348
Views
2
CrossRef citations to date
0
Altmetric
Articles

Non-Canonical Functions of Splicing Factors in RNA Metabolism

, , ORCID Icon & ORCID Icon

References

  • Aitken, C. E. and Lorsch, J. R. 2012. A mechanistic overview of translation initiation in eukaryotes. Nat. Struct. Mol. Biol. 19: 568–576. doi:10.1038/nsmb.230
  • Albaqami, M. and Reddy, A. S. N. 2018. Development of an in vitro pre-mRNA splicing assay using plant nuclear extract. Plant Meth. 14: 1. doi:10.1186/s13007-017-0271-6
  • Ali, G. S., Golovkin, M., and Reddy, A. S. 2003. Nuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein. Plant J. 36: 883–893. doi:10.1046/j.1365-313x.2003.01932.x
  • Ali, G. S., Palusa, S. G., Golovkin, M., Prasad, J., Manley, J. L., and Reddy, A. S. 2007. Regulation of plant developmental processes by a novel splicing factor. PLoS One 2: e471. doi:10.1371/journal.pone.0000471
  • Ariel, F., Romero-Barrios, N., Jégu, T., Benhamed, M., and Crespi, M. 2015. Battles and hijacks: noncoding transcription in plants. Trends Plant Sci. 20: 362–371. doi:10.1016/j.tplants.2015.03.003
  • Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., and Kadener, S. 2014. CircRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56: 55–66. doi:10.1016/j.molcel.2014.08.019
  • Ausin, I., Greenberg, M. V., Li, C. F., and Jacobsen, S. E. 2012. The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis. Epigenetics 7: 29–33. doi:10.4161/epi.7.1.18782
  • Azam, S., Hou, S., Zhu, B., Wang, W., Hao, T., Bu, X., Khan, M., and Lei, H. 2019. Nuclear retention element recruits U1 snRNP components to restrain spliced lncRNAs in the nucleus. RNA Biol. 16: 1001–1009. doi:10.1080/15476286.2019.1620061
  • Bao, P., Will, C. L., Urlaub, H., Boon, K. L., and Lührmann, R. 2017. The RES complex is required for efficient transformation of the precatalytic B spliceosome into an activated Bact complex. Genes Dev. 31: 2416–2429. doi:10.1101/gad.308163.117
  • Bardou, F., Ariel, F., Simpson, C. G., Romero-Barrios, N., Laporte, P., Balzergue, S., Brown, J. W. S., and Crespi, M. 2014. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev. Cell 30: 166–176. doi:10.1016/j.devcel.2014.06.017
  • Bazin, J., Romero, N., Rigo, R., Charon, C., Blein, T., Ariel, F., and Crespi, M. 2018. Nuclear speckle RNA binding proteins remodel alternative splicing and the non-coding Arabidopsis transcriptome to regulate a cross-talk between auxin and immune responses. Front Plant Sci. 9: 1209. doi:10.3389/fpls.2018.01209
  • Bose, R. and Ain, R. 2018. Regulation of transcription by circular RNAs. Adv. Exp. Med. Biol. 1087: 81–94. doi:10.1007/978-981-13-1426-1_7
  • Bouvrette, L. P. B., Cody, N., Bergalet, J., Lefebvre, F. A., Diot, C., Wang, X., Blanchette, M., and Lécuyern, E. 2018. CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in Drosophila and human cells. RNA 24: 98–113. doi:10.1261/rna.063172.117
  • Brighty, D. W., and Rosenberg, M. A. 1994. Cis-acting repressive sequence that overlaps the Rev-responsive element of human immunodeficiency virus type 1 regulates nuclear retention of env mRNAs independently of known splice signals. Proc. Natl. Acad. Sci. USA. 91: 8314–8318. doi:10.1073/pnas.91.18.8314
  • Calixto, C. P. G., Tzioutziou, N. A., James, A. B., Hornyik, C., Guo, W., Zhang, R., Nimmo, H. G., and Brown, J. W. S. 2019. Cold-dependent expression and alternative splicing of Arabidopsis long non-coding RNAs. Front. Plant Sci. 10: 235. doi:10.3389/fpls.2019.00235
  • Campalans, A., Kondorosi, A., and Crespi, M. 2004. Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16: 1047–1059. doi:10.1105/tpc.019406
  • Chaabane, S. B., Liu, R., Chinnusamy, V., Kwon, Y., Park, J. H., Kim, S. Y., Zhu, J. K., Yang, S. W., and Lee, B. H. 2013. STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res. 41: 1984–1997. doi:10.1093/nar/gks1309
  • Charon, C., Sousa, C., Crespi, M., and Kondorosi, A. 1999. Alteration of enod40 expression modifies medicago truncatula root nodule development induced by sinorhizobium meliloti. Plant Cell 11: 1953–1966. doi:10.1105/tpc.11.10.1953
  • Chen, G., Cui, J., Wang, L., Zhu, Y., Lu, Z., and Jin, B. 2017. Genome-wide identification of circular RNAs in Arabidopsis thaliana. Front. Plant Sci. 8: 1678. doi:10.3389/fpls.2017.01678
  • Chen, L., Zhang, P., Fan, Y., Lu, Q., Li, Q., Yan, J., Muehlbauer, G. J., Schnable, P. S., Dai, M., and Li, L. 2018. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol. 217: 1292–1306. doi:10.1111/nph.14901
  • Chen, M. X., Zhu, F. Y., Wang, F. Z., Ye, N. H., Gao, B., Chen, X., Zhao, S. S., Fan, T., Cao, Y. Y., Liu, T. Y., Su, Z. Z., Xie, L.J., Hu, Q. J., Wu, H. J., Xiao, S., Zhang, J., and Liu, Y. G. 2019. Alternative splicing and translation play important roles in hypoxic germination in rice. J. Exp. Bot. 70: 817–833. doi:10.1093/jxb/ery393
  • Chen, S. L., Rooney, T. J., Hu, A. R., Beard, H. S., Garrett, W. M., Mangalath, L. M., Powers, J. J., Cooper, B., and Zhang, X. N. 2019. Quantitative proteomics reveals a role for SERINE/ARGININE-Rich 45 in regulating RNA metabolism and modulating transcriptional suppression via the ASAP complex in Arabidopsis thaliana. Front. Plant Sci. 10: 1116. doi:10.3389/fpls.2019.01116
  • Chen, T., Cui, P., Chen, H., Ali, S., Zhang, S., and Xiong, L. 2013. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genet. 9: e1003875. doi:10.1371/journal.pgen.1003875
  • Chen, T., Cui, P., and Xiong, L. 2015. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res. 43: 8283–8298. doi:10.1093/nar/gkv751
  • Chen, Z., Wang, H. C., Shen, J., Sun, F., Wang, M., Xu, C., and Tan, B. C. 2019. PPR-SMR1 is required for the splicing of multiple mitochondrial introns, interacts with Zm-mCSF1, and is essential for seed development in maize. J. Exp. Bot. 70: 5245–5258. doi:10.1093/jxb/erz305
  • Cocquerelle, C., Mascrez, B., Hétuin, D., and Bailleul, B. 1993. Mis-splicing yields circular RNA molecules. FASEB J. 7: 155–160. doi:10.1096/fasebj.7.1.7678559
  • Conn, S. J., Pillman, K. A., Toubia, J., Conn, V. M., Salmanidis, M., Phillips, C. A., Roslan, S., Schreiber, A. W., Gregory, P. A., and Goodall, G. J. 2015. The RNA binding protein quaking regulates formation of circRNAs. Cell 160: 1125–1134. doi:10.1016/j.cell.2015.02.014
  • Conn, V. M., Hugouvieux, V., Nayak, A., Conos, S. A., Capovilla, G., Cildir, G., Jourdain, A., Tergaonkar, V., Schmid, M., Zubieta, C., and Conn, S. J. 2017. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants 3: 17053. doi:10.1038/nplants.2017.53
