2,351
Views
105
CrossRef citations to date
0
Altmetric
Articles

Mechanisms of Cadmium Accumulation in Plants

ORCID Icon & ORCID Icon

References

  • Ahmadi, H., Corso, M., Weber, M., Verbruggen, N., and Clemens, S. 2018. CAX1 suppresses Cd-induced generation of reactive oxygen species in Arabidopsis halleri. Plant Cell Environ. 41: 2435–2448.
  • Alloway, B. J. 1995. Cadmium. In Heavy Metals in Soils, 2nd ed.; Alloway, B. J., Eds. Blackie Academic & Professional: Glasgow.
  • Arnold, T., Kirk, G. J. D., Wissuwa, M., Frei, M., Zhao, F.-J., Mason, T. F. D., and Weiss, D. J. 2010. Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant Cell Environ. 33: 370–381.
  • Arrivault, S., Senger, T., and Krämer, U. 2006. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J. 46: 861–879.
  • Astolfi, S., Ortolani, M. R., Catarcione, G., Paolacci, A. R., Cesco, S., Pinton, R., and Ciaffi, M. 2014. Cadmium exposure affects iron acquisition in barley (Hordeum vulgare) seedlings. Physiol. Plant. 152: 646–659.
  • ATSDR. 2012. Toxicological Profile for Cadmium. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA.
  • Baker, A. J. M. 1981. Accumulators and excluders – strategies in the response of plants to heavy metals. J. Plant Nutr. 3: 643–654.
  • Baliardini, C., Meyer, C.-L., Salis, P., Saumitou-Laprade, P., and Verbruggen, N. 2015. CATION EXCHANGER1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis Spp. Plant Physiol. 169: 549–559.
  • Barberon, M., Dubeaux, G., Kolb, C., Isono, E., Zelazny, E., and Vert, G. 2014. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc. Natl. Acad. Sci. USA. 111: 8293–8298.
  • Benatti, M. R., Yookongkaew, N., Meetam, M., Guo, W.-J., Punyasuk, N., AbuQamar, S., and Goldsbrough, P. 2014. Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New Phytol. 202: 940–951.
  • Berkelaar, E. J. and Hale, B. A. 2003a. Accumulation of cadmium by durum wheat roots: bases for citrate-mediated exceptions to the free ion model. Environ. Toxicol. Chem. 22: 1155–1161.
  • Berkelaar, E. J. and Hale, B. A. 2003b. Cadmium accumulation by durum wheat roots in ligand-buffered hydroponic culture: uptake of Cd–ligand complexes or enhanced diffusion? Can. J. Bot. 81: 755–763.
  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., and Raskin, I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31: 860–865.
  • Borlotti, A., Vigani, G., and Zocchi, G. 2012. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. BMC Plant Biol. 12: 189.
  • Brunetti, P., Zanella, L., De Paolis, A., Di Litta, D., Cecchetti, V., Falasca, G., Barbieri, M., Altamura, M. M., Costantino, P., and Cardarelli, M. 2015. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J. Exp. Bot. 66: 3815–3829.
  • Cailliatte, R., Schikora, A., Briat, J.-F., Mari, S., and Curie, C. 2010. High-affinity manganese uptake by the metal transporter Nramp1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell. 22: 904–917.
  • Cakmak, I., Welch, R. M., Erenoglu, B., Römheld, V., Norvell, W. A., and Kochian, L. V. 2000. Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant Soil. 219: 279–284.
  • Cao, Z.-Z., Qin, M.-L., Lin, X.-Y., Zhu, Z.-W., and Chen, M.-X. 2018. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Environ. Pollut. 238: 76–84.
  • Cao, D.-J., Yang, X., Geng, G., Wan, X.-C., Ma, R.-X., Zhang, Q., and Liang, Y.-G. 2018. Absorption and subcellular distribution of cadmium in tea plant (Camellia sinensis cv. “ "Shuchazao")”). Environ. Sci. Pollut. Res. Int. 25: 15357–15367.
  • Carrier, P., Baryla, A., and Havaux, M. 2003. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216: 939–950.
  • Cataldo, D. A., Garland, T. R., and Wildung, R. E. 1983. Cadmium uptake kinetics in intact soybean plants. Plant Physiol. 73: 844–848.
  • Cataldo, D. A., McFadden, K. M., Garland, T. R., and Wildung, R. E. 1988. Organic constituents and complexation of nickel(II), iron(III), cadmium(II), and plutonium(IV) in soybean xylem exudates. Plant Physiol. 86: 734–739.
  • Chaney, R. L., Reeves, H. W., Baklanov, I. A., Centofanti, T., Broadhurst, C. L., Baker, A. J. M., Van der Ent, A., and Rosenberg, R. 2014. Phytoremediation and Phytomining: using plants to remediate contaminated or mineralized environments. In Plant Ecology and Evolution in Harsh Environments; Rajakaruna, R., Boyd, R. S., and Harris, T., Eds. Nova Science Publishers: New York.
  • Chao, D.-Y., Silva, A., Baxter, I., Huang, Y. S., Nordborg, M., Danku, J., Lahner, B., Yakubova, E., and Salt, D. E. 2012. Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLOS Genet. 8: e1002923.
  • Chardonnens, A. N., Bookum, W. M. T., Kuijper, L. D. J., Verkleij, J. A. C., and Ernst, W. H. O. 1998. Distribution of cadmium in leaves of cadmium tolerant and sensitive ecotypes of Silene vulgaris. Physiol. Plant. 104: 75–80.
  • Chekmeneva, E., Díaz-Cruz, J. M., Ariño, C., and Esteban, M. 2007. Binding of Cd2+ and Zn2+ with the phytochelatin (γ-Glu-Cys)4-Gly: a voltammetric study assisted by multivariate curve resolution and electrospray ionization mass spectrometry. Electroanalysis. 19: 310–317.
  • Chekmeneva, E., Prohens, R., Diaz-Cruz, J. M., Ariño, C., and Esteban, M. 2008. Competitive binding of Cd and Zn with the phytochelatin (γ-Glu-Cys)4-Gly: comparative study by mass spectrometry, voltammetry-multivariate curve resolution, and isothermal titration calorimetry. Environ. Sci. Technol. 42: 2860–2866.
  • Chen, C., Cao, Q., Jiang, Q., Li, J., Yu, R., and Shi, G. 2019. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency. BMC Plant Biol. 19: 35.
  • Chen, A., Komives, E. A., and Schroeder, J. I. 2006. An improved grafting technique for mature arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol. 141: 108–120.
  • Chen, X., Ouyang, Y., Fan, Y., Qiu, B., Zhang, G., and Zeng, F. 2018. The pathway of transmembrane cadmium influx via calcium-permeable channels and its spatial characteristics along rice root. J. Exp. Bot. 69: 5279–5291.
  • Chen, H., Wang, P., Gu, Y., Kretzschmar, R., Kopittke, P. M., and Zhao, F.-J. 2020. The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling. Environ. Pollut. 261: 114151.
  • Chen, H., Zhang, W., Yang, X., Wang, P., McGrath, S. P., and Zhao, F.-J. 2018. Effective methods to reduce cadmium accumulation in rice grain. Chemosphere. 207: 699–707.
  • Cheng, M., Wang, P., Kopittke, P. M., Wang, A., Sale, P. W. G., and Tang, C. 2016. Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. J. Exp. Bot. 67: 5041–5050.
  • Cheng, H., Wang, M., Wong, M., and Ye, Z. 2014. Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? Plant Soil. 375: 137–148.
  • Chiang, H. C., Lo, J. C., and Yeh, K. C. 2006. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ. Sci. Technol. 40: 6792–6798.
  • Choppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A., Ashwath, N., and Ok, Y. S. 2014. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit. Rev. Plant Sci. 33: 374–391.
  • Christensen, T. H. 1984. Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH, and calcium. Water. Air. Soil Pollut. 21:105–114.
  • Cieslinski, G., Van Rees, K. C. J., Szmigielska, A. M., Krishnamurti, G. S. R., and Huang, P. M. 1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil. 203: 109–117.
  • Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212: 475–486.
  • Clemens, S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88: 1707–1719.
  • Clemens, S., Aarts, M. G. M., Thomine, S., and Verbruggen, N. 2013. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci. 18: 92–99.
  • Clemens, S., Antosiewicz, D. M., Ward, J. M., Schachtman, D. P., and Schroeder, J. I. 1998. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc. Natl. Acad. Sci. USA. 95: 12043–12048.
  • Clemens, S., Kim, E. J., Neumann, D., and Schroeder, J. I. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. Embo J. 18: 3325–3333.
  • Cobbett, C. S. 2003. Heavy metals and plants - model systems and hyperaccumulators. New Phytol. 159: 289–293.
  • Cobbett, C. and Goldsbrough, P. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol. 53: 159–182.
  • Cohen, C. K., Fox, T. C., Garvin, D. F., and Kochian, L. V. 1998. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol. 116: 1063–1072.
  • Collins, R. N., Merrington, G., McLaughlin, M. J., and Knudsen, C. 2002. Uptake of intact zinc-ethylenediaminetetraacetic acid from soil is dependent on plant species and complex concentration. Environ. Toxicol. Chem. 21: 1940–1945.
  • Cornu, J. Y., Bakoto, R., Bonnard, O., Bussière, S., Coriou, C., Sirguey, C., Sterckeman, T., Thunot, S., Visse, M. I., and Nguyen, C. 2016. Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics. Plant Soil. 404: 263–275.
  • Cosio, C., DeSantis, L., Frey, B., Diallo, S., and Keller, C. 2005. Distribution of cadmium in leaves of Thlaspi caerulescens. J. Exp. Bot. 56: 765–775.
  • Cosio, C., Martinoia, E., and Keller, C. 2004. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol. 134: 716–725.
