974
Views
6
CrossRef citations to date
0
Altmetric
Articles

Evolution of Approaches to Increase the Salt Tolerance of Crops

&

References

  • Abdel-Aziz, S. and Reda, M. 2000. Osmotic adjustment for two wheat varieties. Egypt. J. Agric. Res. 78: 993–1004.
  • Abdelraheem, A., Thyssen, G. N., Fang, D. D., Jenkins, J. N., McCarty, J. C., Wedegaertner, T., and Zhang, J. 2021. GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 upland cotton (Gossypium hirsutum) parents. Mol Genet Genomics. 296: 119–129.
  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., and Hernandez, J. A. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy 7: 18. doi:https://doi.org/10.3390/agronomy7010018
  • Ali, G., Srivastava, P., and Iqbal, M. 1999. Proline accumulation, protein pattern and photosynthesis in Bacopa monniera regenerants grown under NaCl stress. Biol. Plant. 42: 89–95. doi:https://doi.org/10.1023/A:1002127711432
  • Ali, S., Gautam, R., Mahajan, R., Krishnamurthy, S., Sharma, S., Singh, R., and Ismail, A. 2013. Stress indices and selectable traits in SALTOL QTL introgressed rice genotypes for reproductive stage tolerance to sodicity and salinity stresses. Field Crops Res. 154: 65–73. doi:https://doi.org/10.1016/j.fcr.2013.06.011
  • Almeida, D. M., Oliveira, M. M., and Saibo, N. J. 2017. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 40: 326–345.
  • Alqudah, A. M., Haile, J. K., Alomari, D. Z., Pozniak, C. J., Kobiljski, B., and Börner, A. 2020. Genome-wide and SNP network analyses reveal genetic control of spikelet sterility and yield-related traits in wheat. Sci. Rep. 10: 12. doi:https://doi.org/10.1038/s41598-020-59004-4
  • Amoah, N. K. A., Akromah, R., Kena, A. W., Manneh, B., Dieng, I., and Bimpong, I. K. 2020. Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo’. Euphytica 216: 1–23. doi:https://doi.org/10.1007/s10681-020-02689-5
  • Annunziata, M. G., Ciarmiello, L. F., Woodrow, P., Dell'Aversana, E., and Carillo, P. 2019. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Front. Plant Sci. 10: 230.
  • Ashraf, M. and Wu, L. 1994. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 13: 17–42. doi:https://doi.org/10.1080/07352689409701906
  • Ashraf, M. 2001. Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. Environ. Exp. Bot. 45: 155–163.
  • Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora Morphol. Distrib. Funct. Ecol. Plants 199: 361–376. doi:https://doi.org/10.1078/0367-2530-00165
  • Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27: 84–93.
  • Ashraf, M. and Ahmad, S. 2000. Influence of sodium chloride onion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crops Res. 66: 115–127. doi:https://doi.org/10.1016/S0378-4290(00)00064-2
  • Ashraf, M. and Akram, N. A. 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol. Adv. 27: 744–752.
  • Ashraf, M., Athar, H., Harris, P., and Kwon, T. 2008. Some prospective strategies for improving crop salt tolerance. Adv. Agron. 97: 45–110.
  • Ashraf, M. and Bashir, A. 2003. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora 198: 486–498. doi:https://doi.org/10.1078/0367-2530-00121
  • Ashraf, M. and Foolad, M. R. 2005. Pre‐sowing seed treatment – a shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Adv. Agron. 88: 223–271.
  • Ashraf, M. and Foolad, M. R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59: 206–216. doi:https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Ashraf, M. and Foolad, M. R. 2013. Crop breeding for salt tolerance in the era of molecular markers and marker‐assisted selection. Plant Breed. 132: 10–20. doi:https://doi.org/10.1111/pbr.12000
  • Ashraf, M. and Harris, P. J. 2013. Photosynthesis under stressful environments: an overview. Photosynt. 51: 163–190. doi:https://doi.org/10.1007/s11099-013-0021-6
  • Ashraf, M. and McNeilly, T. 1988. Variability in salt tolerance of nine spring wheat cultivars. J. Agron. Crop Sci. 160: 14–21. doi:https://doi.org/10.1111/j.1439-037X.1988.tb01160.x
  • Ashraf, M., McNeilly, T., and Bradshaw, A. 1986. The potential for evolution of salt (NaCl) tolerance in seven grass species. New Phytol. 103: 299–309. doi:https://doi.org/10.1111/j.1469-8137.1986.tb00617.x
  • Ashraf, M., McNeilly, T., and Bradshaw, A. 1987. Selection and heritability of tolerance to sodium chloride in four forage species. Crop Sci. 27: 232–234. doi:https://doi.org/10.2135/cropsci1987.0011183X002700020021x
  • Ashraf, M. and O’Leary, J. 1996. Responses of some newly developed salt‐tolerant genotypes of spring wheat to salt stress: 1. Yield components and ion distribution. J. Agron. Crop Sci. 176: 91–101. doi:https://doi.org/10.1111/j.1439-037X.1996.tb00451.x
  • Aslam, M., Qureshi, R., and Ahmed, N. 1993. A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil 150: 99–107. doi:https://doi.org/10.1007/BF00779180
  • Ayers, A., Brown, J. W., and Wadleigh, C. 1952. Salt tolerance of barley and wheat in soil plots receiving several salinization regimes. Agron. J. 44: 307–310. doi:https://doi.org/10.2134/agronj1952.00021962004400060006x
  • Aziz, M., Karim, M., Hamid, M., Khalique, Q., and Hossain, M. 2005. Salt tolerance in mungbean: growth and yield response of some selected mungbean genotypes to NaCl salinity. Bangladesh J. Agric. Res. 30: 529–535.
  • Babu, N. N., Krishnan, S. G., Vinod, K. K., Krishnamurthy, S. L., Singh, V. K., Singh, M. P., Singh, R., Ellur, R. K., Rai, V., Bollinedi, H., Bhowmick, P. K., Yadav, A. K., Nagarajan, M., Singh, N. K., Prabhu, K. V., and Singh, A. K. 2017. Marker aided incorporation of Saltol, a major QTL associated with seedling stage salt tolerance, into Oryza sativa ‘Pusa Basmati 1121’. Front. Plant Sci. 8: 41.
  • Bacarin, M. A., Deuner, S., Silva, F. S. P. D., Cassol, D., and Silva, D. M. 2011. Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L. Braz. J. Plant Physiol. 23:245–253. doi:https://doi.org/10.1590/S1677-04202011000400001
  • Baker, N. R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59: 89–113.
  • Baker, N. R. and Rosenqvist, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55: 1607–1621.
  • Balouchi, H. 2010. Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. Int. J. Biol. Sci. 6: 1122–1132.
