Hou, W. 2018. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol. J. 16: 176–185.
  • Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., Han, T., and Hou, W. 2015. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One. 10: e0136064.
  • Cai, Y., Wang, L., Chen, L., Wu, T., Liu, L., Sun, S., Wu, C., Yao, W., Jiang, B., Yuan, S., Han, T., and Hou, W. 2020. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol. J. 18: 298–309.
  • Carter, H. E., Fraaije, B. A., West, J. S., Kelly, S. L., Mehl, A., Shaw, M. W., and Cools, H. J. 2014. Alterations in the predicted regulatory and coding regions of the sterol 14α-demethylase gene (CYP51) confer decreased azole sensitivity in the oilseed rape pathogen Pyrenopeziza brassicae . Mol. Plant Pathol. 15: 513–522.
  • Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., and Gal-On, A. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17: 1140–1153.
  • Chattopadhyay, C., Birah, A., and Jalali, B. L. 2019. Climate change: impact on biotic stresses afflicting crop plants. In Natural Resource Management: Ecological Perspectives. Sustainability in Plant and Crop Protection; Peshin, R. and Dhawan, A. Eds. Springer: Cham, Switzerland, pp 133–146.
  • Chen, J.-G., Ullah, H., Temple, B., Liang, J., Guo, J., Alonso, J. M., Ecker, J. R., and Jones, A. M. 2006. RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. J. Exp. Bot. 57: 2697–2708.
  • Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol. 70: 667–697.
  • Chen, Z., Zhang, H., Jablonowski, D., Zhou, X., Ren, X., Hong, X., Schaffrath, R., Zhu, J.-K., and Gong, Z. 2006. Mutations in ABO1/ELO2, a subunit of holo-elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol. Cell. Biol. 26: 6902–6912. doi:10.1128/MCB.00433-06
  • Clark, S. E., Running, M. P., and Meyerowitz, E. M. 1993. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development. 119: 397–418.
  • Clark, S. E., Running, M. P., and Meyerowitz, E. M. 1995. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development. 121: 2057–2067.
  • Consonni, C., Bednarek, P., Humphry, M., Francocci, F., Ferrari, S., Harzen, A., Ver Loren van Themaat, E., and Panstruga, R. 2010. Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol. 152: 1544–1561.
  • Correa-Aragunde, N. M., Graziano, M. L., and Lamattina, L. 2004. Nitric oxide plays a central role in determining lateral root development in tomato. Planta. 218: 900–905.
  • Daszkowska-Golec, A., Skubacz, A., Sitko, K., Słota, M., Kurowska, M., and Szarejko, I. 2018. Mutation in barley ERA1 (Enhanced Response to ABA1) gene confers better photosynthesis efficiency in response to drought as revealed by transcriptomic and physiological analysis. Enviro. Exp. Bot. 148: 12–26. doi:10.1016/j.envexpbot.2018.01.003
  • De Souza, M. C. P., da Silva, M. D., Binneck, E., Cabral, G. A. L., Iseppon, A. M. B., Pompelli, M. F., Endres, L., and Kido, E. A. 2020. RNA-Seq transcriptome analysis of Jatropha curcas L. accessions after salt stimulus and unigene-derived microsatellite mining. Ind. Crop. Prod. 147: 112168. doi:10.1016/j.indcrop.2020.112168
  • Del Rio, L. E., Bradley, C. A., Henson, R. A., Endres, G. J., Hanson, B. K., McKay, K., Halvorson, M., Porter, P. M., Le Gare, D. G., and Lamey, H. A. 2007. Impact of Sclerotinia stem rot on yield of canola. Plant Dis. 91: 191–194.
  • Derbyshire, M. C. and Denton-Giles, M. 2016. The control of Sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant Pathol. 65: 859–877. doi:10.1111/ppa.12517
  • Devesa-Guerra, I., Morales-Ruiz, T., Pérez-Roldán, J., Parrilla-Doblas, J. T., Dorado-León, M., García-Ortiz, M. V., Ariza, R. R., and Roldán-Arjona, T. 2020. DNA methylation editing by CRISPR-guided excision of 5-methylcytosine. J. Mol. Biol. 432: 2204–2216.
  • Diepenbrock, W. 2000. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crop. Res. 67: 35–49. doi:10.1016/S0378-4290(00)00082-4
  • Dixit, A., Tomar, P., Vaine, E., Abdullah, H., Hazen, S., and Dhankher, P. 2018. A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant. Cell Environ. 41: 1171–1185. doi:10.1111/pce.13103
  • Dunn, M. W. and Gaynor, L. G. 2020. Impact and control of powdery mildew on irrigated soybean varieties grown in southeast Australia. Agronomy. 10: 514. doi:10.3390/agronomy10040514
  • Elferjani, R. and Soolanayakanahally, R. 2018. Canola responses to drought, heat, and combined stress: shared and specific effects on carbon assimilation, seed yield, and oil composition. Front. Plant Sci. 9: 1224.
  • Eloy, N. B., Gonzalez, N., Van Leene, J., Maleux, K., Vanhaeren, H., De Milde, L., Dhondt, S., Vercruysse, L., Witters, E., Mercier, R., Cromer, L., Beemster, G. T. S., Remaut, H., Van Montagu, M. C. E., De Jaeger, G., Ferreira, P. C. G., and Inzé, D. 2012. SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proc. Natl. Acad. Sci. USA. 109: 13853–13858. doi:10.1073/pnas.1211418109
  • Ercolano, M. R., Sanseverino, W., Carli, P., Ferriello, F., and Frusciante, L. 2012. Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects. Plant Cell Rep. 31: 973–985.
  • Essmann, J., Schmitz-Thom, I., Schön, H., Sonnewald, S., Weis, E., and Scharte, J. 2008. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiol. 147: 1288–1299.
  • Feng, C., Su, H., Bai, H., Wang, R., Liu, Y., Guo, X., Liu, C., Zhang, J., Yuan, J., Birchler, J. A., and Han, F. 2018. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol. J. 16: 1848–1857.
  • Flores, T., Todd, C. D., Tovar-Mendez, A., Dhanoa, P. K., Correa-Aragunde, N., Hoyos, M. E., Brownfield, D. M., Mullen, R. T., Lamattina, L., and Polacco, J. C. 2008. Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol. 147: 1936–1946.
  • Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., Linstead, P., Costa, S., Brownlee, C., Jones, J. D. G., Davies, J. M., and Dolan, L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–446.
  • Frye, C. A., Tang, D., and Innes, R. W. 2001. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA. 98: 373–378. doi:10.1073/pnas.98.1.373
  • Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., and Joung, J. K. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32: 279–284. doi:10.1038/nbt.2808
  • Fukushima, E., Arata, Y., Endo, T., Sonnewald, U., and Sato, F. 2001. Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Physiol. 42: 245–249.
  • Funatsuki, H., Suzuki, M., Hirose, A., Inaba, H., Yamada, T., Hajika, M., Komatsu, K., Katayama, T., Sayama, T., Ishimoto, M., and Fujino, K. 2014. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc. Natl. Acad. Sci. USA. 111: 17797–17802.
  • Funke, T., Han, H., Healy-Fried, M. L., Fischer, M., and Schönbrunn, E. 2006. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc. Natl. Acad. Sci. USA. 103: 13010–13015.