  • Cosio, C., Vollenweider, P., and Keller, C. 2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): I. Macrolocalization and phytotoxic effects of cadmium. Environ. Exp. Bot. 58: 64–74.
  • Costa, G. and Morel, J. L. 1993. Cadmium uptake by Lupinus albus (L.): cadmium excretion, a possible mechanism of cadmium tolerance. J. Plant Nutr. 16: 1921–1929.
  • Costa, G. and Morel, J. L. 1994. Efficiency of H+-ATPase activity on cadmium uptake by four cultivars of lettuce. J. Plant Nutr. 17: 627–637.
  • Courbot, M., Willems, G., Motte, P., Arvidsson, S., Roosens, N., Saumitou-Laprade, P., and Verbruggen, N. 2007. A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol. 144:1052–1065.
  • Craciun, A. R., Meyer, C.-L., Chen, J., Roosens, N., De Groodt, R., Hilson, P., and Verbruggen, N. 2012. Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J. Exp. Bot. 63:4179–4189.
  • Cruz, B. H., Díaz-Cruz, J. M., Ariño, C., and Esteban, M. 2005. Complexation of heavy metals by phytochelatins: voltammetric study of the binding of Cd2+ and Zn2+ ions by the phytochelatin (gamma-Glu-Cys)3Gly assisted by multivariate curve resolution. Environ. Sci. Technol. 39:778–786.
  • Custos, J.-M., Moyne, C., Treillon, T., and Sterckeman, T. 2014. Contribution of Cd-EDTA complexes to cadmium uptake by maize: a modelling approach. Plant Soil. 374:497–512.
  • de Meeûs, C., Eduljee, G. H., and Hutton, M. 2002. Assessment and management of risks arising from exposure to cadmium in fertilisers. Sci. Total Environ. 291: 167–187.
  • Degryse, F., Buekers, J., and Smolders, E. 2004. Radio-labile cadmium and zinc in soils as affected by pH and source of contamination. Eur. J. Soil Sci. 55: 113–122.
  • Degryse, F., Smolders, E., and Merckx, R. 2006. Labile Cd complexes increase Cd availability to plants. Environ. Sci. Technol. 40:830–836.
  • Degryse, F., Smolders, E., and Parker, D. R. 2009. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications: a review. Eur. J. Soil Sci. 60: 590–612.
  • Desbrosses-Fonrouge, A.-G., Voigt, K., Schröder, A., Arrivault, S., Thomine, S., and Krämer, U. 2005. Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett. 579: 4165–4174.
  • Ding, Y., Gong, S., Wang, Y., Wang, F., Bao, H., Sun, J., Cai, C., Yi, K., Chen, Z., and Zhu, C. 2018. MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol. 177: 1691–1703.
  • Dräger, D. B., Desbrosses-Fonrouge, A.-G., Krach, C., Chardonnens, A. N., Meyer, R. C., Saumitou-Laprade, P., and Krämer, U. 2004. Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J. 39: 425–439.
  • Ebbs, S. D., Zambrano, M. C., Spiller, S. M., and Newville, M. 2009. Cadmium sorption, influx, and efflux at the mesophyll layer of leaves from ecotypes of the Zn/Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 181: 626–636.
  • EFSA. 2012. Cadmium dietary exposure in the European population. Efsa J. 10:2551.
  • Eide, D., Broderius, M., Fett, J., and Guerinot, M. L. 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA. 93: 5624–5628.
  • Ernst, W. H. O., Krauss, G.-J., Verkleij, J. A. C., and Wesenberg, D. 2008. Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ. 31: 123–143.
  • Farooq, M. A., Detterbeck, A., Clemens, S., and Dietz, K.-J. 2016. Silicon-induced reversibility of cadmium toxicity in rice. J. Exp. Bot. 67: 3573–3585.
  • Farrell, R. E., McArthur, D. F. E., and Van Rees, K. C. J. 2005. Net Cd2+ flux at the root surface of durum wheat (Triticum turgidum L. var. durum) cultivars in relation to cultivar differences in Cd accumulation. Can. J. Plant Sci. 85: 103–107.
  • Feng, J., Jia, W., Lv, S., Bao, H., Miao, F., Zhang, X., Wang, J., Li, J., Li, D., Zhu, C., Li, S., and Li, Y. 2018. Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnol. J. 16: 558–571.
  • Fismes, J., Echevarria, G., Leclerc-Cessac, E., and Morel, J. L. 2005. Uptake and transport of radioactive nickel and cadmium into three vegetables after wet aerial contamination. J. Environ. Qual. 34: 1497–1507.
  • Florijn, P. J. and Van Beusichem, M. L. 1993a. Cadmium distribution in maize inbred lines: effects of pH and level of Cd supply. Plant Soil 153: 79–84.
  • Florijn, P. J. and Van Beusichem, M. L. 1993b. Uptake and distribution of cadmium in maize inbred lines. Plant Soil. 150: 25–32.
  • Fontanili, L., Lancilli, C., Suzui, N., Dendena, B., Yin, Y.-G., Ferri, A., Ishii, S., Kawachi, N., Lucchini, G., Fujimaki, S., Sacchi, G. A., and Nocito, F. F. 2016. Kinetic analysis of zinc/cadmium reciprocal competitions suggests a possible Zn-insensitive pathway for root-to-shoot cadmium translocation in rice. Rice (N Y). 9: 16.
  • Fu, X., Dou, C., Chen, Y., Chen, X., Shi, J., Yu, M., and Xu, J. 2011. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J. Hazard. Mater. 186: 103–107.
  • Fujimaki, S., Suzui, N., Ishioka, N. S., Kawachi, N., Ito, S., Chino, M., and Nakamura, S.-I. 2010. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol. 152: 1796–1806.
  • Gasic, K. and Korban, S. S. 2007. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta. 225: 1277–1285.
  • Gong, J.-M., Lee, D. A., and Schroeder, J. I. 2003. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc. Natl. Acad. Sci. USA. 100: 10118–10123.
  • Gonneau, C., Genevois, N., Frérot, H., Sirguey, C., and Sterckeman, T. 2014. Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil. 384: 271–287.
  • Greger, M., Kabir, A. H., Landberg, T., Maity, P. J., and Lindberg, S. 2016. Silicate reduces cadmium uptake into cells of wheat. Environ. Pollut. 211: 90–97.
  • Greger, M. and Lofstedt, M. 2004. Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci. 44: 501–507.
  • Grignon, C. and Sentenac, H. 1991. pH and ionic conditions in the apoplast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 103–128.
  • Grill, E., Löffler, S., Winnacker, E.-L., and Zenk, M. H. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA. 86: 6838–6842.
  • Grill, E., Winnacker, E.-L., and Zenk, M. H. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science. 230: 674–676.
  • Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., and Eide, D. 1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA. 95: 7220–7224.
  • Gu, X. and Evans, L. J. 2008. Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochim. Cosmochim. Acta 72: 267–276.
  • Gu, X., Evans, L. J., and Barabash, S. J. 2010. Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochim. Cosmochim. Acta. 74: 5718–5728.
  • Guo, W.-J., Meetam, M., and Goldsbrough, P. B. 2008. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol. 146: 1697–1706.
  • Ha, S.-B., Smith, A. P., Howden, R., Dietrich, W. M., Bugg, S., O'Connell, M. J., Goldsbrough, P. B., and Cobbett, C. S. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell. 11: 1153–1163.
  • Haghiri, F. 1973. Cadmium uptake by plants. J. Environ. Qual. 2: 93–95.
  • Halimaa, P., Blande, D., Baltzi, E., Aarts, M. G. M., Granlund, L., Keinänen, M., Kärenlampi, S. O., Kozhevnikova, A. D., Peräniemi, S., Schat, H., Seregin, I. V., Tuomainen, M., and Tervahauta, A. I. 2019. Transcriptional effects of cadmium on iron homeostasis differ in calamine accessions of Noccaea caerulescens. Plant J. 97: 306–320.
  • Hanikenne, M., Talke, I. N., Haydon, M. J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., and Krämer, U. 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature. 453: 391–396.
  • Hao, X., Zeng, M., Wang, J., Zeng, Z., Dai, J., Xie, Z., Yang, Y., Tian, L., Chen, L., and Li, D. 2018. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Frontiers Plant Sci. 9: 476.
  • Harada, E., Yamaguchi, Y., Koizumi, N., and Hiroshi, S. 2002. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J. Plant Physiol. 159: 445–448.
  • Harris, N. and Taylor, G. 2013. Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol. 13:103.
  • Hart, J. J., Welch, R. M., Norvell, W. A., and Kochian, L. V. 2002. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol. Plant. 116: 73–78.
  • Hart, J. J., Welch, R. M., Norvell, W. A., Sullivan, L. A., and Kochian, L. V. 1998. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol. 116: 1413–1420.
  • Hassinen, V. H., Tervahauta, A. I., Halimaa, P., Plessl, M., Peräniemi, S., Schat, H., Aarts, M. G. M., Servomaa, K., and Kärenlampi, S. O. 2007. Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta. 225: 977–989.
  • Haynes, R. J. 1980. Ion exchange properties of roots and ionic interactions within the root apoplasm: their role in ion accumulation by plants. Bot. Rev. 46: 75–99.
  • Hazama, K., Nagata, S., Fujimori, T., Yanagisawa, S., and Yoneyama, T. 2015. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Physiol. Plant. 154: 243–255.
  • He, X. L., Fan, S. K., Zhu, J., Guan, M. Y., Liu, X. X., Zhang, Y. S., and Jin, C. W. 2017. Iron supply prevents Cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake. Plant Soil. 416: 453–462.