  • Banerjee, A. and Roychoudhury, A., 2018. Role of beneficial trace elements in salt stress tolerance of plants. In Plant Nutrients and Abiotic Stress Tolerance, Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., and Hawrylak-Nowak, B., Eds. Springer Nature: Singapore, pp 377–390.
  • Begg, J. E. and Turner, N. C. 1976. Crop water deficits. Adv. Agron. 28: 161–217.
  • Bernstein, L. 1961. Osmotic adjustment of plants to saline media. I. Steady state. Am. J. Bot. 48: 909–918. doi:https://doi.org/10.1002/j.1537-2197.1961.tb11730.x
  • Bernstein, L. and Hayward, H. E. 1958. Physiology of salt tolerance. Annu. Rev. Plant Physiol. 9: 25–46. doi:https://doi.org/10.1146/annurev.pp.09.060158.000325
  • Bernstein, L. and Pearson, G. A. 1956. Influence of exchangeable sodium on the yield and chemical composition of plants: I. Green beans, garden beets, clover, and alfalfa. Soil Sci. 82: 247–258. doi:https://doi.org/10.1097/00010694-195609000-00007
  • Bhardwaj, R., Sharma, I., Kanwar, M., Sharma, R., Handa, N., Kaur, H., and Kapoor, D. 2013. LEA proteins in salt stress tolerance. In Salt Stress in Plants. New York, NY: Springer, pp 79–112.
  • Biedermannova, L., Riley, K. E., Berka, K., Hobza, P., and Vondrasek, J. 2008. Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Phys. Chem. Chem. Phys. 10: 6350–6359.
  • Bimpong, I. K., Manneh, B., Sock, M., Diaw, F., Amoah, N. K. A., Ismail, A. M., Gregorio, G., Singh, R. K., and Wopereis, M. 2016. Improving salt tolerance of lowland rice cultivar 'Rassi' through marker-aided backcross breeding in West Africa. Plant Sci. 242: 288–299.
  • Blum, A. 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 40: 4–10.
  • Bonilla, P., Dvorak, J., Mackell, D., Deal, K., and Gregorio, G. 2002. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philippine Agric. Sci. 85: 68–76.
  • Bouzroud, S., Gasparini, K., Hu, G., Barbosa, M. A. M., Rosa, B. L., Fahr, M., Bendaou, N., Bouzayen, M., Zsögön, A., Smouni, A., and Zouine, M. 2020. Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes 11: 272. doi:https://doi.org/10.3390/genes11030272
  • Boyko, H. 1966. Salinity and Aridity: New Approaches to Old Problems. Dr. W. Junk, The Hague. doi:https://doi.org/10.1007/978-94-017-6014-0_1.
  • Byrt, C. S., Platten, J. D., Spielmeyer, W., James, R. A., Lagudah, E. S., Dennis, E. S., Tester, M., and Munns, R. 2007. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 143: 1918–1928.
  • Castiglioni, P., Bell, E., Lund, A., Rosenberg, A. F., Galligan, M., Hinchey, B. S., Bauer, S., Nelson, D. E., and Bensen, R.J. 2018. Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean. Plant Direct 2, e00040.
  • Chang, A. C. and Cohen, S. N. 1974. Genome construction between bacterial species in vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 71: 1030–1034.
  • Chaurasia, S., Singh, A. K., Songachan, L., Sharma, A. D., Bhardwaj, R., and Singh, K. 2020. Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 112: 4608–4621.
  • Chen, H. and Jiang, J. G. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ. Rev. 18: 309–319. doi:https://doi.org/10.1139/A10-014
  • Chen, T. H. and Murata, N. 2011. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ. 34: 1–20.
  • Chhipa, B. and Lal, P. 1995. Na/K ratios as the basis of salt tolerance in wheat. Aust. J. Agric. Res. 46: 533–539. doi:https://doi.org/10.1071/AR9950533
  • Chi, Y. H., Koo, S. S., Oh, H. T., Lee, E. S., Park, J. H., Phan, K. A. T., Wi, S. D., Bae, S. B., Paeng, S. K., Chae, H. B., Kang, C. H., Kim, M. G., Kim, W.-Y., Yun, D.-J., and Lee, S. Y. 2019. The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Front. Plant Sci. 10: 750.
  • Chinnusamy, V., Jagendorf, A., and Zhu, J. K. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45: 437–448. doi:https://doi.org/10.2135/cropsci2005.0437
  • Clipson, N., Tomos, A., Flowers, T., and Jones, R. W. 1985. Salt tolerance in the halophyte Suaeda maritima L. Dum.: the maintenance of turgor pressure and water-potential gradients in plants growing at different salinities. Planta 165: 392–396.
  • Coblentz, W. W. 1908. Investigations of Infra-Red Spectra. Carnegie institution of Washington, Washington, DC.
  • Collins, R., Harris, P., Bateman, M. J., and Henderson, J. 2008. Effect of calcium and potassium nutrition on yield, ion content, and salt tolerance of Brassica campestris (rapa). J. Plant Nutr. 31: 1461–1481. doi:https://doi.org/10.1080/01904160802208444
  • Cramer, G. R. and Bowman, D. C. 1991. Kinetics of maize leaf elongation: I. Increased yield threshold limits short-term, steady-state elongation rates after exposure to salinity. J. Exp. Bot. 42: 1417–1426. doi:https://doi.org/10.1093/jxb/42.11.1417
  • Crosbie, T. and Pearce, R. 1982. Effects of recurrent phenotypic selection for high and low photosynthesis on agronomic traits in two maize populations. Crop Sci. 22: 809–813. doi:https://doi.org/10.2135/cropsci1982.0011183X002200040026x
  • Cui, Y., Zhang, F., and Zhou, Y. 2018. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Front. Plant Sci. 9: 1464.
  • Dewey, D. R. 1962. Breeding crested wheatgrass for salt tolerance. Crop Sci. 2: 403–407. doi:https://doi.org/10.2135/cropsci1962.0011183X000200050012x
  • Ding, T., Yang, Z., Wei, X., Yuan, F., Yin, S., and Wang, B. 2018. Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage. Funct. Plant Biol. 45: 1073–1081.
  • Dixon, H. H. and Joly, J. 1894. On the ascent of sap. Ann. Bot. 8: 468–470. doi:https://doi.org/10.1093/oxfordjournals.aob.a090723
  • Dobrenz, A. 1999. Salt-Tolerant Alfalfa. Agripro Seeds Inc., Shawnee Mission, KS. U.S. Patent 6,005,165.