  • Gallego-Bartolomé, J., Gardiner, J., Liu, W., Papikian, A., Ghoshal, B., Kuo, H. Y., Zhao, J. M.-C., Segal, D. J., and Jacobsen, S. E. 2018. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc. Natl. Acad. Sci. USA. 115: E2125–E2134.
  • Gan, Y., Blackshaw, R. E., May, W. E., Vera, C., and Johnson, E. N. 2016. Yield stability and seed shattering characteristics of Brassica juncea canola in the Northern Great Plains. Crop Sci. 56: 1296–1305. doi:10.2135/cropsci2015.09.0540
  • Gan, Y., Malhi, S. S., Brandt, S. A., and McDonald, C. L. 2008. Assessment of seed shattering resistance and yield loss in five oilseed crops. Can. J. Plant Sci. 88: 267–270. doi:10.4141/CJPS07028
  • Gao, L., Liu, J., Ding, X., Wang, X., Wang, T., Hu, T., Song, P., Zhai, R., Zhang, H., Zhang, K., Li, K., and Zhi, H. 2020. Soybean RNA interference lines silenced for eIF4E show broad potyvirus resistance. Mol. Plant Pathol. 21: 303–317.
  • Gao, X., Chen, J., Dai, X., Zhang, D., and Zhao, Y. 2016. An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol. 171: 1794–1800.
  • Ge, L., Yu, J., Wang, H., Luth, D., Bai, G., Wang, K., and Chen, R. 2016. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc. Natl. Acad. Sci. USA. 113: 12414–12419.
  • Gocal, G. F. W., Schöpke, C., and Beetham, P. R. 2015. Oligo-mediated targeted gene editing. In Advances in New Technology for Targeted Modification of Plant Genomes; Zhang, F., Puchta, H., Thomson J., Eds. Springer: New York, NY, pp 73–89.
  • Gomez, M. A., Lin, Z. D., Moll, T., Chauhan, R. D., Hayden, L., Renninger, K., Beyene, G., Taylor, N. J., Carrington, J. C., Staskawicz, B. J., and Bart, R. S. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence . Plant Biotechnol. J. 17: 421–434.
  • Gonzalez, N., Pauwels, L., Baekelandt, A., De Milde, L., Van Leene, J., Besbrugge, N., Heyndrickx, K. S., Pérez, A. C., Durand, A. N., De Clercq, R., Van De Slijke, E., Bossche, R. V., Eeckhout, D., Gevaert, K., Vandepoele, K., De Jaeger, G., Goossens, A., and Inzé, D. 2015. A repressor protein complex regulates leaf growth in Arabidopsis. Plant Cell. 27: 2273–2287.
  • Goritschnig, S., Weihmann, T., Zhang, Y., Fobert, P., McCourt, P., and Li, X. 2008. A novel role for protein farnesylation in plant innate immunity. Plant Physiol. 148: 348–357.
  • Gou, J., Debnath, S., Sun, L., Flanagan, A., Tang, Y., Jiang, Q., Wen, J., and Wang, Z.-Y. 2018. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnol. J. 16: 951–962.
  • Graham, N., Patil, G. B., Bubeck, D. M., Dobert, R. C., Glenn, K. C., Gutsche, A. T., Kumar, S., Lindbo, J. A., Maas, L., May, G. D., Vega-Sanchez, M. E., Stupar, R. M., and Morrell, P. L. 2020. Plant genome editing and the relevance of off-target changes. Plant Physiol. Advance online publication. doi:10.1104/pp.19.01194
  • Guilinger, J. P., Thompson, D. B., and Liu, D. R. 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32: 577–582.
  • Guo, J. and Chen, J.-G. 2008. RACK1 genes regulate plant development with unequal genetic redundancy in Arabidopsis. BMC Plant Biol. 8: 108.
  • Guo, J., Wang, J., Xi, L., Huang, W.-D., Liang, J., and Chen, J.-G. 2009. RACK1 is a negative regulator of ABA responses in Arabidopsis. J. Exp. Bot. 60: 3819–3833.
  • Guo, Y., Hans, H., Christian, J., and Molina, C. 2014. Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components. Front. Plant Sci. 5: 282.
  • Guo, Y., Qiu, Q. S., Quintero, F. J., Pardo, J. M., Ohta, M., Zhang, C., Schumaker, K. S., and Zhu, J. K. 2004. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell. 16: 435–449.
  • Hao, Y.-J., Wei, W., Song, Q.-X., Chen, H.-W., Zhang, Y.-Q., Wang, F., Zou, H.-F., Lei, G., Tian, A.-G., Zhang, W.-K., Ma, B., Zhang, J.-S., and Chen, S.-Y. 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 68: 302–313.
  • He, X., Xie, S., Xie, P., Yao, M., Liu, W., Qin, L. W., Liu, Z., Zheng, M., Liu, H., Guan, M., and Hua, W. 2019. Genome-wide identification of stress-associated proteins (SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in Brassica napus. Environ. Exp. Bot. 165: 108–119. doi:10.1016/j.envexpbot.2019.05.007
  • He, Y., Zhu, M., Wang, L., Wu, J., Wang, Q., Wang, R., and Zhao, Y. 2018. Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol. Plant. 11: 1210–1213.
  • Heap, I. and Duke, S. O. 2018. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 74: 1040–1049.
  • Hedden, P. and Sponsel, V. 2015. A century of gibberellin research. J. Plant Growth Regul. 34: 740–760.
  • Hernández-Blanco, C., Feng, D. X., Hu, J., Sánchez-Vallet, A., Deslandes, L., Llorente, F., Berrocal-Lobo, M., Keller, H., Barlet, X., Sánchez-Rodríguez, C., Anderson, L. K., Somerville, S., Marco, Y., and Molina, A. 2007. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell. 19: 890–903.
  • Hiraoka, K., Yamaguchi, A., Abe, M., and Araki, T. 2013. The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant Cell Physiol. 54: 352–368.
  • Ho, T., Pak, H., Ryom, C., and Han, M. 2019. Overexpression of OsmiR393a gene confers drought tolerance in creeping bentgrass. Plant Biotechnol. Rep. 13: 85–93. doi:10.1007/s11816-019-00517-4
  • Huang, J., Wang, M.-M., Jiang, Y., Bao, Y.-M., Huang, X., Sun, H., Xu, D.-Q., Lan, H.-X., and Zhang, H.-S. 2008. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene. 420: 135–144.
  • Hugouvieux, V., Kwak, J. M., and Schroeder, J. I. 2001. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell. 106: 477–487. doi:10.1016/S0092-8674(01)00460-3
  • Huijser, P., Klein, J., Lönnig, W.-E., Meijer, H., Saedler, H., and Sommer, H. 1992. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. Embo J. 11: 1239–1249. doi:10.1002/j.1460-2075.1992.tb05168.x
  • Irish, V. F. and Sussex, I. M. 1990. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell. 2: 741–753. doi:10.2307/3869173
  • Jaeger, K. E. and Wigge, P. A. 2007. FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17: 1050–1054.
  • Jamshed, M., Liang, S., Hickerson, N. M. N., and Samuel, M. A. 2017. Farnesylation-mediated subcellular localization is required for CYP85A2 function. Plant Signal Behav. 12: e1382795.