  • Helmke, P. A. 1999. Chemistry of cadmium in soil solution. In Cadmium in Soils and Plants; McLaughlin, M. J. and Singh, B. R., Eds. Kluwer Academic Publishers: Dordrecht.
  • He, J., Qin, J., Long, L., Ma, Y., Li, H., Li, K., Jiang, X., Liu, T., Polle, A., Liang, Z., and Luo, Z.-B. 2011. Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol. Plant. 143: 50–63.
  • Herbette, S., Taconnat, L., Hugouvieux, V., Piette, L., Magniette, M. L. M., Cuine, S., Auroy, P., Richaud, P., Forestier, C., Bourguignon, J., Renou, J. P., Vavasseur, A., and Leonhardt, N. 2006. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie. 88: 1751–1765.
  • Hernandez-Allica, J., Garbisu, C., Becerril, J. M., Barrutia, O., Garcia-Plazaola, J. I., Zhao, F. J., and McGrath, S. P. 2006. Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant Cell Environ. 29: 1422–1429.
  • Herren, T. and Feller, U. 1997. Transport of cadmium via xylem and phloem in maturing wheat shoots: comparison with the translocation of zinc, strontium and rubidium. Ann. Bot. 80: 623–628.
  • Hill, K. A., Lion, L. W., and Ahner, B. A. 2002. Reduced Cd accumulation in Zea mays: a protective role for phytosiderophores?. Environ. Sci. Technol. 36: 5363–5368.
  • Hinesly, T. D., Alexander, D. E., Ziegler, E. L., and Barrett, G. L. 1978. Zinc and Cd accumulation by corn inbreds grown on sludge amended soil. Agron. J. 70: 425–428.
  • Hinsinger, P., Plassard, C., Tang, C., and Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil. 248:43–59.
  • Hirschi, K. D., Korenkov, V. D., Wilganowski, N. L., and Wagner, G. J. 2000. Expression of Arabidopsis CAX2 in Tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124: 125–134.
  • Holm, P. E., Andersen, B. B. H., and Christensen, T. H. 1996. Cadmium solubility in aerobic soils. Soil Sci. Soc. Am. J. 60: 775–780.
  • Honjo, M. N. and Kudoh, H. 2019. Arabidopsis halleri: a perennial model system for studying population differentiation and local adaptation. AoB Plants. 11: plz076.
  • Hu, P., Yin, Y.-G., Ishikawa, S., Suzui, N., Kawachi, N., Fujimaki, S., Igura, M., Yuan, C., Huang, J., Li, Z., Makino, T., Luo, Y., Christie, P., and Wu, L. 2013. Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola. Environ. Sci. Pollut. Res. Int. 20: 6306–6316.
  • Huguet, S., Bert, V., Laboudigue, A., Barthès, V., Isaure, M.-P., Llorens, I., Schat, H., and Sarret, G. 2012. Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ. Exp. Bot. 82: 54–65.
  • Hutchinson, J. J., Young, S. D., McGrath, S. P., West, H. M., Black, C. R., and Baker, A. J. M. 2000. Determining uptake of ‘non-labile' soil cadmium by Thlaspi caerulescens using isotopic dilution techniques. New Phytol. 146: 453–460.
  • Ishikawa, S., Ishimaru, Y., Igura, M., Kuramata, M., Abe, T., Senoura, T., Hase, Y., Arao, T., Nishizawa, N. K., and Nakanishi, H. 2012. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc. Natl. Acad. Sci. 109: 19166–19171.
  • Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N. K. 2006. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2++. Plant J. 45: 335–346.
  • Ishimaru, Y., Takahashi, R., Bashir, K., Shimo, H., Senoura, T., Sugimoto, K., Ono, K., Yano, M., Ishikawa, S., Arao, T., Nakanishi, H., and Nishizawa, N. K. 2012. Characterizing the role of rice NRAMP5 in manganese, ion and cadmium transport. Sci. Rep. 2: 286.
  • Jack, E., Hakvoort, H. W. J., Reumer, A., Verkleij, J. A. C., Schat, H., and Ernst, W. H. O. 2007. Real-time PCR analysis of metallothionein-2b expression in metallicolous and non-metallicolous populations of Silene vulgaris (Moench) Garcke. Environ. Exp. Bot. 59:84–91. doi:10.1016/j.envexpbot.2005.10.005
  • Jacquart, A., Brayner, R., El Hage Chahine, J.-M., and Ha-Duong, N.-T. 2017. Cd2+ and Pb2+ complexation by glutathione and the phytochelatins. Chem. Biol. Interact. 267: 2–10.
  • Jarvis, S. C., Jones, L. H. P., and Hopper, M. J. 1976. Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil. 44: 179–191.
  • Jiang, R. F., Ma, D. Y., Zhao, F. J., and McGrath, S. P. 2005. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol. 167: 805–814.
  • John, M. K. 1973. Cadmium uptake by eight food crops as influenced by various soil levels of cadmium. Environ. Pollut. 4:7–15. doi:10.1016/0013-9327(73)90026-8
  • John, M. K., Chuah, H. H., and VanLaerhoven, C. 1972. Cadmium contamination of soil and its uptake by oats. Environ. Sci. Technol. 6: 555–557.
  • Jones, D., Nguyen, C., and Finlay, R. 2009. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 321: 5–33.
  • Kato, M., Ishikawa, S., Inagaki, K., Chiba, K., Hayashi, H., Yanagisawa, S., and Yoneyama, T. 2010. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Sci. Plant Nutr. 56: 839–847.
  • Kim, D.-Y., Bovet, L., Maeshima, M., Martinoia, E., and Lee, Y. 2007. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 50: 207–218.
  • Kinraide, T. B. 1998. Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol. 118: 513–520.
  • Kobayashi, N. I., Tanoi, K., Hirose, A., and Nakanishi, T. M. 2013. Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging. J. Exp. Bot. 64:507–517. doi:10.1093/jxb/ers344]
  • Korenkov, V., King, B., Hirschi, K., and Wagner, G. J. 2009. Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol. J. 7: 219–226.
  • Koren'kov, V., Park, S., Cheng, N.-H., Sreevidya, C., Lachmansingh, J., Morris, J., Hirschi, K., and Wagner, G. J. 2007. Enhanced Cd2+ -selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta. 225: 403–411.
  • Korshunova, Y. O., Eide, D., Clark, W. G., Guerinot, M. L., and Pakrasi, H. B. 1999. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol. 40: 37–44.
  • Küpper, H. and Andresen, E. 2016. Mechanisms of metal toxicity in plants. Metallomics. 8: 269–285.
  • Küpper, H., Mijovilovich, A., Meyer-Klaucke, W., and Kroneck, P. M. H. 2004. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol. 134: 748–757.
  • Kuramata, M., Masuya, S., Takahashi, Y., Kitagawa, E., Inoue, C., Ishikawa, S., Youssefi, S., and Kusano, T. 2009. Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol. 50: 107–117.
  • Lackovic, K., Angove, M. J., Wells, J. D., and Johnson, B. B. 2004. Modeling the adsorption of Cd(II) onto goethite in the presence of citric acid. J. Colloid Interface Sci. 269: 37–45.
  • Lagerwerff, J. V. 1971. Uptake of cadmium, lead and zinc by radish from soil and air. Soil Sci. 111: 129–133.
  • Lane, T. W., Saito, M. A., George, G. N., Pickering, I. J., Prince, R. C., and Morel, F. M. M. 2005. A cadmium enzyme from a marine diatom. Nature 435: 42.
  • Lanquar, V., Lelièvre, F., Bolte, S., Hamès, C., Alcon, C., Neumann, D., Vansuyt, G., Curie, C., Schröder, A., Krämer, U., Barbier-Brygoo, H., and Thomine, S. 2005. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. Embo J. 24: 4041–4051.
  • Lanquar, V., Ramos, M. S., Lelièvre, F., Barbier-Brygoo, H., Krieger-Liszkay, A., Krämer, U., and Thomine, S. 2010. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol. 152:1986–1999.
  • Laporte, M.-A., Denaix, L., Pagès, L., Sterckeman, T., Flénet, F., Dauguet, S., and Nguyen, C. 2013. Longitudinal variation in cadmium influx in intact first order lateral roots of sunflower (Helianthus annuus L). Plant Soil. 372: 581–595.
  • Laporte, M.-A., Sterckeman, T., Dauguet, S., Denaix, L., and Nguyen, C. 2015. Variability in cadmium and zinc shoot concentration in 14 cultivars of sunflower (Helianthus annuus L.) as related to metal uptake and partitioning. Environ. Exp. Bot. 109: 45–53.
  • Larsson Jönsson, E. H. and Asp, H. 2013. Effects of pH and nitrogen on cadmium uptake in potato. Biol. Plantarum 57: 788–792.
  • Lee, S., Moon, J. S., Ko, T.-S., Petros, D., Goldsbrough, P. B., and Korban, S. S. 2003. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol. 131: 656–663.
  • Leitenmaier, B. and Küpper, H. 2011. Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 34: 208–219.
  • Leopold, I., Günther, D., Schmidt, J., and Neumann, D. 1999. Phytochelatins and heavy metal tolerance. Phytochemistry. 50: 1323–1328.
  • Leverrier, P., Montigny, C., Garrigos, M., and Champeil, P. 2007. Metal binding to ligands: Cadmium complexes with glutathione revisited. Anal. Biochem. 371: 215–228.
  • Liang, T., Ding, H., Wang, G., Kang, J., Pang, H., and Lv, J. 2016. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Ecotoxicol. Environ. Saf. 124: 129–137.
  • Liang, J., Shohag, M. J. I., Yang, X., Tian, S., Zhang, Y., Feng, Y., and He, Z. 2014. Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance. Ecotoxicol. Environ. Saf. 100: 159–165.
  • Liang, Y., Wong, J. W. C., and Wei, L. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere. 58:475–483.