  • Crespi, M., Jurkevitchl, E., Poiret, M., Aubenton-Carafa, Y., Petrovics, G., Kondorosi, E., and Kondorosi, A. 1994. enod4O, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J. 13: 5099–5112. doi:10.1002/j.1460-2075.1994.tb06839.x
  • Das, R., Yu, J., Zhang, Z., Gygi, M. P., Krainer, A. R., Gygi, S. P., and Reed, R. 2007. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 26: 867–881. doi:10.1016/j.molcel.2007.05.036
  • Deveson, I. W., Brunck, M. E., Blackburn, J., Tseng, E., Hon, T., Clark, T. A., Clark, M. B., Crawford, J., Dinger, M. E., Nielsen, L. K., Mattick, J. S., and Mercer, T. R. 2018. Universal alternative splicing of noncoding exons. Cell Syst. 6: 245–255. doi:10.1016/j.cels.2017.12.005
  • Dolata, J., Taube, M., Bajczyk, M., Jarmolowski, A., Szweykowska-Kulinska, Z., and Bielewicz, D. 2018. Regulation of plant microprocessor function in shaping microRNA landscape. Front. Plant Sci. 9: 753. doi:10.3389/fpls.2018.00753
  • Dou, K., Huang, C. F., Ma, Z. Y., Zhang, C. J., Zhou, J. X., Huang, H. W., Cai, T., Tang, K., Zhu, J. K., and He, X. J. 2013. The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs. Nucleic Acids Res. 41: 8489–8502. doi:10.1093/nar/gkt639
  • Du, F., Gong, W., Bosca, S., Tucker, M., Vaucheret, H., and Laux, T. 2020. Dose-dependent AGO1-mediated inhibition of the miRNA165/166 pathway modulates stem cell maintenance in Arabidopsis shoot apical meristem. Plant Com. 1: 100002. doi:10.1016/j.xplc.2019.100002
  • Dufu, K., Livingstone, M. J., Seebacher, J., Gygi, S. P., Wilson, S. A., and Reed, R. 2010. ATP is required for interactions between UAP56 and two conserved mRNA export proteins, Aly and CIP29, to assemble the TREX complex. Genes Dev. 24: 2043–2053. doi:10.1101/gad.1898610
  • Dziembowski, A., Ventura, A. P., Rutz, B., Caspary, F., Faux, C., Halgand, F., Laprévote, O., and Séraphin, B. 2004. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J. 23: 4847–4856. doi:10.1038/sj.emboj.7600482
  • Eddy, A. C., Chapman, H., Brown, D. T., and George, E. M. 2020. Differential regulation of sFlt-1 splicing by U2AF65 and JMJD6 in placental-derived and endothelial cells. Biosci. Rep. 40: BSR20193252. doi:10.1042/BSR20193252
  • Ehrnsberger, H. F., Grasser, M., and Grasser, K. D. 2019. Nucleocytosolic mRNA transport in plants: export factors and their influence on growth and development. J. Exp. Bot. 70: 3757–3763. doi:10.1093/jxb/erz173
  • Ehrnsberger, H. F., Pfaff, C., Hachani, I., Flores-Tornero, M., Sørensen, B. B., Längst, G., Sprunck, S., Grasser, M., and Grasser, K. D. 2019. The UAP56-interacting export factors UIEF1 and UIEF2 function in mRNA export. Plant Physiol. 179: 1525–1536. doi:10.1104/pp.18.01476
  • Fang, Y. and Spector, D. L. 2007. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17: 818–823. doi:10.1016/j.cub.2007.04.005
  • Fernandez, J. P., Moreno-Mateos, M. A., Gohr, A., Miao, L., Chan, S. H., Irimia, M., and Giraldez, A. J. 2018. RES complex is associated with intron definition and required for zebrafish early embryogenesis. PLoS Genet. 14: e1007473. doi:10.1371/journal.pgen.1007473
  • Fiszbein, A., Godoy Herz, M. A., Gomez Acuña, L. I., and Kornblihtt, A. R. 2017. Interplay between chromatin and splicing. In Chromatin Regulation and Dynamics, Chapter 8; Göndör, A., Ed. Academic Press, pp 191–209. doi:10.1016/B978-0-12-803395-1.00008-3
  • Fu, R., Zhang, M., Zhao, Y., He, X., Ding, C., Wang, S., Feng, Y., Song, X., Li, P., and Wang, B. 2017. Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Front. Plant Sci. 8: 864. doi:10.3389/fpls.2017.00864
  • Gai, Y. P., Yuan, S. S., Zhao, Y. N., Zhao, H. N., Zhang, H. L., and Ji, X. L. 2018. A novel lncRNA, MuLnc1, associated with environmental stress in mulberry (Morus multicaulis). Front. Plant Sci. 9: 669. doi:10.3389/fpls.2018.00669
  • Galy, V., Gadal, O., Fromont-Racine, M., Romano, A., Jacquier, A., and Nehrbass, U. 2004. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116: 63–73. doi:10.1016/S0092-8674(03)01026-2
  • Godoy Herz, M. A., Kubaczka, M. G., Brzyżek, G., Servi, L., Krzyszton, M., Simpson, C., Brown, J., Swiezewski, S., Petrillo, E., and Kornblihtt, A. R. 2019. Light regulates plant alternative splicing through the control of transcriptional elongation. Mol. Cell. 73: 1066–1074. doi:10.1016/j.molcel.2018.12.005
  • Granados-Riveron, J. T. and Aquino-Jarquin, G. 2016. The complexity of the translation ability of circRNAs. Biochim. Biophys. Acta 1859: 1245–1251. doi:10.1016/j.bbagrm.2016.07.009
  • Gu, B., Eick, D., and Bensaude, O. 2013. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res. 41: 1591–1603. doi:10.1093/nar/gks1327
  • Guan, Q., Wen, C., Zeng, H., and Zhu, J. 2013. A KH domain-containing putative RNA-binding protein is critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Mol. Plant 6: 386–395. doi:10.1093/mp/sss119
  • Hackmann, A., Wu, H., Schneider, U. M., Meyer, K., Jung, K., and Krebber, H. 2014. Quality control of spliced mRNAs requires the shuttling SR proteins Gbp2 and Hrb1. Nat. Commun. 5: 3123. doi:10.1038/ncomms4123
  • Haïli, N., Planchard, N., Arnal, N., Quadrado, M., Vrielynck, N., Dahan, J., Des Francs-Small, C. C., and Mireau, H. 2016. The MTL1 pentatricopeptide repeat protein is required for both translation and splicing of the mitochondrial NADH DEHYDROGENASE SUBUNIT7 mRNA in Arabidopsis. Plant Physiol. 170: 354–366. doi:10.1104/pp.15.01591
  • Hall, M. P., Nagel, R. J., Fagg, W. S., Shiue, L., Cline, M. S., Perriman, R. J., Donohue, J. P., and Ares, M., Jr. 2013. Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation. RNA. 19: 627–638. doi:10.1261/rna.038422.113
  • Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., and Kjems, J. 2013. Natural RNA circles function as efficient microRNA sponges. Nature 495: 384–388. doi:10.1038/nature11993
  • Hargous, Y., Hautbergue, G. M., Tintaru, A. M., Skrisovska, L., Golovanov, A. P., Stevenin, J., Lian, L. Y., Wilson, S. A., and Allain, F. H. 2006. Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. EMBO J. 25: 5126–5137. doi:10.1038/sj.emboj.7601385
  • Henriques, R., Wang, H., Liu, J., Boix, M., Huang, L. F., and Chua, N. H. 2017. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. New Phytol. 216: 854–867. doi:10.1111/nph.14703
  • Herdt, O., Reich, S., Medenbach, J., Timmermann, B., Olofsson, D., Preußner, M., and Heyd, F. 2020. The zinc finger domains in U2AF26 and U2AF35 have diverse functionalities including a role in controlling translation. RNA Biol. 17: 843–856. doi:10.1080/15476286.2020.1732701