  • Dormatey, R., Sun, C., Ali, K., Coulter, J. A., Bi, Z., and Bai, J. 2020. Gene pyramiding for sustainable crop improvement against biotic and abiotic stresses. Agronomy 10: 1255. doi:https://doi.org/10.3390/agronomy10091255
  • Du, Y.-T., Zhao, M.-J., Wang, C.-T., Gao, Y., Wang, Y.-X., Liu, Y.-W., Chen, M., Chen, J., Zhou, Y.-B., Xu, Z.-S., and Ma, Y.-Z. 2018. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biol. 18: 18. doi:https://doi.org/10.1186/s12870-018-1551-7
  • Dure, L. III, Greenway, S. C., and Galau, G. A. 1981. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20: 4162–4168.
  • Duysens, L. N. M. and Sweers, H. E. 1963. Mechanisms of the two photochemical reactions in algae as studied by means of fluorescence. In Studies on Microalgae and Photosynthetic Bacteria. Japanese Society of Plant Physiologists: University of Tokyo Press, Tokyo, pp 353–372.
  • Epstein, E. and Norlyn, J. 1977. Seawater-based crop production: a feasibility study. Science 197: 249–251.
  • Fageria, N. K. 1983. Ionic interactions in rice plants from dilute solutions. Plant Soil 70: 309–316. doi:https://doi.org/10.1007/BF02374887
  • Fan, Y., Zhou, G., Shabala, S., Chen, Z.-H., Cai, S., Li, C., and Zhou, M. 2016. Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.). Front. Plant Sci. 7: 946.
  • Flowers, T. 2004. Improving crop salt tolerance. J. Exp. Bot. 55: 307–319.
  • Flowers, T. J., Munns, R., and Colmer, T. D. 2015. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 115: 419–431.
  • Flowers, T. J., Troke, P. F., and Yeo, A. R. 1977. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89–121. doi:https://doi.org/10.1146/annurev.pp.28.060177.000513
  • Flowers, T. J. and Yeo, A. R. 1995. Breeding for salinity resistance in crop plants: where next? Funct. Plant Biol. 22: 875–884. doi:https://doi.org/10.1071/PP9950875
  • Foolad, M. 2004. Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss. Organ Cult. 76: 101–119. doi:https://doi.org/10.1023/B:TICU.0000007308.47608.88
  • Formentin, E., Barizza, E., Stevanato, P., Falda, M., Massa, F., Tarkowskà, D., Novák, O., and Lo Schiavo, F. 2018. Fast regulation of hormone metabolism contributes to salt tolerance in rice (Oryza sativa spp. Japonica, L.) by inducing specific morpho-physiological responses. Plants 7: 75. doi:https://doi.org/10.3390/plants7030075
  • Francois, L. E., Grieve, C. M., Maas, E. V., and Lesch, S. M. 1994. Time of salt stress affects growth and yield components of irrigated wheat. Agron. J. 86: 100–107. doi:https://doi.org/10.2134/agronj1994.00021962008600010019x
  • Freitas, J. B. S., Chagas, R. M., Almeida, I. M. R., Cavalcanti, F. R., and Silveira, J. A. C. 2001. Expression of physiological traits related to salt tolerance in two contrasting cowpea cultivars. Document Embrapa Meio-Norte 56: 115–118.
  • Frouin, J., Languillaume, A., Mas, J., Mieulet, D., Boisnard, A., Labeyrie, A., Bettembourg, M., Bureau, C., Lorenzini, E., Portefaix, M., Turquay, P., Vernet, A., Périn, C., Ahmadi, N., and Courtois, B. 2018. Tolerance to mild salinity stress in japonica rice: a genome-wide association mapping study highlights calcium signaling and metabolism genes. PLOS One 13: e0190964.
  • Genc, Y., Mcdonald, G. K., and Tester, M. 2007. Reassessment of tissue Na(+) concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. 30: 1486–1498.
  • Ghassemi, F., Jakeman, A. J., and Nix, H. A. 1995. Salinisation of Land and Water Resources: human Causes, Extent, Management and Case Studies. CAB international: Wallingford, CT.
  • Gibbs, J., Dracup, M., Greenway, H., and McComb, J. 1989. Effects of high NaCl on growth, turgor and internal solutes of tobacco callus. J. Plant Physiol. 134: 61–69. doi:https://doi.org/10.1016/S0176-1617(89)80203-2
  • Godwin, I. D., Aitken, E. A., and Smith, L. W. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18: 1524–1528.
  • Gorham, J. 1990. Salt tolerance in the Triticeae: ion discrimination in rye and triticale. J. Exp. Bot. 41: 609–614. doi:https://doi.org/10.1093/jxb/41.5.609
  • Gorham, J., Bristol, A., Young, E., Jonesh, R. W., and Kashour, G. 1990. Salt tolerance in the Triticeae: K/Na discrimination in barley. J. Exp. Bot. 41: 1095–1101. doi:https://doi.org/10.1093/jxb/41.9.1095
  • Gossett, D. R., Millhollon, E. P., Lucas, M. C., Banks, S. W., and Marney, M.-M. 1994. The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep. 13: 498–503.
  • Greenway, H. 1962. Plant response to saline substrates 1. Growth and ion uptake of several varieties of Hordeum during and after sodium chloride treatment. Aust. J. Biol. Sci. 15: 16–38. doi:https://doi.org/10.1071/BI9620016
  • Greenway, H. and Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149–190. doi:https://doi.org/10.1146/annurev.pp.31.060180.001053
  • Guo, H., Li, S., Min, W., Ye, J., and Hou, Z. 2019. Ionomic and transcriptomic analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion balance mechanism of cotton under salt stress. PLOS One 14: e0226776.
  • Gupta, B. and Huang, B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics. 2014: 701596.
  • Hallauer, A. R. 2007. History, contribution, and future of quantitative genetics in plant breeding: lessons from maize. Crop Sci. 47: S4–S19. doi:https://doi.org/10.2135/cropsci2007.04.0002IPBS
  • Hamani, A. K. M., Wang, G., Soothar, M. K., Shen, X., Gao, Y., Qiu, R., and Mehmood, F. 2020. Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol. 20: 14. doi:https://doi.org/10.1186/s12870-020-02624-9
  • Han, K. H. and Hwang, C. H. 2003. Salt tolerance enhanced by transformation of a P5CS gene in carrot. J. Plant Biotechnol. 5: 157–161.
  • Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., and Masmoudi, K. 2011. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal. Behav. 6: 1503–1509.
  • Hanin, M., Ebel, C., Ngom, M., Laplaze, L., and Masmoudi, K. 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 7: 1787.
  • Hazzouri, K. M., Khraiwesh, B., Amiri, K. M. A., Pauli, D., Blake, T., Shahid, M., Mullath, S. K., Nelson, D., Mansour, A. L., Salehi-Ashtiani, K., Purugganan, M., and Masmoudi, K. 2018. Mapping of HKT1;5 gene in Barley using GWAS approach and its implication in salt tolerance mechanism. Front. Plant Sci. 9: 156.