  • Jaradat, A. A. 2016. Breeding oilseed crops for climate change. In Breeding Oilseed Crops for Sustainable Production; Gupta, S. K., Ed. Academic Press: San Diego, CA, pp 421–472.
  • Jiang, W. Z., Henry, I. M., Lynagh, P. G., Comai, L., Cahoon, E. B., and Weeks, D. P. 2017. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol. J. 15: 648–657. doi:10.1111/pbi.12663
  • Jiang, W., Yang, B., and Weeks, D. P. 2014. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One. 9: e99225.
  • Jin, Y., Ni, D.-A., and Ruan, Y.-L. 2009. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell. 21: 2072–2089.
  • Jofuku, K. D., den Boer, B. G. W., Van Montagu, M., and Okamuro, J. K. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 6: 1211–1225. doi:10.2307/3869820
  • Journot-Catalino, N., Somssich, I. E., Roby, D., and Kroj, T. 2006. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell. 18: 3289–3302.
  • Kanazashi, Y., Hirose, A., Takahashi, I., Mikami, M., Endo, M., Hirose, M., Hirose, S., Toki, S., Kaga, A., Naito, K., Ishimoto, M., Abe, J., and Yamada, T. 2018. Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Rep. 37: 553–563.
  • Kang, M., Lee, S., Abdelmageed, H., Reichert, A., Lee, H.-K., Fokar, M., Mysore, K. S., and Allen, R. D. 2017. Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. Plant. Cell Environ. 40: 702–716.
  • Kanneganti, V. and Gupta, A. K. 2008. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol. Biol. 66: 445–462. doi:10.1007/s11103-007-9284-2
  • Kaya, H., Mikami, M., Endo, A., Endo, M., and Toki, S. 2016. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci. Rep. 6: 26871. doi:10.1038/srep26871
  • Kayes, J. M. and Clark, S. E. 1998. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development. 125: 3843–3851.
  • Ke, Q., Kim, H. S., Wang, Z., Ji, C. Y., Jeong, J. C., Lee, H. S., Choi, Y. I., Xu, B., Deng, X., Yun, D. J., and Kwak, S.-S. 2017. Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar. Plant Biotechnol. J. 15: 331–343.
  • Kim, J. A., Jung, H.-e., Hong, J. K., Hermand, V., McClung, C. J., Lee, Y.-H., Kim, J. Y., Lee, S. I., Jeong, M.-J., Kim, J., Yun, D., and Kim, W. 2016. Reduction of GIGANTEA expression in transgenic Brassica rapa enhances salt tolerance. Plant Cell Rep. 35: 1943–1954.
  • Kim, R. J., Kim, H. U., and Suh, M. C. 2019. Development of camelina enhanced with drought stress resistance and seed oil production by co-overexpression of MYB96A and DGAT1C. Ind. Crop. Prod. 138: 111475. doi:10.1016/j.indcrop.2019.111475
  • Kim, W.-Y., Ali, Z., Park, H. J., Park, S. J., Cha, J.-Y., Perez-Hormaeche, J., Quintero, F. J., Shin, G., Kim, M. R., Qiang, Z., Ning, L., Park, H. C., Lee, S. Y., Bressan, R. A., Pardo, J. M., Bohnert, H. J., and Yun, D.-J. 2013. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 4: 1352. doi:10.1038/ncomms2357
  • Kord, H., Shakib, A. M., Daneshvar, M. H., Azadi, P., Bayat, V., Mashayekhi, M., Zarea, M., Seifi, A., and Ahmad-Raji, M. 2015. RNAi-mediated down-regulation of SHATTERPROOF gene in transgenic oilseed rape. 3 Biotech. 5: 271–277.
  • Kourelis, J. and van der Hoorn, R. A. L. 2018. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. 30: 285–299.
  • Lapointe, G., Luckevich, M. D., Cloutier, M., and Seguin, A. 2001. 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens. J. Exp. Bot. 52: 1331–1338. doi:10.1093/jexbot/52.359.1331
  • Lawrenson, T., Shorinola, O., Stacey, N., Li, C., Østergaard, L., Patron, N., Uauy, C., and Harwood, W. 2015. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 16: 258. doi:10.1186/s13059-015-0826-7
  • Lawton-Rauh, A. L., Buckler, E. S., and Purugganan, M. D. 1999. Patterns of molecular evolution among paralogous floral homeotic genes. Mol. Biol. Evol. 16: 1037–1045.
  • Lazar, G. and Goodman, H. M. 2006. MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc. Natl. Acad. Sci. USA. 103: 472–476. doi:10.1073/pnas.0509463102
  • Lee, K., Zhang, Y., Kleinstiver, B. P., Guo, J. A., Aryee, M. J., Miller, J., Malzahn, A., Zarecor, S., Lawrence-Dill, C. J., Joung, J. K., Qi, Y., and Wang, K. 2019. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol. J. 17: 362–372.
  • Lee, K. Y., Townsend, J., Tepperman, J., Black, M., Chui, C. F., Mazur, B., Dunsmuir, P., and Bedbrook, J. 1988. The molecular basis of sulfonylurea herbicide resistance in tobacco. Embo J. 7: 1241–1248. doi:10.1002/j.1460-2075.1988.tb02937.x
  • Lewis, M. W., Leslie, M. E., and Liljegren, S. J. 2006. Plant separation: 50 ways to leave your mother. Curr. Opin. Plant Biol. 9: 59–65.
  • Li, B., Liu, H., Zhang, Y., Kang, T., Zhang, L., Tong, J., Xiao, L., and Zhang, H. 2013. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol. J. 11: 1080–1091.
  • Li, C., Hao, M., Wang, W., Wang, H., Chen, F., Chu, W., Zhang, B., Mei, D., Cheng, H., and Hu, Q. 2018. An efficient CRISPR/Cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homoeologs in allotetraploid oilseed rape. Front. Plant Sci. 9: 442.
  • Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R., and Gao, C. 2018. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19: 59.
  • Li, D.-H., Chen, F.-J., Li, H.-Y., Li, W., and Guo, J.-J. 2018. The soybean GmRACK1 gene plays a role in drought tolerance at vegetative stages. Russ. J. Plant Physiol. 65: 541–552. doi:10.1134/S1021443718040155
  • Li, D.-H., Liu, H., Yang, Y.-L., Zhen, P.-P., and Liang, J.-S. 2009. Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci. 16: 14–20. doi:10.1016/S1672-6308(08)60051-7
  • Li, D.-H., Shen, F.-J., Li, H.-Y., and Li, W. 2017. Kale BoRACK1 is involved in the plant response to salt stress and Peronospora brassicae Gaumann. J. Plant Phy 213: 188–198.
  • Li, J., Manghwar, H., Sun, L., Wang, P., Wang, G., Sheng, H., Zhang, J., Liu, H., Qin, L., Rui, H., Li, B., Lindsey, K., Daniell, H., Jin, S., and Zhang, X. 2019. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol. J. 17: 858–868.
  • Li, J., Zhong, R., and Palva, E. T. 2017. WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis. PLoS One. 12: e0183731.
  • Li, J. F., Zhang, D., and Sheen, J. 2014. Cas9-based genome editing in Arabidopsis and tobacco. Meth. Enzymol. 546: 459–472. doi:10.1016/B978-0-12-801185-0.00022-2
  • Li, N., Ran, X., and Li, Y. 2019. Molecular networks of seed size control in plants. Annu. Rev. Plant Biol. 70: 435–463.