  • Houseley, J. M., Garcia-Casado, Z., Pascual, M., Paricio, N., O’Dell, K. M., Monckton, D. G., and Artero, R. D. 2006. Noncanonical RNAs from transcripts of the Drosophila muscleblind gene. J. Hered. 97: 253–260. doi:10.1093/jhered/esj037
  • Howard, J. M. and Sanford, J. R. 2015. The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley. Interdiscip. Rev. RNA. 6: 93–110. doi:10.1002/wrna.1260
  • Hu, Y., Gor, V., Morikawa, K., Nagata, K., and Kawaguchi, A. 2017. Cellular splicing factor UAP56 stimulates trimeric NP formation for assembly of functional influenza viral ribonucleoprotein complexes. Sci. Rep. 7: 14053. doi:10.1038/s41598-017-13784-4
  • Huang, C., Liang, D., Tatomer, D. C., and Wilusz, J. E. 2018. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 32: 639–644. doi:10.1101/gad.314856.118
  • Huang, C. F., Miki, D., Tang, K., Zhou, H. R., Zheng, Z., Chen, W., Ma, Z. Y., Yang, L., Zhang, H., Liu, R., He, X. J., and Zhu, J. K. 2013. A Pre-mRNA-splicing factor is required for RNA-directed DNA methylation in Arabidopsis. PLoS Genet. 9: e1003779. doi:10.1371/journal.pgen.1003779
  • Huang, C. F. and Zhu, J. K. 2014. RNA splicing factors and RNA-directed DNA methylation. Biology 3: 243–254. doi:10.3390/biology3020243
  • Huang, Y. and Steitz, J. A. 2001. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol. Cell 7: 899–905. doi:10.1016/S1097-2765(01)00233-7
  • Ivanov, A., Memczak, S., Wyle, R. E., Torti, F., Porath, H. T., Orejuela, M. R., Piechotta, M., Levanon, E. Y., Landthaler, M., Dieterich, C., and Rajewsky, N. 2015. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10: 170–177. doi:10.1016/j.celrep.2014.12.019
  • Jabnoune, M., Secco, D., Lecampion, C., Robaglia, C., Shu, Q., and Poirier, Y. 2013. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 25: 4166–4182. doi:10.1105/tpc.113.116251
  • Jacewicz, A., Schwer, B., Smith, P., and Shuman, S. 2014. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28. Nucleic Acids Res. 42: 12885–12898. doi:10.1093/nar/gku930
  • Jang, Y. H., Park, H. Y., Lee, K. C., Thu, M. P., Kim, S. K., Suh, M. C., Kang, H., and Kim, J. K. 2014. A homolog of splicing factor SF1 is essential for development and is involved in the alternative splicing of pre-mRNA in Arabidopsis thaliana. Plant J. 78: 591–603. doi:10.1111/tpj.12491
  • Ji, X., Zhou, Y., Pandit, S., Huang, J., Li, H., Lin, C. Y., Xiao, R., Burge, C. B., and Fu, X. D. 2013. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 153: 855–868. doi:10.1016/j.cell.2013.04.028
  • Jia, T., Zhang, B., You, C., Zhang, Y., Zeng, L., Li, S., Johnson, K. C. M., Yu, B., Li, X., and Chen, X. 2017. The Arabidopsis MOS4-associated complex promotes microRNA biogenesis and precursor messenger RNA splicing. Plant Cell 29: 2626–2643. doi:10.1105/tpc.17.00370
  • Jiang, J., Wang, B., Shen, Y., Wang, H., Feng, Q., and Shi, H. 2013. The Arabidopsis RNA binding protein with K homology motifs, SHINY1, interacts with the C-terminal domain phosphatase-like 1 (CPL1) to repress stress-inducible gene expression. PLoS Genet. 9: e1003625. doi:10.1371/journal.pgen.1003625
  • Jiang, S. C., Mei, C., Liang, S., Yu, Y. T., Lu, K., Wu, Z., Wang, X. F., and Zhang, D. P. 2015. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol. Biol. 88: 369–385. doi:10.1007/s11103-015-0327-9
  • Jiang, S. C., Mei, C., Wang, X. F., and Zhang, D. P. 2014. A hub for ABA signaling to the nucleus: significance of a cytosolic and nuclear dual-localized PPR protein SOAR1 acting downstream of Mg-chelatase H subunit. Plant Signal. Behav. 9: e972899. doi:10.4161/15592316.2014.972899
  • Kalyna, M., Lopato, S., and Barta, A. 2003. Ectopic expression of atRSZ33 reveals its function in splicing and causes pleiotropic changes in development. Mboc. 14: 3565–3577. doi:10.1091/mbc.e03-02-0109
  • Kanno, T., Venhuizen, P., Wu, M. T., Chiou, P., Chang, C. L., Kalyna, M., Matzke, A., and Matzke, M. 2020. A Collection of pre-mRNA splicing mutants in Arabidopsis thaliana. G3 10: 1983–1996. doi:10.1534/g3.119.400998
  • Katahira, J. 2012. mRNA export and the TREX complex. Biochim. Biophys. Acta 1819: 507–513. doi:10.1016/j.bbagrm.2011.12.001
  • Knop, K., Stepien, A., Barciszewska-Pacak, M., Taube, M., Bielewicz, D., Michalak, M., Borst, J. W., Jarmolowski, A., and Szweykowska-Kulinska, Z. 2017. Active 5’ splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes. Nucleic Acids Res. 45: 2757–2775. doi:10.1093/nar/gkw895
  • Koga, M., Hayashi, M., and Kaida, D. 2015. Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD. Nucleic Acids Res. 43: 8258–9267. doi:10.1093/nar/gkv740
  • Koncz, C., Dejong, F., Villacorta, N., Szakonyi, D., and Koncz, Z. 2012. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Front. Plant Sci. 3: doi:10.3389/fpls.2012.00009
  • Kong, X., Zhang, M., Xu, X., Li, X., Li, C., and Ding, Z. 2014. System analysis of microRNAs in the development and aluminium stress responses of the maize root system. Plant Biotechnol. J. 12: 1108–1121. doi:10.1111/pbi.12218
  • Köster, T., Meyer, K., Weinholdt, C., Smith, L. M., Lummer, M., Speth, C., Grosse, I., Weigel, D., and Staiger, D. 2014. Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Res. 42: 9925–9936. doi:10.1093/nar/gku716
  • Kotake, Y., Sagane, K., Owa, T., Mimori-Kiyosue, Y., Shimizu, H., Uesugi, M., Ishihama, Y., Iwata, M., and Mizui, Y. 2007. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol. 23: 570–575. doi:10.1038/nchembio.2007.16
  • Krämer, A. 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65: 367–409. doi:10.1146/annurev.bi.65.070196.002055
  • Kress, T. L., Krogan, N. J., and Guthrie, C. 2008. A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast. Mol. Cell 32: 727–734. doi:10.1016/j.molcel.2008.11.013
  • Kroeger, T. S., Watkins, K. P., Friso, G., van Wijk, K. J., and Barkan, A. 2009. A plant-specific RNA-binding domain revealed through analysis of chloroplast group II intron splicing. Proc. Natl. Acad. Sci. USA. 106: 4537–4542. doi:10.1073/pnas.0812503106
  • Lai, X., Bazin, J., Webb, S., Crespi, M., Zubieta, C., and Conn, S.J. 2018. CircRNAs in plants. Adv. Exp. Med. Biol. 1087: 329–343. doi:10.1007/978-981-13-1426-1_26
  • Laloum, T., Martín, G., and Duque, P. 2018. Alternative splicing control of abiotic stress responses. Trends Plant Sci. 23: 140–150. doi:10.1016/j.tplants.2017.09.019
  • Laubinger, S., Sachsenberg, T., Zeller, G., Busch, W., Lohmann, J. U., Rätsch, G., and Weigel, D. 2008. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 105: 8795–8800. doi:10.1073/pnas.0802493105