  • He, C., Yan, J., Shen, G., Fu, L., Holaday, A. S., Auld, D., Blumwald, E., and Zhang, H. 2005. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant and Cell Physiology 46, 1848–1854.
  • He, C., Yang, A., Zhang, W., Gao, Q., and Zhang, J. 2010. Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell Tiss. Organ Cult. 101: 65–78. doi:https://doi.org/10.1007/s11240-009-9665-0
  • Heald, W. R., Moodie, C. D., and Leamer, R. W. 1950. Leaching and pre-emergence irrigation of sugar beet on saline soils. Bull. Washington Agric. Exp. Station 519.
  • Hien, V. T. T., Le, D. D., Ismail, A. M., and Ham, L. H. 2012. Marker-assisted backcrossing (MABC) for improved salinity tolerance in rice (Oryza sativa L.) to cope with climate change in Vietnam. Aust. J. Crop Sci. 6: 1649–1654.
  • Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A., and Jaoua, S. 2005. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci. 169: 746–752. doi:https://doi.org/10.1016/j.plantsci.2005.05.025
  • Hoagland, D. R. and Arnon, D. I. 1950. The water-culture method for growing plants without soil. Calif. Agric. Exp. Station Circ. 347.
  • Hopmans, J. W., Qureshi, A. S., Kisekka, I., Munns, R., Grattan, S. R., and Rengasamy, P. 2021. Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 169: 1–191.
  • Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., and Shinmyo, A. 2001. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 27: 129–138.
  • Hsiao, T. C., Acevedo, E., Fereres, E., and Henderson, D. 1976. Water stress, growth and osmotic adjustment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273: 479–500.
  • Hu, P., Zheng, Q., Luo, Q., Teng, W., Li, H., Li, B., and Li, Z. 2021. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol. 21: 27. doi:https://doi.org/10.1186/s12870-020-02799-1
  • Hu, X., Kim, H., Stahl, E., Plenge, R., Daly, M., and Raychaudhuri, S. 2011. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89: 496–506. doi:https://doi.org/10.1016/j.ajhg.2011.09.002
  • Hurkman, W. J., Fornari, C. S., and Tanaka, C. K. 1989. A comparison of the effect of salt on polypeptides and translatable mRNAs in roots of a salt-tolerant and a salt-sensitive cultivar of barley. Plant Physiol. 90: 1444–1456.
  • Hurkman, W. J., Tao, H. P., and Tanaka, C. K. 1991. Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol. 97: 366–374.
  • Husain, S., Munns, R., and Condon, A. G. 2003. Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Australian Journal of Agricultural Research 54, 589–597.
  • Hussain, A., Shahzad, A., Tabassum, S., Hafeez, H., and Khattak, J. Z. K. 2018. Salt stress tolerance of transgenic rice (Oryza sativa L.) expressing AtDREB1A gene under inducible or constitutive promoters. Biologia 73: 31–41. doi:https://doi.org/10.2478/s11756-018-0010-0
  • Hussain, B., Lucas, S. J., Ozturk, L., and Budak, H. 2017. Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Sci. Rep. 7: 1–14. doi:https://doi.org/10.1038/s41598-017-15726-6
  • Huyen, L. T. N., Cuc, L. M., Ismail, A. M., and Ham, L. H. 2012. Introgressing the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. Am. J. Plant Sci. 3: 891–987.
  • Hyun, T. K. 2020. CRISPR/Cas-based genome editing to improve abiotic stress tolerance in plants. Bot. Serb. 44: 121–127. doi:https://doi.org/10.2298/BOTSERB2002121H
  • Iqbal, I., Iftikhar, L.I., Nawaz, H., and Nawaz, M. 2014. Role of proline to induce salinity tolerance in sunflower (Helianthus annus L.). Science Technology and Development 33: 88–93.
  • Islam, M., Afzal, S., Ahmad, I., and Ahsan-Ul-Haq, H. A. 2008. Salt tolerance among different sunflower genotypes. Sarhad J. Agric. 24: 241–250.
  • Ismail, A. M. and Horie, T. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 68: 405–434.
  • Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47: 141–153.
  • Jacobsen, T., and Adams, R. M. 1958. Salt and silt in ancient Mesopotamian agriculture: progressive changes in soil salinity and sedimentation contributed to the breakup of past civilizations. Science 128: 1251–1258.
  • Jafari-Shabestari, J., Corke, H., and Qualset, C. O. 1995. Field evaluation of tolerance to salinity stress in Iranian hexaploid wheat landrace accessions. Genet. Resour. Crop Evol. 42: 147–156. doi:https://doi.org/10.1007/BF02539518
  • Jaiswal, S., Gautam, R., Singh, R., Krishnamurthy, S., Ali, S., Sakthivel, K., Iquebal, M., Rai, A., and Kumar, D. 2019. Harmonizing technological advances in phenomics and genomics for enhanced salt tolerance in rice from a practical perspective. Rice 12: 19. doi:https://doi.org/10.1186/s12284-019-0347-1
  • James, R. A., Rivelli, A. R., Munns, R., and von Caemmerer, S. 2002. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct. Plant Biol. 29: 1393–1403.
  • Jamil, M., Ali, A., Gul, A., Ghafoor, A., Napar, A. A., Ibrahim, A. M., Naveed, N. H., Yasin, N. A., and Mujeeb-Kazi, A. 2019. Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC Plant Biol. 19: 1–18. doi:https://doi.org/10.1186/s12870-019-1754-6
  • Jamil, M., Rehman, S., and Rha, E. 2007. Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pak. J. Bot. 39: 753–760.
  • Jefferies, R. L. 1981. Osmotic adjustment and the response of halophytic plants to salinity. Bioscience 31: 42–46. doi:https://doi.org/10.2307/1308177
  • Jena, K. and Mackill, D. 2008. Molecular markers and their use in marker-assisted selection in rice. Crop Sci. 48: 1266–1276. doi:https://doi.org/10.2135/cropsci2008.02.0082
  • Jeschke, W. D. and Wolf, O. 1988. Effect of NaCI salinity on growth, development, ion distribution, and ion translocation in castor bean (Ricinus communis L.). J. Plant Physiol. 132: 45–53. doi:https://doi.org/10.1016/S0176-1617(88)80181-0
  • Johnson, D., Smith, S., and Dobrenz, A. 1991. Registration of AZ‐90NDC‐ST nondormant alfalfa germplasm with improved forage yield in saline environments. Crop Sci. 31: 1098–1099. doi:https://doi.org/10.2135/cropsci1991.0011183X003100040076x
  • Joshi, G. V. 1976. Studies in photosynthesis under saline conditions. Ch. 3. Photosynthesis in Mangroves, Final Report on USPL-480 Proj.
  • Kanwal, H., Ashraf, M., and Shahbaz, M. 2011. Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. Pak. J. Bot. 43: 2693–2699.