  • Li, T.-G., Wang, B.-L., Yin, C.-M., Zhang, D.-D., Wang, D., Song, J., Zhou, L., Kong, Z.-Q., Klosterman, S. J., Li, J.-J., Adamu, S., Liu, T.-L., Subbarao, K. V., Chen, J.-Y., and Dai, X.-F. 2019. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt. Mol. Plant Pathol. 20: 857–876.
  • Li, X. and Dhaubhadel, S. 2011. Soybean 14-3-3 gene family: identification and molecular characterization. Planta. 233: 569–582.
  • Li, Y., Zheng, L., Corke, F., Smith, C., and Bevan, M. W. 2008. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev. 22: 1331–1336.
  • Li, Z., Liu, Z.-B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., Ward, R. T., Clifton, E., Falco, S. C., and Cigan, A. M. 2015. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 169: 960–970.
  • Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., and Gao, C. 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Comm. 8: 14261.
  • Liao, W.-B., Huang, G.-B., Yu, J.-H., and Zhang, M.-L. 2012. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol. Biochem. 58: 6–15.
  • Liljegren, S. J., Roeder, A. H. K., Kempin, S. A., Gremski, K., Østergaard, L., Guimil, S., Reyes, D. K., and Yanofsky, M. F. 2004. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell. 116: 843–853. doi:10.1016/S0092-8674(04)00217-X
  • Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V., Raguram, A., Doman, J. L., Liu, D. R., and Gao, C. 2020. Prime genome editing in rice and wheat. Nat. Biotechnol. 38: 582–585.
  • Liu, J., Hua, W., Hu, Z., Yang, H., Zhang, L., Li, R., Deng, L., Sun, X., Wang, X., and Wang, H. 2015. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl. Acad. Sci. USA. 112: E5123–E5132.
  • Liu, X., Song, Y., Xing, F., Wang, N., Wen, F., and Zhu, C. 2015. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma. 253: 1265–1281. doi:10.1007/s00709-015-0885-3
  • Liu, Y.-H., Offler, C. E., and Ruan, Y.-L. 2016. Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiol. 172: 163–180.
  • Lowder, L. G., Zhang, D., Baltes, N. J., Paul, J. W., Tang, X., Zheng, X., Voytas, D. F., Hsieh, T.-F., Zhang, Y., and Qi, Y. 2015. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169: 971–985.
  • Maheshwari, P., Selvaraj, G., and Kovalchuk, I. 2011. Optimization of Brassica napus (canola) explant regeneration for genetic transformation. N. Biotechnol. 29: 144–155.
  • Mall, T., Han, L., Tagliani, L., and Christensen, C. 2018. Transgenic crops: status, potential, and challenges. In Biotechnologies of Crop Improvement; Gosal, S., Wani, S., Ed. Springer: Cham, Switzerland, pp 451–485.
  • Martin, A., Adam, H., Díaz-Mendoza, M., Zurczak, M., González-Schain, N. D., and Suárez-López, P. 2009. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development. 136: 2873–2881.
  • McGinn, M., Phippen, W. B., Chopra, R., Bansal, S., Jarvis, B. A., Phippen, M. E., Dorn, K. M., Esfahanian, M., Nazarenus, T. J., Cahoon, E. B., Durrett, T. P., Marks, M. D., and Sedbrook, J. C. 2019. Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. Plant Biotechnol. J. 17: 776–788.
  • Meakin, P. J. and Roberts, J. A. 1990. Dehiscence of fruit in oilseed rape (Brassica napus L.), II. The role of cell wall degrading enzymes and ethylene. J. Exp. Bot. 41: 1003–1011. doi:10.1093/jxb/41.8.1003
  • Meesapyodsuk, D., Ye, S., Chen, Y., Chen, Y., Chapman, R. G., and Qiu, X. 2018. An engineered oilseed crop produces oil enriched in two very long chain polyunsaturated fatty acids with potential health-promoting properties. Metab. Eng. 49: 192–200.
  • Metje-Sprink, J., Sprink, T., and Hartung, F. 2020. Genome-edited plants in the field. Curr. Opin. Biotechnol. 61: 1–6.
  • Mikami, M., Toki, S., and Endo, M. 2016. Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol. 57: 1058–1068.
  • Miki, D., Zhang, W., Zeng, W., Feng, Z., and Zhu, J.-K. 2018. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat. Commun. 9: 1967.
  • Ming, M., Ren, Q., Pan, C., He, Y., Zhang, Y., Liu, S., Zhong, Z., Wang, J., Malzahn, A. A., Wu, J., Zheng, X., Zhang, Y., and Qi, Y. 2020. CRISPR-Cas12b enables efficient plant genome engineering. Nat. Plants. 6: 202–208.
  • Mohanta, T. K., Bashir, T., Hashem, A., Abd Allah, E. F., and Bae, H. 2017. Genome editing tools in plants. Genes. 8: 399. doi:10.3390/genes8120399
  • Mohanta, T. K., Bashir, T., Hashem, A., Abd Allah, E. F., Khan, A. L., and Al-Harrasi, A. S. 2018. Early events in plant abiotic stress signaling: interplay between calcium, reactive oxygen species and phytohormones. J. Plant Growth Regul. 37: 1033–1049. doi:10.1007/s00344-018-9833-8
  • Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., and Matsuoka, M. 2006. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol. 141: 924–931.
  • Muangprom, A., Thomas, S. G., Sun, T.-P., and Osborn, T. C. 2005. A novel dwarfing mutation in a Green Revolution gene from Brassica rapa. Plant Physiol. 137: 931–938.
  • Mukhopadhyay, A., Vij, S., and Tyagi, A. K. 2004. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 101: 6309–6314. doi:10.1073/pnas.0401572101
  • Murovec, J., Guček, K., Bohanec, B., Avbelj, M., and Jerala, R. 2018. DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci. 9: 1594.
  • Na, G., Aryal, N., Fatihi, A., Kang, J., and Lu, C. 2018. Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight. Biotechnol. Biofuels. 11: 330. doi:10.1186/s13068-018-1334-2
  • Nabi, R. B. S., Tayade, R., Hussain, A., Kulkarni, K. P., Imran, Q. M., Mun, B.-G., and Yun, B.-W. 2019. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ. Exp. Bot. 161: 120–133. doi:10.1016/j.envexpbot.2019.02.003
  • Naito, K., Takahashi, Y., Chaitieng, B., Hirano, K., Kaga, A., Takagi, K., Ogiso-Tanaka, E., Thavarasook, C., Ishimoto, M., and Tomooka, N. 2017. Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo). Breed. Sci. 67: 151–158.
  • Nakashima, K. and Yamaguchi-Shinozaki, K. 2013. ABA signaling in stress-response and seed development. Plant Cell Rep. 32: 959–970.
  • Nandula, V. K. 2019. Herbicide resistance traits in maize and soybean: current status and future outlook. Plants 8: 337. doi:10.3390/plants8090337
  • Navarro, C., Cruz-Oró, E., and Prat, S. 2015. Conserved function of FLOWERING LOCUS T (FT) homologues as signals for storage organ differentiation. Curr. Opin. Plant Biol. 23: 45–53.
  • Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., and Kamoun, S. 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7: 482. doi:10.1038/s41598-017-00578-x
  • Northey, J. G. B., Liang, S., Jamshed, M., Deb, S., Foo, E., Reid, J. B., McCourt, P., and Samuel, M. A. 2016. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat. Plants. 2: 16114. doi:10.1038/nplants.2016.114
  • Ohto, M.-A., Fischer, R. L., Goldberg, R. B., Nakamura, K., and Harada, J. J. 2005. Control of seed mass by APETALA2. Proc. Natl. Acad. Sci. USA. 102: 3123–3128.
  • Ohto, M.-a., Floyd, S. K., Fischer, R. L., Goldberg, R. B., and Harada, J. J. 2009. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex. Plant Reprod. 22: 277–289. doi:10.1007/s00497-009-0116-1
  • Park, S.-C., Park, S., Jeong, Y. J., Lee, S. B., Pyun, J. W., Kim, S., Kim, T. H., Kim, S. W., Jeong, J. C., and Kim, C. Y. 2019. DNA-free mutagenesis of GIGANTEA in Brassica oleracea var. capitata using CRISPR/Cas9 ribonucleoprotein complexes. Plant Biotechnol. Rep. 13: 483–489. doi:10.1007/s11816-019-00585-6
  • Parrott, W. A., Harbell, J., Kaeppler, H., Jones, T., Tomes, D., Van Eck, J., Wang, K., and Wenck, A. 2020. The proposed APHIS regulation modernization could enhance agriculture biotechnology research and development in the USA. In Vitro Cell. Dev. Biol. Plant. 56: 1–7.
  • Paul, A.-L., Sehnke, P. C., and Ferl, R. J. 2005. Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions. Mol. Biol. Cell. 16: 1735–1743.
  • Pavan, S., Jacobsen, E., Visser, R. G. F., and Bai, Y. 2010. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 25: 1–12.
  • Peltier, A. J., Bradley, C. A., Chilvers, M. I., Malvick, D. K., Mueller, D. S., Wise, K. A., and Esker, P. D. 2012. Biology, yield loss and control of Sclerotinia stem rot of soybean. J. Integ. Pest Manage. 3: B1–B7. doi:10.1603/IPM11033
  • Peng, J., Richards, D. E., Hartley, N. M., Murphy, G. P., Devos, K. M., Flintham, J. E., Beales, J., Fish, L. J., Worland, A. J., Pelica, F., Sudhakar, D., Christou, P., Snape, J. W., Gale, M. D., and Harberd, N. P. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400: 256–261.
  • Perotti, V. E., Larran, A. S., Palmieri, V. E., Martinatto, A. K., and Permingeat, H.R. 2020. Herbicide resistant weeds: a call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci. 290: 110255. doi:10.1016/j.plantsci.2019.110255
  • Pessina, S., Lenzi, L., Perazzolli, M., Campa, M., Dalla Costa, L., Urso, S., Valè, G., Salamini, F., Velasco, R., and Malnoy, M. 2016. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic. Res. 3: 16016. doi:10.1038/hortres.2016.16
  • Preston, J. C., Wang, H., Kursel, L., Doebley, J., and Kellogg, E. A. 2012. The role of teosinte glume architecture (tga1) in coordinated regulation and evolution of grass glumes and inflorescence axes. New Phytol. 193: 204–215.
  • Purty, R. S., Kumar, G., Singla-Pareek, S. L., and Pareek, A. 2008. Towards salinity tolerance in Brassica: an overview. Physiol. Mol. Biol. Plants. 14: 39–49.
  • Pyott, D. E., Sheehan, E., and Molnar, A. 2016. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17: 1276–1288.
  • Qi, L. L., Ma, G. J., Li, X. H., and Seiler, G. J. 2019. Diversification of the downy mildew resistance gene pool by introgression of a new gene, Pl35, from wild Helianthus argophyllus into oilseed and confection sunflowers (Helianthus annuus L.). Theor. Appl. Genet. 132: 2553–2565. doi:10.1007/s00122-019-03370-9
  • Qian, W., Xiao, B., Wang, L., Hao, X., Yue, C., Cao, H., Wang, Y., Li, N., Yu, Y., Zeng, J., Yang, Y., and Wang, W. 2018. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biol. 18: 228. doi:10.1186/s12870-018-1456-5
  • Qin, G., Zhu, Z., Wang, W., Cai, J., Chen, Y., Li, L., and Tian, S. 2016. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiol. 172: 1596–1611.
  • Raitskin, O., Schudoma, C., West, A., and Patron, N. J. 2019. Comparison of efficiency and specificity of CRISPR-associated (Cas) nucleases in plants: an expanded toolkit for precision genome engineering. PLoS One. 14: e0211598.
  • Rajani, S. and Sundaresan, V. 2001. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr. Biol. 11: 1914–1922. doi:10.1016/S0960-9822(01)00593-0
  • Raman, H., Uppal, R. K., and Raman, R. 2019. Genetic solutions to improve resilience of canola to climate change. In Genomic Designing of Climate-Smart Oilseed Crops; Kole, C., Ed. Springer: Cham, Switzerland, pp 75–131.
  • Riefler, M., Novak, O., Strnad, M., and Schmülling, T. 2006. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 18: 40–54.
  • Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., and Lippman, Z. B. 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell. 171: 470–480.
  • Running, M. P., Lavy, M., Sternberg, H., Galichet, A., Gruissem, W., Hake, S., Ori, N., and Yalovsky, S. 2004. Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc. Natl. Acad. Sci. USA. 101: 7810–7820.
  • Sahni, S., Prasad, B. D., Liu, Q., Grbic, V., Sharpe, A., Singh, S. P., and Krishna, P. 2016. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci. Rep. 6: 28298. doi:10.1038/srep28298
  • Sauer, N. J., Narváez-Vásquez, J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Woodward, M. J., Mihiret, Y. A., Lincoln, T. A., Segami, R. E., Sanders, S. L., Walker, K. A., Beetham, P. R., Schöpke, C. R., and Gocal, G. F. W. 2016. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 170: 1917–1928.
  • Savary, S., Ficke, A., Aubertot, J.-N., and Hollier, C. 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Sec. 4: 519–537. doi:10.1007/s12571-012-0200-5
  • Saxena, S. C., Salvi, P., Kamble, N. U., Joshi, P. K., Majee, M., and Arora, S. 2020. Ectopic overexpression of cytosolic ascorbate peroxidase gene (Apx1) improves salinity stress tolerance in Brassica juncea by strengthening antioxidative defense mechanism. Acta Physiol. Plant. 42: 45.
  • Scheben, A. and Edwards, D. 2018. Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol. 19: 178.
  • Schönbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N., and Kabsch, W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA. 98: 1376–1380.
  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K. F. X., Jürgens, G., and Laux, T. 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 100: 635–644. doi:10.1016/S0092-8674(00)80700-X
  • Schruff, M. C., Spielman, M., Tiwari, S., Adams, S., Fenby, N., and Scott, R. J. 2005. The AUXIN RESPONSE FACTOR2 gene of Arabidopsis links auxin signaling, cell division, and the size of seeds and other organs. Development. 133: 251–261. doi:10.1242/dev.02194
  • Schulman, A. H., Oksman-Caldentey, K.-M., and Teeri, T. H. 2020. European Court of Justice delivers no justice to Europe on genome-edited crops. Plant Biotechnol. J. 18: 8–10.