  • Lee, B. H., Kapoor, A., Zhu, J., and Zhu, J. K. 2006. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18: 1736–1749. doi:10.1105/tpc.106.042184
  • Lee, K. C., Jang, Y. H., Kim, S. K., Park, H. Y., Thu, M. P., Lee, J. H., and Kim, J. K. 2017. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes. Plant Cell Rep. 36: 1083–1095. doi:10.1007/s00299-017-2140-1
  • Legnini, I., Di Timoteo, G., Rossi, F., Morlando, M., Briganti, F., Sthandier, O., Fatica, A., Santini, T., Andronache, A., Wade, M., Laneve, P., Rajewsky, N., and Bozzoni, I. 2017. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66: 22–37. doi:10.1016/j.molcel.2017.02.017
  • Legrain, P. and Rosbash, M. 1989. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57: 573–583. doi:10.1016/0092-8674(89)90127-X
  • Li, J., Fu, J., Chen, Y., Fan, K., He, C., Zhang, Z., Li, L., Liu, Y., Zheng, J., Ren, D., and Wang, G. 2017. The U6 biogenesis-like 1 plays an important role in maize kernel and seedling development by affecting the 3’ end processing of U6 snRNA. Mol. Plant 10: 470–482. doi:10.1016/j.molp.2016.10.016
  • Li, L. J., Leng, R. X., Fan, Y. G., Pan, H. F., and Ye, D. Q. 2017. Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs. Exp. Cell Res. 361: 1–8. doi:10.1016/j.yexcr.2017.10.010
  • Li, P., Tao, Z., and Dean, C. 2015. Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR. Genes Dev. 29: 696–701. doi:10.1101/gad.258814.115
  • Li, S., Li, M., Liu, K., Zhang, H., Zhang, S., Zhang, C., and Yu, B. 2020. MAC5, an RNA-binding protein, protects pri-miRNAs from SERRATE-dependent exoribonuclease activities. Proc. Natl. Acad. Sci. USA. 117: 23982–23990. doi:10.1073/pnas.2008283117
  • Li, S., Liu, K., Zhou, B., Li, M., Zhang, S., Zeng, L., Zhang, C., and Yu, B. 2018. MAC3A and MAC3B, two core subunits of the MOS4-associated complex, positively influence miRNA biogenesis. Plant Cell 30: 481–494. doi:10.1105/tpc.17.00953
  • Li, S., Wang, Y., Zhao, Y., Zhao, X., Chen, X., and Gong, Z. 2019. Global Co-transcriptional splicing in Arabidopsis and the correlation with splicing regulation in mature RNAs. Mol. Plant 13: 266–277. doi:10.1016/j.molp.2019.11.003
  • Li, S., Xu, R., Li, A., Liu, K., Gu, L., Li, M., Zhang, H., Zhang, Y., Zhuang, S., Wang, Q., Gao, G., Li, N., Zhang, C., Li, Y., and Yu, B. 2018. SMA1, a homolog of the splicing factor Prp28, has a multifaceted role in miRNA biogenesis in Arabidopsis. Nucleic Acids Res. 46: 9148–9159. doi:10.1093/nar/gky591
  • Li, Y., Guo, Q., Zhang, C., Zhang, S., and Yan, K. 2019. Genome-Wide Analysis of mRNA splicing variants in higher plants. J. Hort. 6: 255.
  • Li, Z., Kearse, M. G., and Huang, C. 2019. The nuclear export of circular RNAs is primarily defined by their length. RNA Biol. 16: 1–4. doi:10.1080/15476286.2018.1557498
  • Li, Z., Wang, S., Cheng, J., Su, C., Zhong, S., Liu, Q., Fang, Y., Yu, Y., Lv, H., Zheng, Y., and Zheng, B. 2016. Intron lariat RNA inhibits microRNA biogenesis by sequestering the dicing complex in Arabidopsis. PLoS Genet. 12: e1006422. doi:10.1371/journal.pgen.1006422
  • Liang, D., Tatomer, D. C., Luo, Z., Wu, H., Yang, L., Chen, L. L., Cherry, S., and Wilusz, J. E. 2017. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol. Cell 68: 940–954. doi:10.1016/j.molcel.2017.10.034
  • Lin, P. C. and Xu, R. M. 2012. Structure and assembly of the SF3a splicing factor complex of U2 snRNP. EMBO J. 31: 1579–1590. doi:10.1038/emboj.2012.7
  • Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S., and Fu, X. D. 2008. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 15: 819–826. doi:10.1038/nsmb.1461
  • Liu, F., Marquardt, S., Lister, C., Swiezewski, S., and Dean, C. 2010. Targeted 3’ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327: 94–97. doi:10.1126/science.1180278
  • Liu, F., Xu, Y., Chang, K., Li, S., Liu, Z., Qi, S., Jia, J., Zhang, M., Crawford, N. M., and Wang, Y. 2019. The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis. New Phytol. 224: 117–131. doi:10.1111/nph.16038
  • Liu, J., Jung, C., Xu, J., Wang, H., Deng, S., Bernad, L., Arenas-Huertero, C., and Chua, N. H. 2012. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24: 4333–4345. doi:10.1105/tpc.112.102855
  • Liu, X., Hao, L., Li, D., Zhu, L., and Hu, S. 2015. Long non-coding RNAs and their biological roles in plants. Genom. Proteom. Bioinf. 13: 137–147. doi:10.1016/j.gpb.2015.02.003
  • Lopato, S., Forstner, C., Kalyna, M., Hilscher, J., Langhammer, U., Indrapichate, K., Lorković, Z. J., and Barta, A. 2002. Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors. J. Biol. Chem. 277: 39989–39998. doi:10.1074/jbc.M206455200
  • Lu, T., Cui, L., Zhou, Y., Zhu, C., Fan, D., Gong, H., Zhao, Q., Zhou, C., Zhao, Y., Lu, D., Luo, J., Wang, Y., Tian, Q., Feng, Q., Huang, T., and Han, B. 2015. Transcriptome-wide investigation of circular RNAs in rice. RNA. 21: 2076–2087. doi:10.1261/rna.052282.115
  • Lubelsky, Y. and Ulitsky, I. 2018. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555: 107–111. doi:10.1038/nature25757
  • Lucero, L., Bazin, J., Rodriguez Melo, J., Ibañez, F., Crespi, M. D., and Ariel, F. 2020. Evolution of the small family of alternative splicing modulators nuclear speckle RNA-binding proteins in plants. Genes 11: 207. doi:10.3390/genes11020207
  • Ma, Y., Zhang, S., Bi, C., Mei, C., Jiang, S. C., Wang, X. F., Lu, Z. J., and Zhang, D. P. 2020. Arabidopsis exoribonuclease USB1, interacting with PPR-domain protein SOAR1, is negatively involved in abscisic acid signaling. J. Exp. Bot. 7: 837–5851. doi:10.1093/jxb/eraa315
  • Manavski, N., Guyon, V., Meurer, J., Wienand, U., and Brettschneider, R. 2012. An essential pentatricopeptide repeat protein facilitates 5’ maturation and translation initiation of rps3 mRNA in maize mitochondria. Plant Cell 24: 3087–3105. doi:10.1105/tpc.112.099051
  • Marquardt, S., Raitskin, O., Wu, Z., Liu, F., Sun, Q., and Dean, C. 2014. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol Cell 54: 156–165. doi:10.1016/j.molcel.2014.03.026
  • Maslon, M. M., Heras, S. R., Bellora, N., Eyras, E., and Cáceres, J. F. 2014. The translational landscape of the splicing factor SRSF1 and its role in mitosis. Elife 3: e02028. doi:10.7554/eLife.02028
  • Masuyama, K., Taniguchi, I., Kataoka, N., and Ohno, M. 2004. RNA length defines RNA export pathway. Genes Dev. 18: 2074–2085. doi:10.1101/gad.1216204
  • Matera, A. G. and Wang, Z. 2014. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 15: 108–121. doi:10.1038/nrm3742
  • Matzke, M. A., and Mosher, R. A. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15: 394–408. doi:10.1038/nrg3683