  • Li, J.-Y., Fu, Y.-L., Pike, S. M., Bao, J., Tian, W., Zhang, Y., Chen, C.-Z., Zhang, Y., Li, H.-M., Huang, J., Li, L.-G., Schroeder, J. I., Gassmann, W., and Gong, J.-M. 2010. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell. 22: 1633–1646.
  • Li, L., Liu, X., Peijnenburg, W. J. G. M., Zhao, J., Chen, X., Yu, J., and Wu, H. 2012. Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicol. Environ. Saf. 75: 1–7.
  • Li, S. U. N., Yu, J., Zhu, M., Zhao, F., and Luan, S. 2012. Cadmium impairs ion homeostasis by altering K+ and Ca2+ channel activities in rice root hair cells. Plant. Cell Environ. 35: 1998–2013.
  • Lin, Y.-F. and Aarts, M. M. 2012. The molecular mechanism of zinc and cadmium stress response in plants. Cell. Mol. Life Sci. 69: 3187–3206.
  • Lindberg, S., Landberg, T., and Greger, M. 2007. Cadmium uptake and interaction with phytochelatins in wheat protoplasts. Plant Physiol. Biochem. 45: 47–53.
  • Lin, Y.-F., Hassan, Z., Talukdar, S., Schat, H., and Aarts, M. G. M. 2016. Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLOS One. 11: e0149750.
  • Lin, Z., Schneider, A., Sterckeman, T., and Nguyen, C. 2016. Ranking of mechanisms governing the phytoavailability of cadmium in agricultural soils using a mechanistic model. Plant Soil 399:89–107. doi:10.1007/s11104-015-2663-6
  • Liñero, O., Cornu, J.-Y., Candaudap, F., Pokrovsky, O. S., Bussière, S., Coriou, C., Humann-Guilleminot, T., Robert, T., Thunot, S., de Diego, A., and Nguyen, C. 2016. Short-term partitioning of Cd recently taken up between sunflowers organs (Helianthus annuus) at flowering and grain filling stages: effect of plant transpiration and allometry. Plant Soil. 408: 163–181.
  • Liñero, O., Cornu, J.-Y., de Diego, A., Bussière, S., Coriou, C., Thunot, S., Robert, T., and Nguyen, C. 2018. Source of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo and Zn in grains of sunflower (Helianthus annuus) grown in nutrient solution: root uptake or remobilization from vegetative organs? Plant Soil. 424: 435–450.
  • Li, T., Tao, Q., Shohag, M., Yang, X., Sparks, D., and Liang, Y. 2015. Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil. 389: 387–399.
  • Liu, H., Zhang, J., Christie, P., and Zhang, F. 2008. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci. Total Environ. 394: 361–368.
  • Liu, H. J., Zhang, J. L., and Zhang, F. S. 2007. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environ. Exp. Bot. 59: 314–320.
  • Liu, H., Zhao, H., Wu, L., Liu, A., Zhao, F.-J., and Xu, W. 2017. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol. 215: 687–698.
  • Lofts, S. and Tipping, E. 1998. An assemblage model for cation binding by natural particulate matter. Geochim. Cosmochim. Acta. 62: 2609–2625.
  • Lombi, E., Tearall, K. L., Howarth, J. R., Zhao, F.-J., Hawkesford, M. J., and McGrath, S. P. 2002. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 128: 1359–1367.
  • Lombi, E., Zhao, F. J., McGrath, S. P., Young, S. D., and Sacchi, G. E. 2001. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol. 149: 53–60.
  • Long, L., Persson, D. P., Duan, F., Jørgensen, K., Yuan, L., Schjoerring, J. K., and Pedas, P. R. 2018. The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley. New Phytol. 217: 1640–1653.
  • Lovy, L., Latt, D., and Sterckeman, T. 2013. Cadmium uptake and partitioning in the hyperaccumulator Noccaea caerulescens exposed to constant Cd concentrations throughout complete growth cycles. Plant Soil. 362: 345–354.
  • Lozano-Rodriguez, E., Hernàndez, L. E., Bonay, P., and Carpena-Ruiz, R. O. 1997. Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J. Exp. Bot. 48: 123–128.
  • Luo, B. F., Du, S. T., Lu, K. X., Liu, W. J., Lin, X. Y., and Jin, C. W. 2012. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J. Exp. Bot. 63: 3127–3136.
  • Luo, J.-S., Huang, J., Zeng, D.-L., Peng, J.-S., Zhang, G.-B., Ma, H.-L., Guan, Y., Yi, H.-Y., Fu, Y.-L., Han, B., Lin, H.-X., Qian, Q., and Gong, J.-M. 2018. A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 9: 645.
  • Lux, A., Martinka, M., Vaculik, M., and White, P. J. 2011. Root responses to cadmium in the rhizosphere: a review. J. Exp. Bot. 62: 21–37.
  • Maccaferri, M., Harris, N. S., Twardziok, S. O., Pasam, R. K., Gundlach, H., Spannagl, M., Ormanbekova, D., Lux, T., Prade, V. M., Milner, S. G., Himmelbach, A., Mascher, M., Bagnaresi, P., Faccioli, P., Cozzi, P., Lauria, M., Lazzari, B., Stella, A., Manconi, A., Gnocchi, M., Moscatelli, M., Avni, R., Deek, J., Biyiklioglu, S., Frascaroli, E., Corneti, S., Salvi, S., Sonnante, G., Desiderio, F., Marè, C., Crosatti, C., Mica, E., Özkan, H., Kilian, B., De Vita, P., Marone, D., Joukhadar, R., Mazzucotelli, E., Nigro, D., Gadaleta, A., Chao, S., Faris, J. D., Melo, A. T. O., Pumphrey, M., Pecchioni, N., Milanesi, L., Wiebe, K., Ens, J., MacLachlan, R. P., Clarke, J. M., Sharpe, A. G., Koh, C. S., Liang, K. Y. H., Taylor, G. J., Knox, R., Budak, H., Mastrangelo, A. M., Xu, S. S., Stein, N., Hale, I., Distelfeld, A., Hayden, M. J., Tuberosa, R., Walkowiak, S., Mayer, K. F. X., Ceriotti, A., Pozniak, C. J., and Cattivelli, L. 2019. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51: 885–895.
  • Mah, V. and Jalilehvand, F. 2010. Cadmium(II) complex formation with glutathione. J. Biol. Inorg. Chem. 15: 441–458.
  • Marentes, E. and Rauser, W. E. 2007. Different proportions of cadmium occur as Cd-binding phytochelatin complexes in plants. Physiol. Plant. 131: 291–301.
  • Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, London, UK.
  • Martin-Garin, A., Van Cappellen, P., and Charlet, L. 2003. Aqueous cadmium uptake by calcite: a stirred flow-through reactor study. Geochim. Cosmochim. Acta. 67: 2763–2774.
  • Maxted, A. P., Black, C. R., West, H. M., Crout, N. M. J., McGrath, S. P., and Young, S. D. 2007. Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ. Pollut. 150: 363–372.
  • McLaughlin, M. J., Andrew, S. J., Smart, M. K., and Smolders, E. 1998. Effects of sulfate on cadmium uptake by Swiss chard: I. Effects of complexation and calcium competition in nutrient solutions. Plant Soil. 202: 211–216.
  • McLaughlin, M. J., Lambrechts, R. M., Smolders, E., and Smart, M. K. 1998. Effects of sulfate on cadmium uptake by Swiss chard: II. Effects due to sulfate addition to soil. Plant Soil. 202: 217–222.
  • McLaughlin, M. J., Tiller, K. G., and Smart, M. K. 1997. Speciation of cadmium in soil solutions of saline/sodic soils and relationship with cadmium concentrations in potato tubers (Solanum tuberosum L.). Aust. J. Soil Res. 35: 183–198.
  • Meda, A. R., Scheuermann, E. B., Prechsl, U. E., Erenoglu, B., Schaaf, G., Hayen, H., Weber, G., and von Wirén, N. 2007. Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol. 143: 1761–1773.
  • Mendoza-Cozatl, D. G., Butko, E., Springer, F., Torpey, J. W., Komives, E. A., Kehr, J., and Schroeder, J. I. 2008. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 54: 249–259.
  • Mengoni, A., Gonnelli, C., Hakvoort, H. W. J., Galardi, F., Bazzicalupo, M., Gabbrielli, R., and Schat, H. 2003. Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant Soil. 257: 451–457.
  • Meyer, C.-L., Juraniec, M., Huguet, S., Chaves-Rodriguez, E., Salis, P., Isaure, M.-P., Goormaghtigh, E., and Verbruggen, N. 2015. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. J. Exp. Bot. 66: 3215–3227.
  • Migocka, M., Papierniak, A., Kosieradzka, A., Posyniak, E., Maciaszczyk-Dziubinska, E., Biskup, R., Garbiec, A., and Marchewka, T. 2015. Cucumber metal tolerance protein CsMTP9 is a plasma membrane H+-coupled antiporter involved in the Mn2+ and Cd2+ efflux from root cells. Plant J. 84: 1045–1058.
  • Mills, R. F., Francini, A., Ferreira da Rocha, P. S. C., Baccarini, P. J., Aylett, M., Krijger, G. C., and Williams, L. E. 2005. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett. 579: 783–791.
  • Mills, R. F., Krijger, G. C., Baccarini, P. J., Hall, J. L., and Williams, L. E. 2003. Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J. 35: 164–176.
  • Milner, M. J., Craft, E., Yamaji, N., Koyama, E., Ma, J. F., and Kochian, L. V. 2012. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. New Phytol. 195: 113–123.
  • Mirouze, M., Sels, J., Richard, O., Czernic, P., Loubet, S., Jacquier, A., François, I. E. J. A., Cammue, B. P. A., Lebrun, M., Berthomieu, P., and Marquès, L. 2006. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J. 47: 329–342.