  • Schulze, W., Stitt, M., Schulze, E.-D., Neuhaus, H. E., and Fichtner, K. 1991. A quantification of the significance of assimilatory starch for growth of Arabidopsis thaliana L. Heynh. Plant Physiol. 95: 890–895. doi:10.1104/pp.95.3.890
  • Schütte, G., Eckerstorfer, M., Rastelli, V., Reichenbecher, W., Restrepo-Vassalli, S., Ruohonen-Lehto, M., Saucy, A.-G. W., and Mertens, M. 2017. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ. Sci. Eur. 29: 5. doi:10.1186/s12302-016-0100-y
  • Schwarz, S., Grande, A. V., Bujdoso, N., Saedler, H., and Huijser, P. 2008. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol. Biol. 67: 183–195.
  • Sedeek, K. E. M., Mahas, A., and Mahfouz, M. 2019. Plant genome engineering for targeted improvement of crop traits. Front. Plant Sci. 10: 114.
  • Seehaus, K. and Tenhaken, R. 1998. Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. glycinea. Plant Mol. Biol. 38: 1225–1234.
  • Shah, S., Karunarathna, N. L., Jung, C., and Emrani, N. 2018. An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.). BMC Plant Biol. 18: 380.
  • Sharma, G., Giri, J., and Tyagi, A. K. 2015. Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. Plant Sci. 237: 80–92.
  • Shen, Q., Zhao, J., Du, C., Xiang, Y., Cao, J., and Qin, X. 2012. Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.). Genes Genet. Syst. 87: 89–98.
  • Shi, H., Ye, T., Chen, F., Cheng, Z., Wang, Y., Yang, P., Zhang, Y., and Chan, Z. 2013. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. J. Exp. Bot. 64: 1367–1379.
  • Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., and Habben, J. E. 2017. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 15: 207–216.
  • Si, L., Chen, J., Huang, X., Gong, H., Luo, J., Hou, Q., Zhou, T., Lu, T., Zhu, J., Shangguan, Y., Chen, E., Gong, C., Zhao, Q., Jing, Y., Zhao, Y., Li, Y., Cui, L., Fan, D., Lu, Y., Weng, Q., Wang, Y., Zhan, Q., Liu, K., Wei, X., An, K., An, G., and Han, B. 2016. OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48: 447–456.
  • Singer, S. D., Zou, J., and Weselake, R. J. 2016. Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci. 243: 1–9.
  • Songstad, D. D., Petolino, J. F., Voytas, D. F., and Reichert, N. A. 2017. Genome editing of plants. Crit. Rev. Plant Sci. 36: 1–23. doi:10.1080/07352689.2017.1281663
  • Stephenson, P., Stacey, N., Brüser, M., Pullen, N., Ilyas, M., O’Neill, C., Wells, R., and Østergaard, L. 2019. The power of model-to-crop translation illustrated by reducing seed loss from pod shatter in oilseed rape. Plant Reprod. 32: 331–340.
  • Steponavičius, D., Kemzūraitė, A., Bauša, L., and Zaleckas, E. 2019. Evaluation of the effectiveness of pod sealants in increasing pod shattering resistance in oilseed rape (Brassica napus L). Energies. 12: 2256. doi:10.3390/en12122256
  • Strohkendl, I., Saifuddin, F. A., Rybarski, J. R., Finkelstein, I. J., and Russell, R. 2018. Kinetic basis for DNA target specificity of CRISPR-Cas12a. Mol. Cell. 71: 816–824.
  • Sturm, A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol. 121: 1–8.
  • Subedi, U., Jayawardhane, K. N., Pan, X., Ozga, J., Chen, G., Foroud, N. A., and Singer, S. D. 2020. The potential of genome editing for improving seed oil content and fatty acid composition in oilseed crops. Lipids. Advance online publication. doi:10.1002/lipd.12249
  • Sujatha, M. and Tarakeswari, M. 2019. Biotechnological means for genetic improvement in castor bean as a crop of the future. In The Castor Bean Genome. Compendium of Plant Genomes; Kole, C., Rabinowicz, P., Eds. Springer: Cham, Switzerland, pp 255–272.
  • Sulmon, C., Gouesbet, G., Ramel, F., Cabello-Hurtado, F., Penno, C., Bechtold, N., Couée, I., and El Amrani, A. 2011. Carbon dynamics, development and stress responses in Arabidopsis: involvement of the APL4 subunit of ADP-glucose pyrophosphorylase (starch synthesis). PLoS One. 6: e26855. doi:10.1371/journal.pone.0026855
  • Sun, L., Yang, D.-L., Kong, Y., Chen, Y., Li, X.-Z., Zeng, L.-J., Li, Q., Wang, E.-T., and He, Z.-H. 2014. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. Mol. Plant Pathol. 15: 161–173.
  • Sun, Q., Lin, L., Liu, D., Wu, D., Fang, Y., Wu, J., and Wang, Y. 2018. CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int. J. Mol. Sci. 19: 2716. doi:10.3390/ijms19092716
  • Sun, X., Hu, Z., Chen, R., Jiang, Q., Song, G., Zhang, H., and Xi, Y. 2015. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci. Rep. 5: 10342. doi:10.1038/srep10342
  • Sun, Y., Liu, X., Fu, L., Qin, P., Li, T., Ma, X., and Wang, X. 2019. Overexpression of TaBADH increases salt tolerance in Arabidopsis. Can. J. Plant Sci. 99: 546–555. doi:10.1139/cjps-2018-0190
  • Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., Guo, X., Du, W., Zhao, Y., and Xia, L. 2016. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol. Plant. 9: 628–631.
  • Talon, M., Koornneef, M., and Zeevaart, J. A. 1990. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc. Natl. Acad. Sci. USA. 87: 7983–7987.
  • Tang, X., Su, T., Han, M., Wei, L., Wang, W., Yu, Z., Xue, Y., Wei, H., Du, Y., Greiner, S., Rausch, T., and Liu, L. and others. 2017. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). J. Exp. Bot. 68: 469–482. doi:10.1093/jxb/erw425
  • Taylor, S. A., Hofer, J. M. I., Murfet, I. C., Sollinger, J. D., Singer, S. R., Knox, M. R., and Ellis, T. H. N. 2002. PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea. Plant Physiol. 129: 1150–1159. doi:10.1104/pp.001677
  • Teichmann, T. and Muhr, M. 2015. Shaping plant architecture. Front. Plant Sci. 6: 233.
  • Tian, S., Jiang, L., Cui, X., Zhang, J., Guo, S., Li, M., Zhang, H., Ren, Y., Gong, G., Zong, M., Liu, F., Chen, Q., and Xu, Y. 2018. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 37: 1353–1356.
  • Tsujimura, Y., Sugiyama, S., Otsuka, K., Htun, T. M., Numaguchi, K., Castillo, C., Akagi, T., Ishii, T., and Ishikawa, R. 2019. Detection of a novel locus involved in non-seed-shattering behaviour of Japonica rice cultivar, Oryzasativa ‘Nipponbare’. Theor. Appl. Genet. 132: 2615–2623.