  • McCloskey, A., Taniguchi, I., Shinmyozu, K., and Ohno, M. 2012. HnRNP C tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science 335: 1643–1646. doi:10.1126/science.1218469
  • Mei, C., Jiang, S. C., Lu, Y. F., Wu, F. Q., Yu, Y. T., Liang, S., Feng, X. J., Portoles Comeras, S., Lu, K., Wu, Z., Wang, X. F., and Zhang, D. P. 2014. Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling. J. Exp. Bot. 65: 5317–5330. doi:10.1093/jxb/eru293
  • Michlewski, G., Sanford, J. R., and Cáceres, J. F. 2008. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Mol. Cell 30: 179–189. doi:10.1016/j.molcel.2008.03.013
  • Modrek, B. and Lee, C. 2002. A genomic view of alternative splicing. Nat. Genet. 30: 13–19. doi:10.1038/ng0102-13
  • Moehle, E. A., Braberg, H., Krogan, N. J., and Guthrie, C. 2014. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate. RNA Biol. 11: 313–319. doi:10.4161/rna.28646
  • Monaghan, J., Xu, F., Xu, S., Zhang, Y., and Li, X. 2010. Two putative RNA-binding proteins function with unequal genetic redundancy in the MOS4-associated complex. Plant Physiol. 154: 1783–1793. doi:10.1104/pp.110.158931
  • Morris, E. R., Chevalier, D., and Walker, J. C. 2006. DAWDLE, a forkhead-associated domain gene, regulates multiple aspects of plant development. Plant Physiol. 141: 932–941. doi:10.1104/pp.106.076893
  • Müller-McNicoll, M., Botti, V., de Jesus Domingues, A. M., Brandl, H., Schwich, O. D., Steiner, M. C., Curk, T., Poser, I., Zarnack, K., and Neugebauer, K. M. 2016. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev. 30: 553–566. doi:10.1101/gad.276477.115
  • Naftelberg, S., Schor, I. E., Ast, G., and Kornblihtt, A. R. 2015. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu. Rev. Biochem. 84: 165–198. doi:10.1146/annurev-biochem-060614-034242
  • Niedojadło, J., Dełeńko, K., and Niedojadło, K. 2016. Regulation of poly(A) RNA retention in the nucleus as a survival strategy of plants during hypoxia. RNA Biol. 13: 531–543. doi:10.1080/15476286.2016.1166331
  • Nimeth, B. A., Riegler, S., and Kalyna, M. 2020. Alternative splicing and DNA damage response in plants. Front. Plant Sci. 11: 91. doi:10.3389/fpls.2020.00091
  • Nussbacher, J. K. and Yeo, G. W. 2018. Systematic discovery of RNA binding proteins that regulate microRNA levels. Mol. Cell 69: 1005–1016. doi:10.1016/j.molcel.2018.02.012
  • Ostheimer, G. J., Williams-Carrier, R., Belcher, S., Osborne, E., Gierke, J., and Barkan, A. 2003. Group II intron splicing factors derived by diversification of an ancient RNA-binding domain. EMBO J. 22: 3919–3929. doi:10.1093/emboj/cdg372
  • Palangat, M., Anastasakis, D. G., Fei, D. L., Lindblad, K. E., Bradley, R., Hourigan, C. S., Hafner, M., and Larson, D. R. 2019. The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation. Genes Dev. 33: 482–497. doi:10.1101/gad.319590.118
  • Palazzo, A. F. and Lee, E. S. 2018. Sequence determinants for nuclear retention and cytoplasmic export of mRNAs and lncRNAs. Front. Genet. 9: 440. doi:10.3389/fgene.2018.00440
  • Pamudurti, N. R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., Hanan, M., Wyler, E., Perez-Hernandez, D., Ramberger, E., Shenzis, S., Samson, M., Dittmar, G., Landthaler, M., Chekulaeva, M., Rajewsky, N., and Kadener, S. 2017. Translation of circRNAs. Mol. Cell 66: 9–21. doi:10.1016/j.molcel.2017.02.021
  • Pamudurti, N. R., Konakondla-Jacob, V. V., Krishnamoorthy, A., Ashwal-Fluss, R., Bartok, O., Wüst, S., Seitz, K., Maya, R., Lerner, N., Patop, I. N., Rizzoli, S., Beautus, T., and Kadener, S. 2018. An in vivo knockdown strategy reveals multiple functions for circMbl. bioRxiv. doi:10.1101/483271.
  • Park, H. Y., Lee, K. C., Jang, Y. H., Kim, S. K., Thu, M. P., Lee, J. H., and Kim, J. K. 2017. The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. Plant Cell Rep. 36: 1113–1123. doi:10.1007/s00299-017-2142-z
  • Park, M. Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H., and Poethig, R. S. 2005. Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA. 102: 3691–3696. doi:10.1073/pnas.0405570102
  • Price, A. M., Görnemann, J., Guthrie, C., and Brow, D. A. 2014. An unanticipated early function of DEAD-box ATPase Prp28 during commitment to splicing is modulated by U5 snRNP protein Prp8. RNA. 20: 46–60. doi:10.1261/rna.041970.113
  • Qi, H. D., Lin, Y., Ren, Q. P., Wang, Y. Y., Xiong, F., and Wang, X. L. 2019. RNA splicing of FLC modulates the transition to flowering. Front. Plant Sci. 10: 1625. doi:10.3389/fpls.2019.01625
  • Qu, S., Liu, Z., Yang, X., Zhou, J., Yu, H., Zhang, R., and Li, H. 2018. The emerging functions and roles of circular RNAs in cancer. Cancer Lett. 414: 301–309. doi:10.1016/j.canlet.2017.11.022
  • Raczynska, K. D., Stepien, A., Kierzkowski, D., Kalak, M., Bajczyk, M., McNicol, J., Simpson, C. G., Szweykowska-Kulinska, Z., Brown, J. W., and Jarmolowski, A. 2014. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res. 42: 1224–1244. doi:10.1093/nar/gkt894
  • Raitskin, O., Cho, D. S., Sperling, J., Nishikura, K., and Sperling, R. 2001. RNA editing activity is associated with splicing factors in lnRNP particles: the nuclear pre-mRNA processing machinery. Proc. Natl. Acad. Sci. USA. 98: 6571–6576. doi:10.1073/pnas.111153798
  • Reed, R. and Hurt, E. 2002. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108: 523–531. doi:10.1016/S0092-8674(02)00627-X
  • Ren, R. C., Wang, L. L., Zhang, L., Zhao, Y. J., Wu, J. W., Wei, Y. M., Zhang, X. S., and Zhao, X. Y. 2020. DEK43 is a P-type pentatricopeptide repeat (PPR) protein responsible for the cis-splicing of nad4 in maize mitochondria. J. Integr. Plant Biol. 62: 299–313. doi:10.1111/jipb.12843
  • Rigo, R., Bazin, J. R. M., Crespi, M., and Charon, C. L. 2019. Alternative splicing in the regulation of plant-microbe interactions. Plant Cell Physiol. 60: 1906–1916. doi:10.1093/pcp/pcz086
  • Rodríguez-Cazorla, E., Ripoll, J. J., Andújar, A., Bailey, L. J., Martínez-Laborda, A., Yanofsky, M. F., and Vera, A. 2015. K-homology nuclear ribonucleoproteins regulate floral organ identity and determinacy in Arabidopsis. PLoS Genet. 11: e1004983. doi:10.1371/journal.pgen.1004983
  • Romero-Barrios, N., Legascue, M. F., Benhamed, M., Ariel, F., and Crespi, M. 2018. Splicing regulation by long noncoding RNAs. Nucleic Acids Res. 46: 2169–2184. doi:10.1093/nar/gky095
  • Rutz, B. and Séraphin, B. 2000. A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing. EMBO J. 19: 1873–1886. doi:10.1093/emboj/19.8.1873