  • Katerji, N., van Hoorn, J., Hamdy, A., and Mastrorilli, M. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manage. 62: 37–66. doi:https://doi.org/10.1016/S0378-3774(03)00005-2
  • Katerji, N., van Hoorn, J. W., Hamdy, A., and Mastrorilli, M. 2002. Salt tolerance classification of crops according to soil salinity and to water stress day index. Opt. Méditerr. B. Etud. Rec. 36: 133–147.
  • Kautsky, H. and Hirsch, A. 1931. Neue versuche zur kohlensäureassimilation. Naturwissenschaften 19: 964–964. doi:https://doi.org/10.1007/BF01516164
  • Kawasaki, T. and Moritsugu, M. 1978. Effect of calcium on salt injury in plants II. Barley and rice. Berich. Ohara Inst. Landwirtsch. Biol. Okayama Univ. 17: 73–81.
  • Kearney, T. H., Briggs, L., Shantz, H., McLane, J., and Piemeisel, R. 1914. Indicator significance of vegetation in Tooele Valley, Utah. J. Agric. Res. 1: 365–417.
  • Kearney, T. H. and Scofield, C. S. 1936. The Choice of Crops for Saline Land. US Department of Agriculture.
  • Kilian, B. and Graner, A. 2012. NGS technologies for analyzing germplasm diversity in genebanks. Brief. Funct. Genomics 11: 38–50.
  • Kingsbury, R. and Epstein, E. 1984. Selection for salt‐resistant spring wheat. Crop Sci. 24: 310–315. doi:https://doi.org/10.2135/cropsci1984.0011183X002400020024x
  • Kishitani, S., Takanami, T., Suzuki, M., Oikawa, M., Yokoi, S., Ishitani, M., Alvarez-Nakase, A., and Takabe, T. 2000. Compatibility of glycinebetaine in rice plants: Evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant, Cell & Environment 23, 107–114.
  • Ko, J. K., Lee, K. S., Kim, K. Y., Choi, W. Y., Kim, B. K., Shin, W. C., Ko, J. K., and Yum, S. J. 2011. Physiological response to salinity stress of Japonica/Indica lines tolerant to salt at seedling stage. Korean J. Breed. Sci. 43: 391–398.
  • Korte, A. and Farlow, A. 2013. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9: 29–29. doi:https://doi.org/10.1186/1746-4811-9-29
  • Kotula, L., Caparros, P. G., Zörb, C., Colmer, T. D., and Flowers, T. J. 2020. Improving crop salt tolerance using transgenic approaches: an update and physiological analysis. Plant Cell Environ. 43: 2932–2956.
  • Kramer, D., Läuchli, A., Yeo, A., and Gullasch, J. 1977. Transfer cells in roots of Phaseolus coccineus: ultrastructure and possible function in exclusion of sodium from the shoot. Ann. Bot. 41: 1031–1040. doi:https://doi.org/10.1093/oxfordjournals.aob.a085372
  • Krishnamurthy, S., Pundir, P., Warraich, A. S., Rathor, S., Lokeshkumar, B., Singh, N. K., and Sharma, P. C. 2020. Introgressed saltol QTL lines improves the salinity tolerance in rice at seedling stage. Front. Plant Sci. 11: 833.
  • Kuiper, P. J. C. 1984. Functioning of plant cell membranes under saline conditions: membrane lipid composition and ATPases. In Salinity Tolerance in Plants, Staples, R. C. and Toenniessen, G. H., Eds. Wiley: New York, NY, pp 77–91.
  • Kumar, S., Dhingra, A., and Daniell, H. 2004. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiology 136, 2843–2854.
  • Kumar, I. S., Rao, S. R., and Vardhini, B. V. 2015. Role of phytohormones during salt stress tolerance in plants. Curr. Trends Biotechnol. Pharmacy 9: 334–343.
  • Kumar, S., Verma, R. K., Yadav, S. K., Yadav, P., Watts, A., Rao, M., and Chinnusamy, V. 2020. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol. Mol. Biol. Plants 26: 1099–1110.
  • LaHaye, P. and Epstein, E. 1969. Salt toleration by plants: enhancement with calcium. Science 166: 395–396.
  • Lan, T., Zheng, Y., Su, Z., Yu, S., Song, H., Zheng, X., Lin, G., and Wu, W. 2019. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.). G3 9: 4107–4114.
  • Lång, V. and Palva, E. T. 1992. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 20: 951–962.
  • Larbi, A., Kchaou, H., Gaaliche, B., Gargouri, K., Boulal, H., and Morales, F. 2020. Supplementary potassium and calcium improves salt tolerance in olive plants. Sci. Hortic. 260: 108912. doi:https://doi.org/10.1016/j.scienta.2019.108912
  • Lekklar, C., Pongpanich, M., Suriya-Arunroj, D., Chinpongpanich, A., Tsai, H., Comai, L., Chadchawan, S., and Buaboocha, T. 2019. Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genomics 20: 1–18. doi:https://doi.org/10.1186/s12864-018-5317-2
  • Leung, H. 2008. Stressed genomics-bringing relief to rice fields. Curr. Opin. Plant Biol. 11: 201–208.
  • Li, W., Zhang, H., Zeng, Y., Xiang, L., Lei, Z., Huang, Q., Li, T., Shen, F., and Cheng, Q. 2020. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Sci. Rep. 10: 1–9. doi:https://doi.org/10.1038/s41598-020-67210-3
  • Li, B., Li, N., Duan, X., Wei, A., Yang, A., and Zhang, J. 2010. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J. Biotechnol. 145: 206–213.
  • Li, D., Dossa, K., Zhang, Y., Wei, X., Wang, L., Zhang, Y., Liu, A., Zhou, R., and Zhang, X. 2018. GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes 9: 87. doi:https://doi.org/10.3390/genes9020087
  • Li, D., Zhang, T., Wang, M., Liu, Y., Brestic, M., Chen, T. H. H., and Yang, X. 2018. Genetic engineering of the biosynthesis of glycine betaine modulates phosphate homeostasis by regulating phosphate acquisition in tomato. Front. Plant Sci. 9: 1995.
  • Liu, C., Chen, K., Zhao, X., Wang, X., Shen, C., Zhu, Y., Dai, M., Qiu, X., Yang, R., Xing, D., Pang, Y., and Xu, J. 2019. Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. Rice 12: 1–13. doi:https://doi.org/10.1186/s12284-019-0349-z
  • Loukehaich, R., Wang, T., Ouyang, B., Ziaf, K., Li, H., Zhang, J., Lu, Y., and Ye, Z. 2012. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J. Exp. Bot. 63: 5593–5606.