  • Tyagi, S., Mazumdar, P. A., Mayee, P., Shivaraj, S. M., Anand, S., Singh, A., Madhurantakam, C., Sharma, P., Das, S., Kumar, A., and Singh, A. 2018. Natural variation in Brassica FT homeologs influences multiple agronomic traits including flowering time, silique shape, oil profile, stomatal morphology and plant height in B. juncea. Plant Sci. 277: 251–266. doi:10.1016/j.plantsci.2018.09.018
  • Uloth, M. B., You, M. P., and Barbetti, M. J. 2018. Plant age and ambient temperature: significant drivers for powdery mildew (Erysiphe cruciferarum) epidemics on oilseed rape (Brassica napus). Plant Pathol. 67: 445–456. doi:10.1111/ppa.12740
  • United States Department of Agriculture Economic Research Service. 2019. Recent trends in GE adoption. https://ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx. (accessed April 10, 2020).
  • United States Department of Agriculture Foreign Agricultural Service. 2020. Oilseeds: World markets and trade. https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf. (accessed March 23, 2020).
  • Ur Rehman, N., Ali, M., Ahmad, M. Z., Liang, G., and Zhao, J. 2018. Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microb. Pathog. 114: 420–430.
  • Valantin-Morison, M. and Meynard, J. M. 2008. Diagnosis of limiting factors of organic oilseed rape yield. A survey of farmers’ fields. Agron. Sustain. Dev. 28: 527–539. doi:10.1051/agro:2008026
  • Yan, Z., Hossain, M. S., Wang, J., Valdés-López, O., Liang, Y., Libault, M., Qiu, L., and Stacey, G. 2013. miR172 regulates soybean nodulation. Mol. Plant Microbe Interact. 26: 1371–1377.
  • Vanhaeren, H., Inzé, D., and Gonzalez, N. 2016. Plant growth beyond limits. Trends Plant Sci. 21: 102–109.
  • Ventriglia, T., Kuhn, M. L., Ruiz, M. T., Ribeiro-Pedro, M., Valverde, F., Ballicora, M. A., Preiss, J., and Romero, J. M. 2008. Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic. Plant Physiol. 148: 65–76.
  • Vigeolas, H., Möhlmann, T., Martini, N., Neuhaus, H. E., and Geigenberger, P. 2004. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Plant Physiol. 136: 2676–2686. doi:10.1104/pp.104.046854
  • Villanueva-Mejia, D. and Alvarez, J. C. 2017. Genetic improvement of oilseed crops using modern biotechnology. In Advances in Seed Biology; Jimenez-Lopez, J. C., Ed. In Tech: London, UK, pp 295–317.
  • Wang, B., Yu, J., Zhu, D., Chang, Y., and Zhao, Q. 2014. Maize ZmRACK1 is involved in the plant response to fungal phytopathogens. Int. J. Mol. Sci. 15: 9343–9359.
  • Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., Lin, H., Ma, H., Zhang, G., and He, Z. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40: 1370–1374.
  • Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.-G., and Zhao, K. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. 11: e0154027.
  • Wang, H. and Wang, H. 2015. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant. 8: 677–688. doi:10.1016/j.molp.2015.01.008
  • Wang, J., Jiao, J., Zhou, M., Jin, Z., Yu, Y., and Liang, M. 2019. Physiological and transcriptional responses of industrial rapeseed (Brassica napus) seedlings to drought and salinity stress. Int. J. Mol. Sci. 20: 5604. doi:10.3390/ijms20225604
  • Wang, J.-W., Czech, B., and Weigel, D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell. 138: 738–749.
  • Wang, L. and Ruan, Y.-L. 2013. Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 4: 163.
  • Wang, X., Guo, R., Tu, M., Wang, D., Guo, C., Wan, R., Li, Z., and Wang, X. 2017. Ectopic Expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea. Front. Plant Sci. 8: 97.
  • Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z., Wang, Y., and Wang, X. 2018. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol. J. 16: 844–855.
  • Wang, Y., Beaith, M., Chalifoux, M., Ying, J., Uchacz, T., Sarvas, C., Griffiths, R., Kuzma, M., Wan, J., and Huang, Y. 2009. Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Mol. Plant. 2: 191–200.
  • Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., and Qiu, J.-L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32: 947–951.
  • Wang, Y., Meng, Z., Liang, C., Meng, Z., Wang, Y., Sun, G., Zhu, T., Cai, Y., Guo, S., Zhang, R., and Lin, Y. 2017. Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. Sci. China. Life Sci. 60: 524–527.
  • Wang, Y., Ying, J., Kuzma, M., Chalifoux, M., Sample, A., McArthur, C., Uchacz, T., Sarvas, C., Wan, J., Dennis, D. T., McCourt, P., and Huang, Y. 2005. Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J. 43: 413–424.
  • Wang, Z., Yang, M., Sun, Y., Yang, Q., Wei, L., Shao, Y., and Bao, G. L. W. 2019. Overexpressing Sesamum indicum L.’s DGAT1 increases the seed oil content of transgenic soybean. Mol. Breed. 39: 101.
  • Weber, H., Borisjuk, L., and Wobus, U. 1996. Controlling seed development and seed size in Vicia faba: a role for seed coat-associated invertases and carbohydrate state. Plant J. 10: 823–834. doi:10.1046/j.1365-313X.1996.10050823.x
  • Wei, Y., Jin, J., Jiang, S., Ning, S., and Liu, L. 2018. Quantitative response of soybean development and yield to drought stress during different growth stages in the Huaibei Plain, China. Agronomy. 8: 97. doi:10.3390/agronomy8070097
  • White, D. W. R. 2006. PEAPOD regulates lamina size and curvature in Arabidopsis. Proc. Natl. Acad. Sci. USA. 103: 13238–13243.
  • Wittkop, B., Snowdon, R. J., and Friedt, W. 2009. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170: 131–140. doi:10.1007/s10681-009-9940-5
  • Wolter, F. and Puchta, H. 2018. The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. Plant J. 94: 767–775. doi:10.1111/tpj.13899
  • Wu, E.‐J., Wang, Y.‐P., Yahuza, L., He, M.-H., Sun, D.-L., Huang, Y.-M., Liu, Y.-C., Yang, L.-N., Zhu, W., and Zhan, J. 2020. Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature. Evol. Appl. 13: 769–781.
  • Wu, J., Chen, C., Xian, G., Liu, D., Lin, L., Yin, S., Sun, Q., Fang, Y., and Zhang, H., Wang, Y. 2020. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnol. J. Advance online publication. doi:10.1111/pbi.13368.
  • Wu, J.-R., Wang, L.-C., Lin, Y.-R., Weng, C.-P., Yeh, C.-H., and Wu, S.-J. 2017. The Arabidopsis heat-intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress. New Phytol. 213: 1181–1193.
  • Xu, C., Liberatore, K. L., MacAlister, C. A., Huang, Z., Chu, Y.-H., Jiang, K., Brooks, C., Ogawa-Ohnishi, M., Xiong, G., Pauly, M., Van Eck, J., Matsubayashi, Y., van der Knaap, E., and Lippman, Z. B. 2015. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 47: 784–792.