  • Saldi, T., Cortazar, M. A., Sheridan, R. M., and Bentley, D. L. 2016. Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing. J. Mol. Biol. 428: 2623–2635. doi:10.1016/j.jmb.2016.04.017
  • Salzman, J., Gawad, C., Wang, P. L., Lacayo, N., and Brown, P. O. 2012. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7: e30733. doi:10.1371/journal.pone.0030733
  • Sanford, J. R., Gray, N. K., Beckmann, K., and Caceres, J. F. 2004. A novel role for shuttling SR proteins in mRNA. Genes Dev. 18: 755–768. doi:10.1101/gad.286404
  • Schmitz-Linneweber, C., Williams-Carrier, R., and Barkan, A. 2005. RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5’ region of mRNAs whose translation it activates. Plant Cell 17: 2791–2804. doi:10.1105/tpc.105.034454
  • Shanmugapriya, H. H. A., Vijayarathna, S., Oon, C. E., Chen, Y., Kanwar, J. R., Ng, M. L., and Sasidharan, S. 2018. Functional analysis of circular RNAs. Adv. Exp. Med. Biol. 1087: 95–105. doi:10.1007/978-981-13-1426-1_8
  • Shao, C., Dong, A. W., Ma, X., and Meng, Y. 2014. Is Argonaute 1 the only effective slicer of small RNA-mediated regulation of gene expression in plants? J. Exp. Bot. 65: 6293–6299. doi:10.1093/jxb/eru382
  • Shao, C., Yang, B., Wu, T., Huang, J., Tang, P., Zhou, Y., Zhou, J., Qiu, J., Jiang, L., Li, H., Chen, G., Sun, H., Zhang, Y., Denise, A., Zhang, D. E., and Fu, X. D. 2014. Mechanisms for U2AF to define 3’ splice sites and regulate alternative splicing in the human genome. Nat. Struct. Mol. Biol. 21: 997–1005. doi:10.1038/nsmb.2906
  • Shen, H. 2009. UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. BMB Rep. 42: 185–188. doi:10.5483/BMBRep.2009.42.4.185
  • Shi, Y. 2017. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat. Rev. Mol. Cell Biol. 18: 655–670. doi:10.1038/nrm.2017.86
  • Shiimori, M., Inoue, K., and Sakamoto, H. 2013. A specific set of exon junction complex subunits is required for the nuclear retention of unspliced RNAs in Caenorhabditis elegans. Mol. Cell Biol. 33: 444–456. doi:10.1128/MCB.01298-12
  • Shukla, C. J., McCorkindale, A. L., Gerhardinger, C., Korthauer, K. D., Cabili, M. N., Shechner, D. M., Irizarry, R. A., Maass, P. G., and Rinn, J. L. 2018. High-throughput identification of RNA nuclear enrichment sequences. EMBO J. 37: e98452. doi:10.15252/embj.201798452
  • Singh, A., Gautam, V., Singh, S., Sarkar Das, S., Verma, S., Mishra, V., Mukherjee, S., and Sarkar, A. K. 2018. Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. Planta 248: 545–558. doi:10.1007/s00425-018-2927-5
  • Singh, A. K., Tamrakar, A., Jaiswal, A., Kanayama, N., and Kodgire, P. 2020. SRSF1-3, a splicing and somatic hypermutation regulator, controls transcription of IgV genes via chromatin regulators SATB2, UBN1 and histone variant H3.3. Mol. Immunol. 119: 69–82. doi:10.1016/j.molimm.2020.01.005
  • Solomon, O., Oren, S., Safran, M., Deshet-Unger, N., Akiva, P., Jacob-Hirsch, J., Cesarkas, K., Kabesa, R., Amariglio, N., Unger, R., Rechavi, G., and Eyal, E. 2013. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR). RNA. 19: 591–604. doi:10.1261/rna.038042.112
  • Song, Y., Gao, F., Peng, Y., and Yang, X. 2020. Long non-coding RNA DBH-AS1 promotes cancer progression in diffuse large B-cell lymphoma by targeting FN1 via RNA-binding protein BUD13. Cell Biol. Int. 44: 1331–1340. doi:10.1002/cbin.11327
  • Sørensen, B. B., Ehrnsberger, H. F., Esposito, S., Pfab, A., Bruckmann, A., Hauptmann, J., Meister, G., Merkl, R., Schubert, T., Längst, G., Melzer, M., Grasser, M., and Grasser, K. D. 2017. The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events. Plant Mol. Biol. 93: 283–298. doi:10.1007/s11103-016-0561-9
  • Stankovic, N., Schloesser, M., Joris, M., Sauvage, E., Hanikenne, M., and Motte, P. 2016. Dynamic distribution and interaction of the Arabidopsis SRSF1 subfamily splicing factors. Plant Physiol. 170: 1000–1013. doi:10.1104/pp.15.01338
  • Stepien, A., Knop, K., Dolata, J., Taube, M., Bajczyk, M., Barciszewska-Pacak, M., Pacak, A., Jarmolowski, A., and Szweykowska-Kulinska, Z. 2017. Posttranscriptional coordination of splicing and miRNA biogenesis in plants. Wiley Interdiscip. Rev. RNA. 8: doi:10.1002/wrna.1403
  • Sträßer, K., Masuda, S., Mason, P., Pfannstiel, J., Oppizzi, M., Rodriguez-Navarro, S., Rondón, A. G., Aguilera, A., Struhl, K., Reed, R., and Hurt, E. 2002. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417: 304–308. doi:10.1038/nature746
  • Streitner, C., Danisman, S., Wehrle, F., Schöning, J. C., Alfano, J. R., and Staiger, D. 2008. The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J. 56: 239–250. doi:10.1111/j.1365-313X.2008.03591.x
  • Streitner, C., Köster, T., Simpson, C. G., Shaw, P., Danisman, S., Brown, J. W., and Staiger, D. 2012. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana. Nucleic Acids Res. 40: 11240–11255. doi:10.1093/nar/gks873
  • Sun, H. X. and Chua, N. H. 2019. Bioinformatics approaches to studying plant long noncoding RNAs (lncRNAs): identification and functional interpretation of lncRNAs from RNA-Seq data sets. Methods Mol. Biol. 1933: 197–205. doi:10.1007/978-1-4939-9045-0_11
  • Sun, X., Wang, L., Ding, J., Wang, Y., Wang, J., Zhang, X., Che, Y., Liu, Z., Zhang, X., Ye, J., Wang, J., Sablok, G., Deng, Z., and Zhao, H. 2016. Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Lett. 590: 3510–3516. doi:10.1002/1873-3468.12440
  • Sun, Y. M., Wang, W. T., Zeng, Z. C., Chen, T. Q., Han, C., Pan, Q., Huang, W., Fang, K., Sun, L. Y., Zhou, Y. F., Luo, X. Q., Luo, C., Du, X., and Chen, Y. Q. 2019. CircMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood 134: 1533–1546. doi:10.1182/blood.2019000802
  • Swiezewski, S., Liu, F., Magusin, A., and Dean, C. 2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462: 799–802. doi:10.1038/nature08618
  • Szakonyi, D. and Duque, P. 2018. Alternative splicing as a regulator of early plant development. Front. Plant Sci. 9: 1174. doi:10.3389/fpls.2018.01174
  • Takemura, R., Takeiwa, T., Taniguchi, I., McCloskey, A., and Ohno, M. 2011. Multiple factors in the early splicing complex are involved in the nuclear retention of pre-mRNAs in mammalian cells. Genes Cells 16: 1035–1049. doi:10.1111/j.1365-2443.2011.01548.x
  • Thatcher, L. F., Kamphuis, L. G., Hane, J. K., Oñate-Sánchez, L., and Singh, K. B. 2015. The Arabidopsis KH-Domain RNA-binding protein ESR1 functions in components of jasmonate signalling, unlinking growth restraint and resistance to stress. PLoS One 10: e0126978. doi:10.1371/journal.pone.0126978