  • Lu, K., Peng, L., Zhang, C., Lu, J., Yang, B., Xiao, Z., Liang, Y., Xu, X., Qu, C., and Zhang, K. (2017). Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Frontiers in Plant Science 8, 206.
  • Luo, X., Wang, B., Gao, S., Zhang, F., Terzaghi, W., and Dai, M. 2019. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. J. Integr. Plant Biol. 61: 658–674.
  • Lutts, S., Majerus, V., and Kinet, J. M. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105: 450–458. doi:https://doi.org/10.1034/j.1399-3054.1999.105309.x
  • Lyon, C. B. 1941. Responses of two species of tomatoes and the F1 generation to sodium sulphate in the nutrient medium. Bot. Gazette 103: 107–122. doi:https://doi.org/10.1086/335027
  • Ma, Y., Dias, M. C., and Freitas, H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 11: 591911. doi:https://doi.org/10.3389/fpls.2020.591911
  • Malcolm, C. V. 1969. Use of halophytes for forage production on saline wastelands. J. Aust. Inst. Agric. Sci. 35: 3849.
  • Manchanda, G. and Garg, N. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol. Plant. 30: 595–618. doi:https://doi.org/10.1007/s11738-008-0173-3
  • Martinez, V., Hill, W., and Knott, S. 2002. On the use of double haploids for detecting QTL in outbred populations. Heredity 88: 423–431.
  • Mattill, H. 1947. Antioxidants. Annu. Rev. Biochem. 16: 177–192.
  • Maxwell, K. and Johnson, G. N. 2000. Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51: 659–668. doi:https://doi.org/10.1093/jexbot/51.345.659
  • Mehta, G., Muthusamy, S. K., Singh, G., and Sharma, P. 2021. Identification and development of novel salt-responsive candidate gene based SSRs (cg-SSRs) and MIR gene based SSRs (mir-SSRs) in bread wheat (Triticum aestivum). Sci. Rep. 11: 15. doi:https://doi.org/10.1038/s41598-021-81698-3
  • Mendel, G. 1866. Versuche uber pflanzen-hybriden. Verhandl. Naturforsch. Vereins Brunn Fur 4: 3–47.
  • Menz, J., Modrzejewski, D., Hartung, F., Wilhelm, R., and Sprink, T. 2020. Genome edited crops touch the market: a view on the global development and regulatory environment. Front. Plant Sci. 11: 586027.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410. doi:https://doi.org/10.1016/S1360-1385(02)02312-9
  • Monforte, A., Asins, M. J., and Carbonell, E. A. 1996. Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theor. Appl. Genet. 93: 765–772.
  • Moradi, F. and Ismail, A. M. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99: 1161–1173.
  • Morgan, J. 1977. Differences in osmoregulation between wheat genotypes. Nature 270: 234–235. doi:https://doi.org/10.1038/270234a0
  • Mujeeb-Kazi, A., Munns, R., Rasheed, A., Ogbonnaya, F. C., Ali, N., Hollington, P., Dundas. I., Saeed, N., Wang, R., Rengasamy, P., Saddiq, M. S., de Leon, J. L. D., Ashraf, M., and Rajaram, S. 2019. Breeding strategies for structuring salinity tolerance in wheat. Advances in Agronomy, 155, 121–187.
  • Mullis, K. B. 1990. The unusual origin of the polymerase chain reaction. Sci. Am. 262: 56–65.
  • Munns, R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant. Cell Environ. 16: 15–24. doi:https://doi.org/10.1111/j.1365-3040.1993.tb00840.x
  • Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167: 645–663.
  • Munns, R., Hare, R., James, R., and Rebetzke, G. 2000. Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res. 51: 69–74. doi:https://doi.org/10.1071/AR99057
  • Munns, R., Husain, S., Rivelli, A. R., James, R. A., Condon, A. G., Lindsay, M. P., Lagudah, E. S., Schachtman, D. P., and Hare, R. A. 2002. Avenues for increasing salt tolerance of crops, and the role of physiologically-based selection traits. Plant and Soil 247, 93–105.
  • Munns, R. and James, R. A. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253: 201–218. doi:https://doi.org/10.1023/A:1024553303144
  • Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C., Byrt, C. S., Hare, R. A., Tyerman, S. D., Tester, M., Plett, D., and Gilliham, M. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 30: 360–364.
  • Munns, R., Passioura, J. B., Colmer, T. D., and Byrt, C. S. 2020. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 225: 1091–1096.
  • Munns, R., Rebetzke, G. J., Husain, S., James, R. A., and Hare, R. A. 2003. Genetic control of sodium exclusion in durum wheat. Aust. J. Agric. Res. 54: 627–635. doi:https://doi.org/10.1071/AR03027
  • Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.
  • Muthu, V., Abbai, R., Nallathambi, J., Rahman, H., Ramasamy, S., Kambale, R., Thulasinathan, T., Ayyenar, B., and Muthurajan, R. 2020. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLOS One 15: e0227421.
  • Mwando, E., Han, Y., Angessa, T. T., Zhou, G., Hill, C. B., Zhang, X.-Q., and Li, C. 2020. Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Front. Plant Sci. 11: 118.
  • Naeem, M., Iqbal, M., Shakeel, A., Ul-Allah, S., Hussain, M., Rehman, A., Zafar, Z. U., Athar, H-u-R., and Ashraf, M. 2020. Genetic basis of ion exclusion in salinity stressed wheat: implications in improving yield. Plant Growth Regul. 92: 479–496. doi:https://doi.org/10.1007/s10725-020-00659-4
  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi‐Shinozaki, K., and Shinozaki, K. 1999. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18: 185–193.
  • Nayyeripasand, L., Garoosi, G. A., and Ahmadikhah, A. 2021. Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in rice during early vegetative stage. Rice 14: 1–21. doi:https://doi.org/10.1186/s12284-020-00433-0
  • Neelapu, N. R. R., Deepak, K. G. K., and Surekha, C. 2015. Transgenic plants for higher antioxidant contents and salt stress tolerance. In Managing Salt Tolerance in Plants: Molecular and Genomic Perspectives, Wani, S. H. and Hussain, M. A., Eds. Boca Raton: CRC Press, pp 391–406.
  • Negrão, S., Schmöckel, S., and Tester, M. 2017. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119: 1–11.
  • Nelson, N. 1945. The N.D.R.C. infra‐red gas analyzer for the determination of rapidly changing CO2 concentrations, A.M.R.L. Proj. No. T‐9, May 18.
  • Nounjan, N., Chansongkrow, P., Charoensawan, V., Siangliw, J. L., Toojinda, T., Chadchawan, S., and Theerakulpisut, P. 2018. High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: physiological and co-expression network analysis. Front. Plant Sci. 9: 1135.