  • Xu, P., Cao, S., Hu, K., Wang, X., Huang, W., Wang, G., Lv, Z., Liu, Z., Wen, J., Yi, B., Ma, C., Tu, J., Fu, T., and Shen, J. 2017. Trilocular phenotype in Brassica juncea L. resulted from interruption of CLAVATA1 gene homologue (BjMc1) transcription. Sci. Rep. 7: 3498. doi:10.1038/s41598-017-03755-0
  • Xu, P., Su, H., Chen, W., and Lu, P. 2018. The application of a meiocyte-specific CRISPR/Cas9 (MSC) system and a suicide-MSC system in generating inheritable and stable mutations in Arabidopsis. Front. Plant Sci. 9: 1007.
  • Xu, X.-X., Hu, Q., Yang, W.-N., and Jin, Y. 2017. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato. BMC Plant Biol. 17: 195.
  • Xuan, N., Jin, Y., Zhang, H., Xie, Y., Liu, Y., and Wang, G. 2011. A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell. Tiss. Organ Cult. 107: 101–112. doi:10.1007/s11240-011-9962-2
  • Xun, H., Yang, X., He, H., Wang, M., Guo, P., Wang, Y., Pang, J., Dong, Y., Feng, X., Wang, S., and Liu, B. 2019. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. Plant Mol. Biol. 99: 95–111. doi:10.1007/s11103-018-0804-z
  • Yadava, S. K., Paritosh, K., Panjabi-Massand, P., Gupta, V., Chandra, A., Sodhi, Y. S., Pradhan, A. K., and Pental, D. 2014. Tetralocular ovary and high silique width in yellow sarson lines of Brassica rapa (subspecies trilocularis) are due to a mutation in Bra034340 gene, a homologue of CLAVATA3 in Arabidopsis. Theor. Appl. Genet. 127: 2359–2369.
  • Yalovsky, S., Kulukian, A., Rodriguez-Concepción, M., Young, C. A., and Gruissem, W. 2000. Functional requirement of plant farnesyltransferase during development in Arabidopsis. Plant Cell. 12: 1267–1278. doi:10.2307/3871128
  • Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59: 225–251.
  • Yang, D., Xie, Y., Sun, H., Bian, X., Ke, Q., Kim, H. S., Ji, C. Y., Jin, R., Wang, W., Zhang, C., Ma, J., Li, Z., Ma, D., and Kwak, S.-S. 2020. IbINH positively regulates drought stress tolerance in sweetpotato. Plant Physiol. Biochem. 146: 403–410.
  • Yang, H., Wu, J.-J., Tang, T., Liu, K.-D., and Dai, C. 2017. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci. Rep. 7: 7489. doi:10.1038/s41598-017-07871-9
  • Yang, Y., Zhu, K., Li, H., Han, S., Meng, Q., Khan, S. U., Fan, C., Xie, K., and Zhou, Y. 2018. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol. J. 16: 1322–1335.
  • Yoon, S.-K., Bae, E.-K., Lee, H., Choi, Y.-I., Han, M., Choi, H., Kang, K.-S., and Park, E.-J. 2018. Downregulation of stress-associated protein 1 (PagSAP1) increases salt stress tolerance in poplar (Populus alba × P. glandulosa). Trees. 32: 823–833. doi:10.1007/s00468-018-1675-2
  • Yu, F., Huaxia, Y., Lu, W., Wu, C., Cao, X., and Guo, X. 2012. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutumL.), is involved in disease resistance and plant development. BMC Plant Biol. 12: 144. doi:10.1186/1471-2229-12-144
  • Yu, L. P., Miller, A. K., and Clark, S. E. 2003. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr. Biol. 13: 179–188. doi:10.1016/S0960-9822(03)00042-3
  • Zaidi, S. S., Mahfouz, M. M., and Mansoor, S. 2017. CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci. 22: 550–553.
  • Zeeman, S. C., Umemoto, T., Lue, W. L., Au-Yeung, P., Martin, C., Smith, A. M., and Chen, J. 1998. A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell. 10: 1699–1711. doi:10.2307/3870767
  • Zhai, Y., Cai, S., Hu, L., Yang, Y., Amoo, O., Fan, C., and Zhou, Y. 2019. CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L. Theor. Appl. Genet. 132: 2111–2123.
  • Zhan, G.-M., Tong, J., Wang, H.-Z., and Hua, W. 2010. Molecular analysis and expression patters of four 14-3-3 genes from Brassica napus L. Agric. Sci. China. 9: 942–950. doi:10.1016/S1671-2927(09)60175-9
  • Zhang, D., Li, C., Lv, B., and Liang, J. 2013. The scaffolding protein RACK1: a platform for diverse functions in the plant kingdom. J. Plant Biol. Soil Health. 1: 7.
  • Zhang, D., Wang, Y., Shen, J., Yin, J., Li, D., Gao, Y., Xu, W., and Liang, J. 2018. OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. Rice. 11: 45. doi:10.1186/s12284-018-0232-3
  • Zhang, H., Si, X., Ji, X., Fan, R., Liu, J., Chen, K., Wang, D., and Gao, C. 2018. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36: 894–898.
  • Zhang, X.-Z., Zheng, W.-J., Cao, X.-Y., Cui, X.-Y., Zhao, S.-P., Yu, T.-F., Chen, J., Zhou, Y.-B., Chen, M., Chai, S.-C., Xu, Z.-S., and Ma, Y.-Z. 2019. Genomic analysis of stress associated proteins in soybean and the role of GmSAP16 in abiotic stress responses in Arabidopsis and soybean. Front. Plant Sci. 10: 1453.
  • Zhang, Y., Cheng, X., Wang, Y., Díez-Simón, C., Flokova, K., Bimbo, A., Bouwmeester, H. J., and Ruyter-Spira, C. 2018. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytol. 219: 297–309. doi:10.1111/nph.15131
  • Zhang, Z., Ge, X., Luo, X., Wang, P., Fan, Q., Hu, G., Xiao, J., Li, F., and Wu, J. 2018. Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Front. Plant Sci. 9: 842.
  • Zheng, M., Zhang, L., Tang, M., Liu, J., Liu, H., Yang, H., Fan, S., Terzaghi, W., Wang, H., and Hua, W. 2020. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol. J. 18: 644–654.
  • Zheng, W.-N., Li, D.-H., Chen, F.-J., Liu, X.-P., and Li, H.-Y. 2019. Abiotic stress tolerance and ABA responses of transgenic Glycine max plants with modulated RACK1 expression. Can. J. Plant Sci. 99: 250–267. doi:10.1139/cjps-2017-0093
  • Zhou, B., Lin, J., Peng, W., Peng, D., Zhuo, Y., Zhu, D., Huang, X., Tang, D., Guo, M., He, R., Zhang, J., Li, X., Zhao, X., and Liu, X. 2012. Dwarfism in Brassica napus L. induced by the over-expression of a gibberellin 2-oxidase gene from Arabidopsis thaliana. Mol. Breeding. 29: 115–127. doi:10.1007/s11032-010-9530-1
  • Zhu, J. K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247–273.
  • Zhu, X., Wang, Y., Liu, Y., Zhou, W., Yan, B., Yang, J., and Shen, Y. 2018. Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco. PLoS One. 13: e0207277.
  • Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J. L., Wang, D., and Gao, C. 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35: 438–440. doi:10.1038/nbt.3811
  • Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., Freschi, L., Voytas, D. F., Kudla, J., and Peres, L. E. P. 2018. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36: 1211–1216. doi:10.1038/nbt.4272

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.