  • Thatcher, S. R., Zhou, W., Leonard, A., Wang, B.-B., Beatty, M., Zastrow-Hayes, G., Zhao, X., Baumgarten, A., and Li, B. 2014. Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation. Plant Cell 26: 3472–3487. doi:10.1105/tpc.114.130773
  • Tian, Y., Chen, M. X., Yang, J. F., Achala, H. H. K., Gao, B., Hao, G. F., Yang, G. F., Dian, Z. Y., Hu, Q. J., Zhang, D., Zhang, J., and Liu, Y. G. 2019. Genome-wide identification and functional analysis of the splicing component SYF2/NTC31/p29 across different plant species. Planta 249: 583–600. doi:10.1007/s00425-018-3026-3
  • Tillemans, V., Leponce, I., Rausin, G., Dispa, L., and Motte, P. 2006. Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. Plant Cell 18: 3218–3234. doi:10.1105/tpc.106.044529
  • Trowitzsch, S., Weber, G., Lührmann, R., and Wahl, M. C. 2009. Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. J. Mol. Biol. 385: 531–541. doi:10.1016/j.jmb.2008.10.087
  • Uyttewaal, M., Mireau, H., Rurek, M., Hammani, K., Arnal, N., Quadrado, M., and Giegé, P. 2008. PPR336 is associated with polysomes in plant mitochondria. J. Mol. Biol. 375: 626–636. doi:10.1016/j.jmb.2007.11.011
  • Valencia, P., Dias, A. P., and Reed, R. 2008. Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc. Natl. Acad. Sci. USA. 105: 3386–3391. doi:10.1073/pnas.0800250105
  • Vicente-Crespo, M., Pascual, M., Fernandez-Costa, J. M., Garcia-Lopez, A., Monferrer, L., Miranda, M. E., Zhou, L., and Artero, R. D. 2008. Drosophila muscleblind is involved in troponin T alternative splicing and apoptosis. PLoS One 3: e1613. doi:10.1371/journal.pone.0001613
  • Voith von Voithenberg, L., Sánchez-Rico, C., Kang, H. S., Madl, T., Zanier, K., Barth, A., Warner, L. R., Sattler, M., and Lamb, D. C. 2016. Recognition of the 3’ splice site RNA by the U2AF heterodimer involves a dynamic population shift. Proc. Natl. Acad. Sci. USA. 113: E7169–E7175. doi:10.1073/pnas.1605873113
  • Wallace, E. W. J. and Beggs, J. D. 2017. Extremely fast and incredibly close: cotranscriptional splicing in budding yeast. RNA. 23: 601–610. doi:10.1261/rna.060830.117
  • Wan, R., Yan, C., Bai, R., Huang, G., and Shi, Y. 2016. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science 353: 895–904. doi:10.1126/science.aag2235
  • Wan, R., Yan, C., Bai, R., Lei, J., and Shi, Y. 2017. Structure of an intron lariat spliceosome from saccharomyces cerevisiae. Cell 171: 120–132. doi:10.1016/j.cell. 2017.08.029
  • Wan, Y. and Hopper, A. K. 2018. Size matters: conserved proteins function in length-dependent nuclear export of circular RNAs. Genes Dev. 32: 600–601. doi:10.1101/gad.316216.118
  • Wang, H., Wang, H., Zhang, H., Liu, S., Wang, Y., Gao, Y., Xi, F., Zhao, L., Liu, B., Reddy, A. S. N., Lin, C., and Gu, L. 2019. The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species. Bioinformatics 35: 3119–3126. doi:10.1093/bioinformatics/btz038
  • Wang, H. V. and Chekanova, J. A. 2017. Long noncoding RNAs in plants. Adv. Exp. Med. Biol. 1008: 133–154. doi:10.1007/978-981-10-5203-3_5
  • Wang, K., Yin, C., Du, X., Chen, S., Wang, J., Zhang, L., Wang, L., Yu, Y., Chi, B., Shi, M., Wang, C., Reed, R., Zhou, Y., Huang, J., and Cheng, H. 2019. A U2-snRNP-independent role of SF3b in promoting mRNA export. Proc. Natl. Acad. Sci. USA. 16: 7837–7846. doi:10.1073/pnas.1818835116
  • Wang, Q., Zhang, L., Lynn, B., and Rymond, B. C. 2008. A BBP-Mud2p heterodimer mediates branchpoint recognition and influences splicing substrate abundance in budding yeast. Nucleic Acids Res. 36: 2787–2798. doi:10.1093/nar/gkn144
  • Wang, Y., Liu, J., Huang, B. O., Xu, Y. M., Li, J., Huang, L. F., Lin, J., Zhang, J., Min, Q. H., Yang, W. M., and Wang, X. Z. 2015. Mechanism of alternative splicing and its regulation. Biomed. Rep. 3: 152–158. doi:10.3892/br.2014.407
  • Wang, Y., Xiong, Z., Li, Q., Sun, Y., Jin, J., Chen, H., Zou, Y., Huang, X., and Ding, Y. 2019. Circular RNA profiling of the rice photo-thermosensitive genic male sterile line Wuxiang S reveals circRNA involved in the fertility transition. BMC. Plant Biol. 19: 340. doi:10.1186/s12870-019-1944-2
  • Wang, Y. Y., Xiong, F., Ren, Q. P., and Wang, X. L. 2020. Regulation of flowering transition by alternative splicing: the role of the U2 auxiliary factor. J. Exp. Bot. 71: 751–758. doi:10.1093/jxb/erz416
  • Watkins, K. P., Rojas, M., Friso, G., van Wijk, K. J., Meurer, J., and Barkan, A. 2011. APO1 promotes the splicing of chloroplast group II introns and harbors a plant-specific zinc-dependent RNA binding domain. Plant Cell 23: 1082–1092. doi:10.1105/tpc.111.084335
  • Wei, X., Li, H., Yang, J., Hao, D., Dong, D., Huang, Y., Lan, X., Plath, M., Lei, C., Lin, F., Bai, Y., and Chen, H. 2017. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis. 8: e3153. doi:10.1038/cddis.2017.541
  • Wilk, R., Hu, J., Blotsky, D., and Krause, H. M. 2016. Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs. Genes Dev. 30: 594–609. doi:10.1101/gad.276931.115
  • Will, C. L. and Lührmann, R. 2011. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3: a003707. doi:10.1101/cshperspect.a003707
  • Wilusz, J. E. 2018. A 360° view of circular RNAs: from biogenesis to functions. Wires. RNA. 9: e1478. doi:10.1002/wrna.1478
  • Wu, Y., Guo, J., Cai, Y., Gong, X., Xiong, X., Qi, W., Pang, Q., Wang, X., and Wang, Y. 2016. Genome-wide identification and characterization of Eutrema salsugineum microRNAs for salt tolerance. Physiol. Plantarum 157: 453–468. doi:10.1111/ppl.12419
  • Wu, Z., Zhu, D., Lin, X., Miao, J., Gu, L., Deng, X., Yang, Q., Sun, K., Zhu, D., Cao, X., Tsuge, T., Dean, C., Aoyama, T., Gu, H., and Qu, L. J. 2016. RNA binding proteins RZ-1B and RZ-1C play critical roles in regulating pre-mRNA splicing and gene expression during development in Arabidopsis. Plant Cell 28: 55–73. doi:10.1105/tpc.15.00949
  • Wysoczanski, P., and Zweckstetter, M. 2016. Retention and splicing complex (RES) - the importance of cooperativity. RNA Biol. 13: 128–133. doi:10.1080/15476286.2015.1096484
  • Xiao, M. S., Ai, Y., and Wilusz, J. E. 2020. Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol. 30: 226–240. doi:10.1016/j.tcb.2019.12.004
  • Xiong, F., Liu, H. H., Duan, C. Y., Zhang, B. K., Wei, G., Zhang, Y., and Li, S. 2019. Arabidopsis JANUS regulates embryonic pattern formation through Pol II-Mediated transcription of WOX2 and PIN7. iScience 19: 1179–1188. doi:10.1016/j.isci.2019.09.004
  • Xiong, F., Ren, J. J., Yu, Q., Wang, Y. Y., Kong, L. J., Otegui, M. S., and Wang, X. L. 2019. AtBUD13 affects pre-mRNA splicing and is essential for embryo development in Arabidopsis. Plant J. 98: 714–726. doi:10.1111/tpj.14268