  • Mishra, S., Mishra, A., and Küpper, H. 2017. Protein biochemistry and expression regulation of cadmium/zinc pumping ATPases in the hyperaccumulator plants Arabidopsis halleri and Noccaea caerulescens. Frontiers Plant Sci. 8: 835.
  • Misono, M., Ochiai, E., Saito, Y., and Yoneda, Y. 1967. A new dual parameter scale for the strength of lewis acids and bases with the evaluation of their softness. J. Inorg. Nucl. Chem. 29: 2685–2691.
  • Miyadate, H., Adachi, S., Hiraizumi, A., Tezuka, K., Nakazawa, N., Kawamoto, T., Katou, K., Kodama, I., Sakurai, K., Takahashi, H., Satoh-Nagasawa, N., Watanabe, A., Fujimura, T., and Akagi, H. 2011. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol. 189: 190–199.
  • Monsant, A., Wang, Y., and Tang, C. 2010. Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant Soil. 336: 391–404.
  • Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A., and Richaud, P. 2009. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol. 149: 894–904.
  • Moulis, J.-M. 2010. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals. 23: 877–896.
  • Naidu, R. and Harter, R. D. 1998. Effect of different organic ligands on cadmium sorption by extractability from soils. Soil Sci. Soc. Am. J. 62: 644–650.
  • Nakamura, S.-i., Suzui, N., Nagasaka, T., Komatsu, F., Ishioka, N. S., Ito-Tanabata, S., Kawachi, N., Rai, H., Hattori, H., Chino, M., and Fujimaki, S. 2013. Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. J. Exp. Bot. 64: 1073–1081.
  • Nakanishi, H., Ogawa, I., Ishimaru, Y., Mori, S., and Nishizawa, N. K. 2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci. Plant Nutr. 52: 464–469.
  • Nocito, F. F., Lancilli, C., Dendena, B., Lucchini, G., and Sacchi, G. A. 2011. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant. Cell Environ. 34: 994–1008.
  • Nocito, F. F., Pirovano, L., Cocucci, M., and Sacchi, G. A. 2002. Cadmium-induced sulfate uptake in maize roots. Plant Physiol. 129: 1872–1879.
  • Nolan, A. L., McLaughlin, M. J., and Mason, S. D. 2003. Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis. Environ. Sci. Technol. 37: 90–98.
  • Nowack, B., Schulin, R., and Robinson, B. H. 2006. Critical assessment of chelant-enhanced metal phytoextraction. Environ. Sci. Technol. 40: 5225–5232.
  • Nwugo, C. C., and Huerta, A. J. 2008. Silicon-induced cadmium resistance in rice (Oryza sativa). J. Plant Nutr. Soil Sci. 171: 841–848.
  • Ó Lochlainn, S., Bowen, H. C., Fray, R. G., Hammond, J. P., King, G. J., White, P. J., Graham, N. S., and Broadley, M. R. 2011. Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLOS One. 6: e17814.
  • Oomen, R. J. F. J., Wu, J., Lelièvre, F., Blanchet, S., Richaud, P., Barbier-Brygoo, H., Aarts, M. G. M., and Thomine, S. 2009. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol. 181: 637–650.
  • Panfili, F., Schneider, A., Vives, A., Perrot, F., Hubert, P., and Pellerin, S. 2009. Cadmium uptake by durum wheat in presence of citrate. Plant Soil. 316: 299–309.
  • Papoyan, A. and Kochian, L. V. 2004. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol. 136: 3814–3823.
  • Park, J., Song, W.-Y., Ko, D., Eom, Y., Hansen, T. H., Schiller, M., Lee, T. G., Martinoia, E., and Lee, Y. 2012. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 69: 278–288.
  • Pedas, P., Ytting, C. K., Fuglsang, A. T., Jahn, T. P., Schjoerring, J. K., and Husted, S. 2008. Manganese efficiency in barley: Identification and characterization of the metal ion transporter HvIRT1. Plant Physiol. 148: 455–466.
  • Pence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L. D., Lasat, M. M., Garvin, D. F., Eide, D., and Kochian, L. V. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc. Natl. Acad. Sci. USA. 97: 4956–4960.
  • Peng, J.-S., Ding, G., Meng, S., Yi, H.-Y., and Gong, J.-M. 2017a. Enhanced metal tolerance correlates with heterotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola. Plant. Cell Environ. 40: 1368–1378.
  • Peng, J.-S., Wang, Y.-J., Ding, G., Ma, H.-L., Zhang, Y.-J., and Gong, J.-M. 2017b. A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola. Mol. Plant. 10: 771–774.
  • Peng, F., Wang, C., Zhu, J., Zeng, J., Kang, H., Fan, X., Sha, L., Zhang, H., Zhou, Y., and Wang, Y. 2018. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants. Planta. 247: 1395–1406.
  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., and Forestier, C. 2002. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 32: 539–548.
  • Perriguey, J., Sterckeman, T., and Morel, J.-L. 2008. Effect of rhizosphere and plant-related factors on the cadmium uptake by maize (Zea mays L.). Environ. Exp. Bot. 63: 333–341.
  • Persans, M. W., Nieman, K., and Salt, D. E. 2001. Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc. Natl. Acad. Sci. USA. 98: 9995–10000.
  • Persson, D. P., Hansen, T. H., Holm, P. E., Schjoerring, J. K., Hansen, H. C. B., Nielsen, J., Cakmak, I., and Husted, S. 2006. Multi-elemental speciation analysis of barley genotypes differing in tolerance to cadmium toxicity using SEC-ICP-MS and ESI-TOF-MS. J. Anal. At. Spectrom. 21: 996–1005.
  • Pineros, M. A., Shaff, J. E., and Kochian, L. V. 1998. Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol. 116: 1393–1401.
  • Pinto, A. P., Sim[Otilde]Es, I., and Mota, A. M. 2008. Cadmium impact on root exudates of sorghum and maize plants: a speciation study. J. Plant Nutr. 31: 1746–1755.
  • Pittman, J. K., Shigaki, T., Marshall, J. L., Morris, J. L., Cheng, N.-H., and Hirschi, K. D. 2004. Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter. Plant Mol. Biol. 56: 959–971.
  • Plaza, S., Tearall, K. L., Zhao, F.-J., Buchner, P., McGrath, S. P., and Hawkesford, M. J. 2007. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 58:1717–1728. doi:10.1093/jxb/erm025
  • Plaza, S., Weber, J., Pajonk, S., Thomas, J., Talke, I., Schellenberg, M., Pradervand, S., Burla, B., Geisler, M., Martinoia, E., and Krämer, U. 2015. Wounding of Arabidopsis halleri leaves enhances cadmium accumulation that acts as a defense against herbivory. BioMetals. 28: 521–528.
  • Pongrac, P., Serra, T. S., Castillo-Michel, H., Vogel-Mikuš, K., Arčon, I., Kelemen, M., Jenčič, B., Kavčič, A., Villafort Carvalho, M. T., and Aarts, M. G. M. 2018. Cadmium associates with oxalate in calcium oxalate crystals and competes with calcium for translocation to stems in the cadmium bioindicator Gomphrena claussenii. Metallomics. 10: 1576–1584.
  • Pottier, M., Oomen, R., Picco, C., Giraudat, J., Scholz-Starke, J., Richaud, P., Carpaneto, A., and Thomine, S. 2015. Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. Plant J. 83: 625–637.
  • Ptashnyk, M., Roose, T., Jones, D. L., and Kirk, G. J. D. 2011. Enhanced zinc uptake by rice through phytosiderophore secretion: a modelling study. Plant. Cell Environ. 34: 2038–2046.
  • Puschenreiter, M., Gruber, B., Wenzel, W. W., Schindlegger, Y., Hann, S., Spangl, B., Schenkeveld, W. D. C., Kraemer, S. M., and Oburger, E. 2017. Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. Environ. Exp. Bot. 138: 67–76.
  • Qaswar, M., Hussain, S., and Rengel, Z. 2017. Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar. Sci. Total Environ. 605–606: 454–460.
  • Qin, Q., Li, X., Wu, H., Zhang, Y., Feng, Q., and Tai, P. 2013. Characterization of cadmium ((108)Cd) distribution and accumulation in Tagetes erecta L. seedlings: effect of split-root and of remove-xylem/phloem. Chemosphere. 93: 2284–2288.
  • Qin, Q., Li, X., Zhuang, J., Weng, L., Liu, W., and Tai, P. 2015. Long-distance transport of cadmium from roots to leaves of Solanum melongena. Ecotoxicology. 24: 2224–2232.
  • Rahman, M. F., Ghosal, A., Alam, M. F., and Kabir, A. H. 2017. Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. Ecotoxicol. Environ. Saf. 135: 165–172.
  • Rauser, W. E. 1995. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol. 109: 1141–1149.
  • Rauser, W. E. 2003. Phytochelatin-based complexes bind various amounts of cadmium in maize seedlings depending on the time of exposure, the concentration of cadmium and the tissue. New Phytol. 158: 269–278.
  • Redjala, T., Sterckeman, T., and Morel, J. L. 2009. Cadmium uptake by roots: contribution of apoplast and of high- and low-affinity membrane transport systems. Environ. Exp. Bot. 67: 235–242.
  • Redjala, T., Sterckeman, T., and Morel, J. L. 2010. Determination of the different components of cadmium short-term uptake by roots. Z Pflanzenernähr. Bodenk. 173: 935–945.
  • Redjala, T., Sterckeman, T., Skiker, S., and Echevarria, G. 2010. Contribution of apoplast and symplast to short term nickel uptake by maize and Leptoplax emarginata roots. Environ. Exp. Bot. 68: 99–106.