  • Ochiai, K. and Matoh, T. 2001. Mechanism of salt tolerance in the grass species, Anneurolepidium chinense: I. Growth response to salinity and osmotic adjustment. Soil Sci. Plant Nutr. 47: 579–585. doi:https://doi.org/10.1080/00380768.2001.10408421
  • Oh, S.-J., Song, S. I., Kim, Y. S., Jang, H.-J., Kim, S. Y., Kim, M., Kim, Y.-K., Nahm, B. H., and Kim, J.-K. 2005. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138: 341–351.
  • Ota, K. T., Yasue, T., and Iwatsuka, M. 1956. Studies on the salt injury to crops. X. Res. Bull. Fac. Agric. 7: 15–20.
  • Oyiga, B. C., Sharma, R. C., Baum, M., Ogbonnaya, F. C., Léon, J., and Ballvora, A. 2018. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ. 41: 919–935.
  • Oyiga, B. C., Sharma, R., Shen, J., Baum, M., Ogbonnaya, F., Léon, J., and Ballvora, A. 2016. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J. Agro. Crop Sci. 202: 472–485. doi:https://doi.org/10.1111/jac.12178
  • Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., Sato, H., Sato, H., Hori, M., Nakamura, Y., and Tanaka, T. 2002. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32: 650–654.
  • Pareek, A., Singla, S., and Grover, A. 1997. Salt responsive proteins/genes in crop plants. In Strategies for Improving Salt Tolerance in Higher Plants, Jaiwal, P., Singh, R., and Gulati, A., Eds. Oxford and IBH Publication Co.: New Delhi, pp 365–391.
  • Patel, N. T., Gupta, A., and Pandey, A. N. 2010. Salinity tolerance of Avicennia marina (Forssk.) Vierh. from Gujarat coasts of India. Aquat. Bot. 93: 9–16. doi:https://doi.org/10.1016/j.aquabot.2010.02.002
  • Peters, R., Lovelock, C., López-Portillo, J., Bathmann, J., Wimmler, M.-C., Jiang, J., Walther, M., and Berger, U. 2021. Partial canopy loss of mangrove trees: mitigating water scarcity by physical adaptation and feedback on porewater salinity. Estuar. Coast. Shelf Sci. 248: 106797. doi:https://doi.org/10.1016/j.ecss.2020.106797
  • Petrusa, L. M. and Winicov, I. 1997. Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol. Biochem. 35: 303–310.
  • Pettigrew, W. T. and Meredith, W. R. 1994. Leaf gas exchange parameters vary among cotton genotypes. Crop Sci. 34: 700–705. doi:https://doi.org/10.2135/cropsci1994.0011183X003400030019x
  • Pill, W. G. 1991. Advances in fluid drilling. Horttech. 1: 59–65. doi:https://doi.org/10.21273/HORTTECH.1.1.59
  • Pirasteh-Anosheh, H., Ranjbar, G., Pakniyat, H., and Emam, Y. 2016. Physiological mechanisms of salt stress tolerance in plants: an overview. In Plant-Environment Interaction: Responses and Approaches to Mitigate Stress, Azooz, M. and Ahmad, P., Eds. John Wiley & Sons: Chichester, pp 141–160.
  • Porcelli, C. A., Boem, F. H. G., and Lavado, R. S. 1995. The K/Na and Ca/Na ratios and rapeseed yield, under soil salinity or sodicity. Plant Soil 175: 251–255. doi:https://doi.org/10.1007/BF00011361
  • Preston, A. L. 2017. Developing diversity arrays technology genetic markers to detect herbicide resistance in annual ryegrass (Lolium rigidum Gaud.). Doctoral thesis, Charles Sturt University, Australia.
  • Pritchard, J., Jones, R. W., and Tomos, A. 1991. Turgor, growth and rheological gradients of wheat roots following osmotic stress. J. Exp. Bot. 42: 1043–1049. doi:https://doi.org/10.1093/jxb/42.8.1043
  • Pundir, P., Devi, A., Krishnamurthy, S., Sharma, P. C., and Vinaykumar, N. 2021. QTLs in salt rice variety CSR10 reveals salinity tolerance at reproductive stage. Acta Physiol. Plant. 43: 1–15. doi:https://doi.org/10.1007/s11738-020-03183-0
  • Quan, R., Wang, J., Hui, J., Bai, H., Lyu, X., Zhu, Y., Zhang, H., Zhang, Z., Li, S., and Huang, R. 2017. Improvement of salt tolerance using wild rice genes. Front. Plant Sci. 8: 2269.
  • Rahman, S., Haque, T., Rahman, M. S., and Seraj, Z. 2008. Salt tolerant BR11 and salt tolerant BR28 through marker assisted backcrossing (MAB). International Scientific Conference on “50 Years of Biochemistry in Bangladesh: Successes and Prospects”, Bangladesh. Bangladesh Society for Biochemistrsy and Molecular Biology.
  • Raman, R. 2017. The impact of genetically modified (GM) crops in modern agriculture: a review. GM Crops Food. 8: 195–208.
  • Rameeh, V., Cherati, A., and Abbaszadeh, F. 2012. Salinity effects on yield, yield components and nutrient ions in rapeseed genotypes. J. Agric. Sci. 57: 19–29. doi:https://doi.org/10.2298/JAS1201019R
  • Rana, M. M., Takamatsu, T., Baslam, M., Kaneko, K., Itoh, K., Harada, N., Sugiyama, T., Ohnishi, T., Kinoshita, T., Takagi, H., and Mitsui, T. 2019. Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding. IJMS 20: 2585. doi:https://doi.org/10.3390/ijms20102585
  • Rehman, S., Harris, P., and Bourne, W. 1998. Effects of presowing treatment with calcium salts, potassium salts, or water on germination and salt tolerance of Acacia seeds. J. Plant Nutr. 21: 277–285. doi:https://doi.org/10.1080/01904169809365402
  • Rhodes, D. and Hanson, A. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 357–384. doi:https://doi.org/10.1146/annurev.pp.44.060193.002041
  • Richards, R., Dennett, C., Qualset, C., Epstein, E., Norlyn, J., and Winslow, M. 1987. Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Field Crops Res. 15: 277–287. doi:https://doi.org/10.1016/0378-4290(87)90017-7
  • Robinson, S. P., Downton, W. J. S., and Millhouse, J. A. 1983. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol. 73: 238–242.
  • Rohila, J. S., Edwards, J. D., Tran, G. D., Jackson, A. K., and McClung, A. M. 2019. Identification of superior alleles for seedling stage salt tolerance in the USDA rice mini-core collection. Plants 8: 472. doi:https://doi.org/10.3390/plants8110472
  • Rosenqvist, E., and van Kooten, O. (2003). Chlorophyll fluorescence: A general description and nomenclature. In Practical Applications of Chlorophyll Fluorescence in Plant Biology, DeEll, J.R., Toivonen, P.M.A., Eds. Springer, Boston, MA. doi:https://doi.org/10.1007/978-1-4615-0415-3_2
  • Roy, S. and Chowdhury, N. 2020. Salt Stress in Plants and Amelioration Strategies: A Critical Review. IntechOpen, London.