  • Xiong, F., Ren, J. J., Yu, Q., Wang, Y. Y., Lu, C. C., Kong, L. J., Otegui, M. S., and Wang, X. L. 2019. AtU2AF65b functions in abscisic acid mediated flowering via regulating the precursor messenger RNA splicing of ABI5 and FLC in Arabidopsis. New Phytol. 223: 277–292. doi:10.1111/nph.15756
  • Xiong, F., Zhang, B. K., Liu, H. H., Wei, G., Wu, J. H., Wu, Y. N., and Zhang, Y. L. S. 2020. Transcriptional regulation of PLETHORA1 in the root meristem through an importin and its two antagonistic cargos. Plant Cell 32: 3812–3824. doi:10.1105/tpc.20.00108
  • Yan, K., Liu, P., Wu, C. A., Yang, G. D., Xu, R., Guo, Q. H., Huang, J. G., and Zheng, C. C. 2012. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol. Cell 48: 521–531. doi:10.1016/j.molcel.2012.08.032
  • Yan, Q., Xia, X., Sun, Z., and Fang, Y. 2017. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes. PLoS Genet. 13: e1006663. doi:10.1371/journal.pgen.1006663
  • Yang, G., Li, Y., Wu, B., Zhang, K., Gao, L., and Zheng, C. 2019. MicroRNAs transcriptionally regulate promoter activity in Arabidopsis thaliana. J. Integr. Plant Biol. 61: 1128–1133. doi:10.1111/jipb.12775
  • Yang, X., Zhang, H., and Li, L. 2012. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis. Plant J. 70: 421–431. doi:10.1111/j.1365-313X.2011.04882.x
  • Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., Jin, Y., Yang, Y., Chen, L. L., Wang, Y., Wong, C. C., Xiao, X., and Wang, Z. 2017. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27: 626–641. doi:10.1038/cr.2017.31
  • Ye, C. Y., Chen, L., Liu, C., Zhu, Q. H., and Fan, L. 2015. Widespread noncoding circular RNAs in plants. New Phytol. 208: 88–95. doi:10.1111/nph.13585
  • Yin, Y., Lu, J. Y., Zhang, X., Shao, W., Xu, Y., Li, P., Hong, Y., Cui, L., Shan, G., Tian, B., Zhang, Q. C., and Shen, X. 2020. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature 580: 147–150. doi:10.1038/s41586-020-2105-3
  • Yu, D., Tang, Z., Shao, C., Ma, X., Xiang, T., Fan, Z., Wang, H., and Meng, Y. 2018. Investigating microRNA-mediated regulation of the nascent nuclear transcripts in plants: a bioinformatics workflow. Brief. Bioinform. 19: 1317–1324. doi:10.1093/bib/bbx069
  • Zhan, X., Yan, C., Zhang, X., Lei, J., and Shi, Y. 2018. Structure of a human catalytic step I spliceosome. Science 359: 537–545. doi:10.1126/science.aar6401
  • Zhang, B., Gunawardane, L., Niazi, F., Jahanbani, F., Chen, X., and Valadkhan, S. 2014. A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Mol. Cell Biol. 34: 2318–2329. doi:10.1128/MCB.01673-13
  • Zhang, C. J., Zhou, J. X., Liu, J., Ma, Z. Y., Zhang, S. W., Dou, K., Huang, H. W., Cai, T., Liu, R., Zhu, J. K., and He, X. J. 2013. The splicing machinery promotes RNA-directed DNA methylation and transcriptional silencing in Arabidopsis. EMBO J. 32: 1128–1140. doi:10.1038/emboj.2013.49
  • Zhang, H., Tang, K., Qian, W., Duan, C. G., Wang, B., Zhang, H., Wang, P., Zhu, X., Lang, Z., Yang, Y., and Zhu, J. K. 2014. An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis. Mol. Cell 54: 418–430. doi:10.1016/j.molcel.2014.03.019
  • Zhang, P., Fan, Y., Sun, X., Chen, L., Terzaghi, W., Bucher, E., Li, L., and Dai, M. 2019. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J. 98: 697–713. doi:10.1111/tpj.14267
  • Zhang, S., Dou, Y., Li, S., Ren, G., Chevalier, D., Zhang, C., and Yu, B. 2018. DAWDLE interacts with DICER-LIKE proteins to mediate small RNA biogenesis. Plant Physiol. 177: 1142–1151. doi:10.1104/pp.18.00354
  • Zhang, S., Liu, Y., and Yu, B. 2014. PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet. 10: e1004841. doi:10.1371/journal.pgen.1004841
  • Zhang, S., Liu, Y., and Yu, B. 2015. New insights into pri-miRNA processing and accumulation in plants. Wiley Interdiscip. Rev. RNA. 6: 533–545. doi:10.1002/wrna.1292
  • Zhang, S., Xie, M., Ren, G., and Yu, B. 2013. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc. Natl. Acad. Sci. USA. 110: 17588–17593. doi:10.1073/pnas.1310644110
  • Zhang, X., Zhang, Y., Wang, T., Li, Z., Cheng, J., Ge, H., Tang, Q., Chen, K., Liu, L., Lu, C., Guo, J., Zheng, B., and Zheng, Y. 2019. A comprehensive map of intron branchpoints and lariat RNAs in plants. Plant Cell 31: 956–973. doi:10.1105/tpc.18.00711
  • Zhang, X. O., Dong, R., Zhang, Y., Zhang, J. L., Luo, Z., Zhang, J., Chen, L. L., and Yang, L. 2016. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26: 1277–1287. doi:10.1101/gr.202895.115
  • Zhang, Y. C., Liao, J. Y., Li, Z. Y., Yu, Y., Zhang, J. P., Li, Q. F., Qu, L. H., Shu, W. S., and Chen, Y. Q. 2014. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol. 15: 512. doi:10.1186/s13059-014-0512-1
  • Zhao, X., Li, J., Lian, B., Gu, H., Li, Y., and Qi, Y. 2018. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat. Commun. 9: 5056. doi:10.1038/s41467-018-07500-7
  • Zhou, Y., Chen, C., and Johansson, M. J. 2013. The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Res. 41: 5669–5678. doi:10.1093/nar/gkt269
  • Zhu, D., Mao, F., Tian, Y., Lin, X., Gu, L., Gu, H., Qu, L. J., Wu, Y., and Wu, Z. 2020. The features and regulation of co-transcriptional splicing in Arabidopsis. Mol. Plant 13: 278–294. doi:10.1016/j.molp.2019.11.004
  • Zhu, F. Y., Chen, M. X., Ye, N. H., Shi, L., Ma, K. L., Yang, J. F., Cao, Y. Y., Zhang, Y., Yoshida, T., Fernie, A. R., Fan, G. Y., Wen, B., Zhou, R., Liu, T.Y., Fan, T., Gao, B., Zhang, D., Hao, G. F., Xiao, S., Liu, Y. G., and Zhang, J. 2017. Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant J. 91: 518–533. doi:10.1111/tpj.13571
  • Zhu, J., Li, Y., Lin, J., Wu, Y., Guo, H., Shao, Y., Wang, F., Wang, X., Mo, X., Zheng, S., Yu, H., and Mao, C. 2019. CRD1, an Xpo1 domain protein, regulates miRNA accumulation and crown root development in rice. Plant J. 100: 328–342. doi:10.1111/tpj.14445
  • Zmudjak, M., Colas Des Francs-Small, C., Keren, I., Shaya, F., Belausov, E., Small, I., and Ostersetzer-Biran, O. 2013. MCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis. New Phytol. 199: 379–394. doi:10.1111/nph.12282
  • Zoschke, R., Kroeger, T., Belcher, S., Schöttler, M. A., Barkan, A., and Schmitz-Linneweber, C. 2012. The pentatricopeptide repeat-SMR protein ATP4 promotes translation of the chloroplast atpB/E mRNA. Plant J. 72: 547–558. doi:10.1111/j.1365-313X.2012.05081.x
  • Zoschke, R., Watkins, K. P., Miranda, R. G., and Barkan, A. 2016. The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNAs in maize. Plant J. 85: 594–606. doi:10.1111/tpj.13093

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.