  • Redjala, T., Zelko, I., Sterckeman, T., Legué, V., and Lux, A. 2011. Relationship between root structure and root cadmium uptake in maize. Environ. Exp. Bot. 71: 241–248.
  • Ren, Y., Liu, Y., Chen, H., Li, G., Zhang, X., and Zhao, J. I. E. 2012. Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis. Plant Cell Environ. 35: 770–789.
  • Ren, Z. L., Sivry, Y., Dai, J., Tharaud, M., Cordier, L., and Benedetti, M. F. 2015b. Multi-element stable isotopic dilution and multi-surface modelling to assess the speciation and reactivity of cadmium and copper in soil. Eur. J. Soil Sci. 66: 973–982.
  • Ren, Z.-L., Tella, M., Bravin, M. N., Comans, R. N. J., Dai, J., Garnier, J.-M., Sivry, Y., Doelsch, E., Straathof, A., and Benedetti, M. F. 2015a. Effect of dissolved organic matter composition on metal speciation in soil solutions. Chem. Geol. 398: 61–69.
  • Rodriguez-Hernandez, M. C., Bonifas, I., Alfaro-De la Torre, M. C., Flores-Flores, J. L., Bañuelos-Hernández, B., and Patiño-Rodríguez, O. 2015. Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typha latifolia: a study of two pore channel (TPC1) gene responses. Environ. Exp. Bot. 115: 38–48.
  • Roosens, N., Leplae, R., Bernard, C., and Verbruggen, N. 2005. Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta 222: 716–729.
  • Saifullah, Javed, H., Naeem, A., Rengel, Z., and Dahlawi, S. 2016. Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Environ. Sci. Pollut. Res. 23: 16432–16439.
  • Salt, D. E., Pickering, I. J., Prince, R. C., Gleba, D., Dushenkov, S., Smith, R. D., and Raskin, I. 1997. Metal accumulation by aquacultured seedlings of Indian mustard. Environ. Sci. Technol. 31: 1636–1644.
  • Salt, D. E., Prince, R. C., Pickering, I. J., and Raskin, I. 1995. Mechanisms of cadmium mobility and accumulation in Indian Mustard. Plant Physiol. 109: 1427–1433.
  • Salt, D. E., and Wagner, G. J. 1993. Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J. Biol. Chem. 268: 12297–12302.
  • Sarret, G., Vangronsveld, J., Manceau, A., Musso, M., D'Haen, J., Menthonnex, J.-J., and Hazemann, J.-L. 2001. Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ. Sci. Technol. 35: 2854–2859.
  • Sasaki, A., Yamaji, N., Yokosho, K., and Ma, J. F. 2012. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell. 24: 2155–2167.
  • Satoh-Nagasawa, N., Mori, M., Nakazawa, N., Kawamoto, T., Nagato, Y., Sakurai, K., Takahashi, H., Watanabe, A., and Akagi, H. 2012. Mutations in rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol. 53: 213–224.
  • Sauvé, S., Hendershot, W., and Allen, H. E. 2000. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 34: 1125–1131.
  • Sauvé, S., Norvell, W. A., McBride, M., and Hendershot, W. 2000. Speciation and complexation of cadmium in extracted soil solutions. Environ. Sci. Technol. 34: 291–296.
  • Schaider, L., Parker, D., and Sedlak, D. 2006. Uptake of EDTA-complexed Pb, Cd and Fe by solution- and sand-cultured Brassica juncea. Plant Soil. 286: 377–391.
  • Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J., and Bleeker, P. M. 2002. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J. Exp. Bot. 53: 2381–2392.
  • Schneider, A. 2008. An exchange method to investigate the kinetics of Cd complexation in soil solutions. Environ. Sci. Technol. 42: 4076–4082.
  • Schneider, A., and Nguyen, C. 2011. Use of an exchange method to estimate the association and dissociation rate constants of cadmium complexes formed with low-molecular-weight organic acids commonly exuded by plant roots. J. Environ. Qual. 40: 1857–1862.
  • Schneider, T., Schellenberg, M., Meyer, S., Keller, F., Gehrig, P., Riedel, K., Lee, Y., Eberl, L., and Martinoia, E. 2009. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics. 9: 2668–2677.
  • Sebastian, A., and Prasad, M. N. V. 2016. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron. Plant Biol (Stuttg). 18: 1008–1015.
  • Senden, M., van der Meer, A., Verburg, T., and Wolterbeek, H. 1995. Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant Soil. 171:333–339.
  • Shabala, S. 2007. Transport from root to shoot. In Plant Solute Transport; Yeo, A. R. and Flowers, T. J., Eds. Blackwell Publishing: Oxford.
  • Shao, J. F., Che, J., Yamaji, N., Shen, R. F., and Ma, J. F. 2017. Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice. J. Exp. Bot. 68: 5641–5651.
  • Shao, J. F., Xia, J., Yamaji, N., Shen, R. F., and Ma, J. F. 2018. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. J. Exp. Bot. 69: 2743–2752.
  • Shen, G.-m., Du, Q.-z., and Wang, J.-x. 2012. Involvement of plasma membrane Ca2+/H+ antiporter in Cd2+ tolerance. Rice Sci. 19: 161–165.
  • Shenker, M., Fan, T. W.-M., and Crowley, D. E. 2001. Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J. Environ. Qual. 30: 2091–2098.
  • Shigaki, T. and Hirschi, K. D. 2006. Diverse functions and molecular properties emerging for CAX Cation/H + exchangers in plants. Plant Biol (Stuttg). 8: 419–429.
  • Shojima, S., Nishizawa, N.-K., Fushiya, S., Nozoe, S., Irifune, T., and Mori, S. 1990. Biosynthesis of phytosiderophores: in vitro biosynthesis of 2'-deoxymugineic acid from l-methionine and nicotianamine. Plant Physiol. 93: 1497–1503.
  • Six, L. and Smolders, E. 2014. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils. Sci. Total Environ. 485–486: 319–328.
  • Smolders, E., Brans, K., Földi, A., and Merckx, R. 1999. Cadmium fixation in soils measured by isotopic dilution. Soil Sci. Soc. Am. J. 63: 78–85.
  • Smolders, E. and McLaughlin, M. J. 1996a. Chloride increases cadmium uptake in Swiss chard in a resin-buffered nutrient solution. Soil Sci. Soc. Am. J. 60: 1443–1447.
  • Smolders, E., and McLaughlin, M. J. 1996b. Effect of Cl on Cd uptake by Swiss chard in nutrient solutions. Plant Soil. 179: 57–64.
  • Song, W.-Y., Choi, K. S., Kim, D. Y., Geisler, M., Park, J., Vincenzetti, V., Schellenberg, M., Kim, S. H., Lim, Y. P., Noh, E. W., Lee, Y., and Martinoia, E. 2010. Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell. 22: 2237–2252.
  • Song, W.-Y., Martinoia, E., Lee, J., Kim, D., Kim, D.-Y., Vogt, E., Shim, D., Choi, K. S., Hwang, I., and Lee, Y. 2004. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol. 135: 1027–1039.
  • Song, W.-Y., Mendoza-CÓZatl, D. G., Lee, Y., Schroeder, J. I., Ahn, S.-N., Lee, H.-S., Wicker, T., and Martinoia, E. 2014. Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ. 37: 1192–1201.
  • Sposito, G. 1989. The Chemistry of Soils. Oxford University Press, Oxford, UK.
  • Stein, M., Dittgen, J., Sánchez-Rodríguez, C., Hou, B.-H., Molina, A., Schulze-Lefert, P., Lipka, V., and Somerville, S. 2006. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell. 18: 731–746.
  • Sterckeman, T., Carignan, J., Srayeddin, I., Baize, D., and Cloquet, C. 2009. Availability of soil cadmium using stable and radioactive isotope dilution. Geoderma. 153: 372–378.
  • Sterckeman, T., Cazes, Y., Gonneau, C., and Sirguey, C. 2017. Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil. 418: 523–540.
  • Sterckeman, T., Duquene, L., Perriguey, J., and Morel, J. L. 2005. Quantifying the effect of rhizosphere processes on the availability of soil cadmium and zinc. Plant Soil. 276: 335–345.
  • Sterckeman, T., Gossiaux, L., Guimont, S., Sirguey, C., and Lin, Z. 2018. Cadmium mass balance in French soils under annual crops: scenarios for the next century. Sci. Total Environ. 639: 1440–1452.
  • Sterckeman, T. and Puschenreiter, M. 2018. Phytoextraction of cadmium: feasibility in field applications and potential use of harvested biomass. In Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants; Van der Ent, A., Echevarria, G., Baker, A. J. M. and Morel, J. L., Eds. Springer International Publishing: Cham.
  • Sterckeman, T., Redjala, T., and Morel, J. L. 2011. Influence of exposure solution composition and of plant cadmium content on root cadmium short-term uptake. Environ. Exp. Bot. 74: 131–139.
  • Sui, F.-Q., Chang, J.-D., Tang, Z., Liu, W.-J., Huang, X.-Y., and Zhao, F.-J. 2018. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil. 433: 377–389.
  • Sui, F., Zhao, D., Zhu, H., Gong, Y., Tang, Z., Huang, X.-Y., Zhang, G., and Zhao, F.-J. 2019. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain. J. Exp. Bot. 70: 2857–2871.
  • Sun, C., Yang, M., Li, Y., Tian, J., Zhang, Y., Liang, L., Liu, Z., Chen, K., Li, Y., Lv, K., and Lian, X. 2019. Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3. J. Exp. Bot. 70: 6389–6400.
  • Sun, Q., Ye, Z. H., Wang, X. R., and Wong, M. H. 2007. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J. Plant Physiol. 164: 1489–1498.
  • Sun, R.-L., Zhou, Q.-X., Sun, F.-H., and Jin, C.-X. 2007. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ. Exp. Bot. 60: 468–476.
  • Takahashi, R., Ishimaru, Y., Senoura, T., Shimo, H., Ishikawa, S., Arao, T., Nakanishi, H., and Nishizawa, N. K. 2011. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J. Exp. Bot. 62: 4843–4850.
  • Takahashi, R., Ishimaru, Y., Shimo, H., Ogo, Y., Senoura, T., Nishizawa, N. K., and Nakanishi, H. 2012. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ. 35: 1948–1957.
  • Tanaka, K., Fujimaki, S., Fujiwara, T., Yoneyama, T., and Hayashi, H. 2007. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Sci. Plant Nutr. 53: 72–77.
  • Tanaka, N., Nishida, S., Kamiya, T., and Fujiwara, T. 2016. Large-scale profiling of brown rice ionome in an ethyl methanesulphonate-mutagenized hitomebore population and identification of high- and low-cadmium lines. Plant Soil. 407: 109–117.
  • Tang, L., Mao, B., Li, Y., Lv, Q., Zhang, L., Chen, C., He, H., Wang, W., Zeng, X., Shao, Y., Pan, Y., Hu, Y., Peng, Y., Fu, X., Li, H., Xia, S., and Zhao, B. 2017. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep. 7: 1–12.
  • Tao, Q., Hou, D., Yang, X., and Li, T. 2015. Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd. Plant Soil. 398: 139–152.
  • Tao, Q., Jupa, R., Luo, J., Lux, A., Kováč, J., Wen, Y., Zhou, Y., Jan, J., Liang, Y., and Li, T. 2017. The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii. J. Exp. Bot. 68: 739–751.
  • Thomine, S., Lelièvre, F., Debarbieux, E., Schroeder, J. I., and Barbier-Brygoo, H. 2003. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J. 34: 685–695.
  • Thomine, S., Wang, R., Ward, J. M., Crawford, N. M., and Schroeder, J. I. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. USA. 97: 4991–4996.
  • Tian, S., Lu, L., Labavitch, J., Yang, X., He, Z., Hu, H., Sarangi, R., Newville, M., Commisso, J., and Brown, P. 2011. Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol. 157: 1914–1925.
  • Tian, S., Xie, R., Wang, H., Hu, Y., Ge, J., Liao, X., Gao, X., Brown, P., Lin, X., and Lu, L. 2016. Calcium deficiency triggers phloem remobilization of cadmium in a hyperaccumulating species. Plant Physiol. 172: 2300–2313.
  • Tian, S., Xie, R., Wang, H., Hu, Y., Hou, D., Liao, X., Brown, P. H., Yang, H., Lin, X., Labavitch, J. M., and Lu, L. 2017. Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. J. Exp. Bot. 68: 2387–2398.
  • Tipping, E. 1998. Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochem. 4: 3–47.
  • Tommasini, R., Vogt, E., Fromenteau, M., Hörtensteiner, S., Matile, P., Amrhein, N., and Martinoia, E. 1998. An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J. 13: 773–780.
  • Tye, A. M., Young, S. D., Crout, N. M. J., Zhang, H., Preston, S., Barbosa-Jefferson, V. L., Davison, W., McGrath, S. P., Paton, G. I., Kilham, K., and Resende, L. 2003. Predicting the activity of Cd2+ and Zn2+ in soil pore water from the radio-labile metal fraction. Geochim. Cosmochim. Acta. 67: 375–385.
  • Ueno, D., Iwashita, T., Zhao, F.-J., and Ma, J. F. 2008. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol. 49: 540–548.
  • Ueno, D., Koyama, E., Yamaji, N., and Ma, J. F. 2011. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. J. Exp. Bot. 62: 2265–2272.
  • Ueno, D., Ma, J. F., Iwashita, T., Zhao, F.-J., and McGrath, S. P. 2005. Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta. 221: 928–936.
  • Ueno, D., Milner, M. J., Yamaji, N., Yokosho, K., Koyama, E., Clemencia Zambrano, M., Kaskie, M., Ebbs, S., Kochian, L. V., and Ma, J. F. 2011. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J. 66: 852–862.
  • Ueno, D., Sasaki, A., Yamaji, N., Miyaji, T., Fujii, Y., Takemoto, Y., Moriyama, S., Che, J., Moriyama, Y., Iwasaki, K., and Ma, J. F. 2015. A polarly localized transporter for efficient manganese uptake in rice. Nat. Plants. 1: 15170.
  • Ueno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M., and Ma, J. F. 2010. Gene limiting cadmium accumulation in rice. Proc. Natl. Acad. Sci. USA. 107: 16500–16505.
  • Uraguchi, S., Kamiya, T., Clemens, S., and Fujiwara, T. 2014. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa). Physiol. Plant. 151: 339–347.
  • Uraguchi, S., Kamiya, T., Sakamoto, T., Kasai, K., Sato, Y., Nagamura, Y., Yoshida, A., Kyozuka, J., Ishikawa, S., and Fujiwara, T. 2011. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc. Natl. Acad. Sci. USA. 108: 20959–20964.
  • Uraguchi, S., Kiyono, M., Sakamoto, T., Watanabe, I., and Kuno, K. 2009. Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat (Avena strigosa Schreb.). Planta. 230: 267–276.
  • Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., and Ishikawa, S. 2009. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J. Exp. Bot. 60: 2677–2688.
  • Vaculík, M., Landberg, T., Greger, M., Luxová, M., Stoláriková, M., and Lux, A. 2012. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann. Bot. 110:433–443. doi:10.1093/aob/mcs039
  • Vaculík, M., Lux, A., Luxová, M., Tanimoto, E., and Lichtscheidl, I. 2009. Silicon mitigates cadmium inhibitory effects in young maize plants. Environ. Exp. Bot. 67: 52–58.
  • Van Belleghem, F., Cuypers, A., Semane, B., Smeets, K., Vangronsveld, J., d'Haen, J., and Valcke, R. 2007. Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol. 173: 495–508.
  • van de Mortel, J. E., Almar Villanueva, L., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P. D., Ver Loren van Themaat, E., Koornneef, M., and Aarts, M. G. M. 2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142: 1127–1147.
  • van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., and Schat, H. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil. 362: 319–334.
  • Van der Vliet, L., Peterson, C., and Hale, B. 2007. Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass. J. Exp. Bot. 58: 2939–2947.
  • van Hoof, N. A. L. M., Hassinen, V. H., Hakvoort, H. W. J., Ballintijn, K. F., Schat, H., Verkleij, J. A. C., Ernst, W. H. O., Karenlampi, S. O., and Tervahauta, A. I. 2001. Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol. 126: 1519–1526.
  • Vatamaniuk, O. K., Mari, S., Lu, Y.-P., and Rea, P. A. 1999. AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. USA. 96: 7110–7115.
  • Vatamaniuk, O. K., Mari, S., Lu, Y.-P., and Rea, P. A. 2000. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides . J. Biol. Chem. 275: 31451–31459.
  • Vazquez, S., Goldsbrough, P., and Carpena, R. O. 2006. Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiol. Plant. 128: 487–495.
  • Verbruggen, N., Hermans, C., and Schat, H. 2009a. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 12: 364–372.
  • Verbruggen, N., Hermans, C., and Schat, H. 2009b. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181: 759–776.
  • Verbruggen, N., Juraniec, M., Baliardini, C., and Meyer, C.-L. 2013. Tolerance to cadmium in plants: the special case of hyperaccumulators. Biometals. 26: 633–638.
  • Verret, F., Gravot, A., Auroy, P., Leonhardt, N., David, P., Nussaume, L., Vavasseur, A., and Richaud, P. 2004. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett. 576: 306–312.
  • Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J.-F., and Curie, C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell. 14: 1223–1233.
  • Vieira da Cunha, K. P., Araújo do Nascimento, C. W., and da Silva, A. J. 2008. Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil. J. Plant Nutr. Soil Sci. 171: 849–853.
  • Vögeli-Lange, R. and Wagner, G. J. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol. 92: 1086–1093.
  • Vogel-Mikuš, K., Arčon, I., and Kodre, A. 2010. Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil. 331: 439–451.
  • Vogel-Mikuš, K., Pongrac, P., Kump, P., Necemer, M., Simcic, J., Pelicon, P., Budnar, M., Povh, B., and Regvar, M. 2007. Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ. Pollut. 147: 50–59.
  • Vogel-Mikuš, K., Regvar, M., Mesjasz-Przybyłowicz, J., Przybyłowicz, W. J., Simcic, J., Pelicon, P., and Budnar, M. 2008. Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol. 179: 712–721.
  • Vollenweider, P., Cosio, C., Gunthardt-Goerg, M. S., and Keller, C. 2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): Part II Microlocalization and cellular effects of cadmium. Environ. Exp. Bot. 58: 25–40.
  • von Wirén, N., Marschner, H., and Römheld, V. 1996. Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol. 111: 1119–1125.
  • Wang, P., De Schamphelaere, K. A. C., Kopittke, P. M., Zhou, D.-M., Peijnenburg, W. J. G. M., and Lock, K. 2012. Development of an electrostatic model predicting copper toxicity to plants. J. Exp. Bot. 63: 659–668.
  • Wang, P., Deng, X., Huang, Y., Fang, X., Zhang, J., Wan, H., and Yang, C. 2015. Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings. Environ. Sci. Pollut. Res. Int. 22: 19584–19595.
  • Wang, P., Kinraide, T. B., Zhou, D., Kopittke, P. M., and Peijnenburg, W. J. G. M. 2011. Plasma membrane surface potential: dual effects upon ion uptake and toxicity. Plant Physiol. 155: 808–820.
  • Wang, J., Su, L., Yang, J., Yuan, J., Yin, A., Qiu, Q., Zhang, K., and Yang, Z. 2015. Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress (Nasturtium officinale L. R. Br.). Plant Soil. 396: 325–337.
  • Wang, S., Wang, F., and Gao, S. 2015. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ. Sci. Pollut. Res. Int. 22: 2837–2845.
  • Wang, Y., Wang, C., Liu, Y., Yu, K., and Zhou, Y. 2018. GmHMA3 sequesters Cd to the root endoplasmic reticulum to limit translocation to the stems in soybean. Plant Sci. 270: 23–29.
  • Wang, P., Zhou, D., Luo, X., and Li, L. 2009. Effects of Zn-complexes on zinc uptake by wheat (Triticum aestivum) roots: a comprehensive consideration of physical, chemical and biological processes on biouptake. Plant Soil. 316: 177–192.
  • Weggler, K., McLaughlin, M. J., and Graham, R. D. 2004. Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium. J. Environ. Qual. 33: 496–504.
  • Wei, S., Anders, I., and Feller, U. 2014. Selective uptake, distribution, and redistribution of 109Cd, 57Co, 65Zn, 63Ni, and 134Cs via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L. Environ. Sci. Pollut. Res. 21: 7624–7630.
  • Wei, Z. G., Wong, J. W. C., Zhao, H. Y., Zhang, H. J., Li, H. X., and Hu, F. 2007. Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry. Biol Trace Elem Res. 118: 146–158.
  • Wei, S., Zhou, Q., and Koval, P. V. 2006. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci. Total Environ. 369: 441–446.
  • Welch, R. M., and Norvell, W. A. 1999. Mechanisms of cadmium uptake, translocation and deposition in plants. In Cadmium in Soils and Plants; McLaughlin, M. J. and Singh, B. R., Eds. Kluwer Academic Publishers: Dordrecht.
  • Weng, L., Temminghoff, E. J. M., Lofts, S., Tipping, E., and Van Riemsdijk, W. H. 2002. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 36: 4804–4810.
  • White, P. J. 2001. The pathways of calcium movement to the xylem. J. Exp. Bot. 358: 892–899.
  • White, M. C., Chaney, R. L., and Decker, A. M. 1981. Metal complexation in xylem fluid : III. Electrophoretic evidence. Plant Physiol. 67: 311–315.
  • Wiggenhauser, M., Bigalke, M., Imseng, M., Müller, M., Keller, A., Murphy, K., Kreissig, K., Rehkämper, M., Wilcke, W., and Frossard, E. 2016. Cadmium isotope fractionation in soil-wheat systems. Environ. Sci. Technol. 50: 9223–9231.
  • Willems, G., Dräger, D. B., Courbot, M., Godé, C., Verbruggen, N., and Saumitou-Laprade, P. 2007. The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics. 176: 659–674.
  • Wojas, S., Hennig, J., Plaza, S., Geisler, M., Siemianowski, O., Skłodowska, A., Ruszczyńska, A., Bulska, E., and Antosiewicz, D. M. 2009. Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ. Pollut. 157:2781–2789.
  • Wójcik, M., Skórzyńska-Polit, E., and Tukiendorf, A. 2006. Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul. 48: 145–155.
  • Wojcik, M., Vangronsveld, J., Dahaen, J., and Tukiendorf, A. 2005. Cadmium tolerance in Thlaspi caerulescens: II. Localization of cadmium in Thlaspi caerulescens. Environ. Exp. Bot. 53: 163–171.
  • Wojcik, M., Vangronsveld, J., and Tukiendorf, A. 2005. Cadmium tolerance in Thlaspi caerulescens: I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ. Exp. Bot. 53: 151–161.
  • Wong, C. K. E. and Cobbett, C. S. 2009. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol. 181: 71–78.
  • Wong, C. K. E., Jarvis, R. S., Sherson, S. M., and Cobbett, C. S. 2009. Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytol. 181: 79–88.
  • Wu, Q. T. 1989. Biodisponibilité du cadmium dans les systèmes sol-plante. Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires. Institut National Polytechnique de Lorraine, Vandoeuvre-les-Nancy.
  • Wu, J., Sagervanshi, A., and Mühling, K. H. 2018. Sulfate facilitates cadmium accumulation in leaves of Vicia faba L. at flowering stage. Ecotoxicol. Environ. Saf. 156: 375–382.
  • Wu, Q., Shigaki, T., Williams, K. A., Han, J.-S., Kim, C. K., Hirschi, K. D., and Park, S. 2011. Expression of an Arabidopsis Ca2+/H + antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J. Plant Physiol. 168: 167–173.
  • Wu, Z., Wang, F., Liu, S., Du, Y., Li, F., Du, R., Wen, D., and Zhao, J. 2016. Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ. Exp. Bot. 131: 173–180.
  • Wu, D., Yamaji, N., Yamane, M., Kashino-Fujii, M., Sato, K., and Ma, J. F. 2016. The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron. Plant Physiol. 172: 1899–1910.
  • Xiao, H., Yin, L., Xu, X., Li, T., and Han, Z. 2008. The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Ann. Bot. 102:881–889. doi:10.1093/aob/mcn178
  • Xie, H., Jiang, R., Zhang, F., McGrath, S., and Zhao, F. 2009. Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil. 318: 205–215.
  • Xiong, J., An, L., Lu, H., and Zhu, C. 2009. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta. 230: 755–765.
  • Xu, S., Lin, S., and Lai, Z. 2015. Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls. Plant Soil. 392: 71–85.
  • Yamaguchi, C., Takimoto, Y., Ohkama-Ohtsu, N., Hokura, A., Shinano, T., Nakamura, T., Suyama, A., and Maruyama-Nakashita, A. 2016. Effects of cadmium treatment on the uptake and translocation of sulfate in Arabidopsis thaliana. Plant Cell Physiol. 57: 2353–2366.
  • Yamaji, N. and Ma, J. F. 2017. Node-controlled allocation of mineral elements in Poaceae. Curr. Opin. Plant Biol. 39: 18–24.
  • Yamaji, N., Xia, J., Mitani-Ueno, N., Yokosho, K., and Feng Ma, J. 2013. Preferential delivery of zinc to developing tissues in rice is mediated by P-Type Heavy Metal ATPase OsHMA2. Plant Physiol. 162: 927–939.
  • Yang, X. E., Long, X. X., Ye, H. B., He, Z. L., Calvert, D. V., and Stoffella, P. J. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 259: 181–189.
  • Yang, Y., Xiong, J., Chen, R., Fu, G., Chen, T., and Tao, L. 2016. Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environ. Exp. Bot. 122: 141–149.
  • Yang, M., Zhang, Y., Zhang, L., Hu, J., Zhang, X., Lu, K., Dong, H., Wang, D., Zhao, F.-J., Huang, C.-F., and Lian, X. 2014. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. J. Exp. Bot. 65: 4849–4861.
  • Yan, B.-F., Nguyen, C., Pokrovsky, O. S., Candaudap, F., Coriou, C., Bussière, S., Robert, T., and Cornu, J. Y. 2018. Contribution of remobilization to the loading of cadmium in durum wheat grains: impact of post-anthesis nitrogen supply. Plant Soil. 424: 591–606.
  • Yan, J., Wang, P., Wang, P., Yang, M., Lian, X., Tang, Z., Huang, C. F., Salt, D. E., and Zhao, F. J. 2016. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ. 39: 1941–1954.
  • Yoneyama, T., Gosho, T., Kato, M., Goto, S., and Hayashi, H. 2010. Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.) grown in continuously flooded Cd-contaminated soil. Soil Sci. Plant Nutr. 56: 445–453.
  • Yu, H.-Y., Liu, C., Zhu, J., Li, F., Deng, D.-M., Wang, Q., and Liu, C. 2016. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environ. Pollut. 209: 38–45.
  • Zhang, Z.-C., Chen, B.-X., and Qiu, B.-S. 2010. Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell Environ. 33: 1248–1255.
  • Zhang, F., Römheld, V., and Marschner, H. 1989. Effect of zinc deficiency in wheat on the release of zinc and iron mobilizing root exudates. Z Pflanzenernaehr. Bodenk. 152: 205–210.
  • Zhang, X. D., Wang, Y., Li, H. B., and Yang, Z. M. 2018. Isolation and identification of rapeseed (Brassica napus) cultivars for potential higher and lower Cd accumulation. J. Plant Nutr. Soil Sci. 181: 479–487.
  • Zhang, L., Wu, J., Tang, Z., Huang, X.-Y., Wang, X., Salt, D. E., and Zhao, F.-J. 2019. Variation in the BrHMA3 coding region controls natural variation in cadmium accumulation in Brassica rapa vegetables. J. Exp. Bot. 70: 5865–5878.
  • Zhao, F. J., Hamon, R. E., and McLaughlin, M. J. 2001. Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol. 151: 613–620.
  • Zhou, H., Zeng, M., Zhou, X., Liao, B.-H., Peng, P.-Q., Hu, M., Zhu, W., Wu, Y.-J., and Zou, Z.-J. 2015. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant Soil. 386: 317–329.
  • Zhou, H., Zhu, W., Yang, W.-T., Gu, J.-F., Gao, Z.-X., Chen, L.-W., Du, W.-Q., Zhang, P., Peng, P.-Q., and Liao, B.-H. 2018. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages. Ecotoxicol. Environ. Saf. 152: 91–97.
  • Zhu, X. F., Zheng, C., Hu, Y. T., Jiang, T. A. O., Liu, Y. U., Dong, N. Y., Yang, J. L., and Zhang, S. J. 2011. Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esculentum. Plant Cell Environ. 34: 1055–1064.
  • Zimeri, A. M., Dhankher, O. P., McCaig, B., and Meagher, R. B. 2005. The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol. Biol. 58: 839–855.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.