  • Saibi, W., Brini, F., and Brini, F. 2020. Proline, A peculiar amino acid with astucious functions in development and salt tolerance process in plants. JFNM 3: 1–8. doi:https://doi.org/10.31487/j.JFNM.2020.02.04
  • Sakiyama, N. S., Ramos, H. C. C., Caixeta, E. T., and Pereira, M. G. 2014. Plant breeding with marker-assisted selection in Brazil. Crop Breed. Appl. Biotechnol. 14: 54–60. doi:https://doi.org/10.1590/S1984-70332014000100009
  • Sakamoto, A., and Murata, A. N. 1998. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Molecular Biology 38, 1011–1019.
  • Saneoka, H., Shiota, K., Kurban, H., Chaudhary, M. I., Premachandra, G. S., and Fujita, K. 1999. Effect of salinity on growth and solute accumulation in two wheat lines differing in salt tolerance. Soil Sci. Plant Nutr. 45: 873–880. doi:https://doi.org/10.1080/00380768.1999.10414336
  • Sanger, F. and Coulson, A. R. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94: 441–448. doi:https://doi.org/10.1016/0022-2836(75)90213-2
  • Santa-Cruz, A., Acosta, M., Rus, A., and Bolarin, M. C. 1999. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol. Biochem. 37: 65–71. doi:https://doi.org/10.1016/S0981-9428(99)80068-0
  • Sawahel, W. A. and Hassan, A. H. 2002. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol. Lett. 24: 721–725. doi:https://doi.org/10.1023/A:1015294319114
  • Schachtman, D. P. and Munns, R. 1992. Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Funct. Plant Biol. 19: 331–340. doi:https://doi.org/10.1071/PP9920331
  • Scholander, P. F., Bradstreet, E. D., Hemmingsen, E., and Hammel, H. 1965. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 148: 339–346.
  • Seemann, J. R. and Critchley, C. 1985. Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164: 151–162.
  • Setter, T. L., Waters, I., Stefanova, K., Munns, R., and Barrett-Lennard, E. G. 2016. Salt tolerance, date of flowering and rain affect the productivity of wheat and barley on rainfed saline land. Field Crops Res. 194: 31–42. doi:https://doi.org/10.1016/j.fcr.2016.04.034
  • Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R., and Zheng, B. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9: 285. doi:https://doi.org/10.3390/biom9070285
  • Shirazi, M. U., Ashraf, M. Y., Khan, M. A., and Naqvi, M. H. 2005. Potassium induced salinity tolerance in wheat (Triticum aestivum L.). Int. J. Environ. Sci. Technol. 2: 233–236. doi:https://doi.org/10.1007/BF03325881
  • Siegele, D. A. 2005. Universal stress proteins in Escherichia coli. J. Bacteriol. 187: 6253–6254.
  • Sikder, R. K., Wang, X., Zhang, H., Gui, H., Dong, Q., Jin, D., and Song, M. 2020. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum. Plants 9: 450. doi:https://doi.org/10.3390/plants9040450
  • Singh, A. K., Gopala Krishana, S., Singh, V. P., Prabhu, K. V., Mohapatra, T., Singh, N. K., Sharma, T. R., Nagarajan, M., Vinod, K. K., Singh, D., Singh, U. D., Chander, S., Atwal, S. S., Seth, R., Singh, V. K., Ellur, R. K., Singh, A., Anand, D., Khanna, A., Yadav, S., Goel, N., Singh, A., Shikari, A. B., Singh, A., and Marathi, B. 2011. Marker-assisted selection: a paradigm shift in Basmati breeding. Indian J. Genet. 71: 1–9.
  • Singh, N. K., Bracker, C. A., Hasegawa, P. M., Handa, A. K., Buckel, S., Hermodson, M. A., Pfankoch, E., Regnier, F. E., and Bressan, R. A. 1987. Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol. 85: 529–536.
  • Singh, R. K., Kota, S., and Flowers, T. J. 2021. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theor. Appl. Genet. 134: 3495–3533.
  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., and Savouré, A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115: 433–447.
  • Soda, N., Gupta, B. K., Anwar, K., Sharan, A., Singla-Pareek, S. L., and Pareek, A. 2018. Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Sci. Rep. 8: 1–13. doi:https://doi.org/10.1038/s41598-018-22131-0
  • Sofy, M. R., Elhawat, N., and Alshaal, T. 2020. Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicol. Environ. Saf. 200: 110732.
  • Sousa, M. C. and McKay, D. B. 2001. Structure of the universal stress protein of Haemophilus influenzae. Structure 9: 1135–1141. doi:https://doi.org/10.1016/S0969-2126(01)00680-3
  • Srivastava, J. and Jana, S. 1984. Screening wheat and barley germplasm for salt tolerance. In Salinity Tolerance in Plants, Staples, R. and Toenniessen, G., Eds. John Wiley and Sons: New York, NY, pp 273–283.
  • Stevens, H., Calvan, M., Lee, K., Siegel, B., and Siegel, S. 1978. Peroxidase activity as a screening parameter for salt stress in Brassica species. Phytochemistry 17: 1521–1522. doi:https://doi.org/10.1016/S0031-9422(00)94633-8
  • Strasser, B. J. 1997. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth. Res. 52: 147–155. doi:https://doi.org/10.1023/A:1005896029778
  • Strogonov, B. 1964. Physiological Basis of Salt Tolerance of Plants. Israel Program for Scientific Translations, Jerusalem.
  • Sun, H., Meng, M., Yan, Z., Lin, Z., Nie, X., and Yang, X. 2019. Genome-wide association mapping of stress-tolerance traits in cotton. Crop J. 7: 77–88. doi:https://doi.org/10.1016/j.cj.2018.11.002
  • Sun, J., Dai, S., Wang, R., Chen, S., Li, N., Zhou, X., Lu, C., Shen, X., Zheng, X., Hu, Z., Zhang, Z., Song, J., and Xu, Y. 2009. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol. 29: 1175–1186.
  • Surekha, C., Kumari, K. N., Aruna, L. V., Suneetha, G., Arundhati, A., and Kavi Kishor, P. B. 2014. Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tiss. Organ Cult. 116: 27–36. doi:https://doi.org/10.1007/s11240-013-0378-z
  • Takagi, H., Tamiru, M., Abe, A., Yoshida, K., Uemura, A., Yaegashi, H., Obara, T., Oikawa, K., Utsushi, H., Kanzaki, E., Mitsuoka, C., Natsume, S., Kosugi, S., Kanzaki, H., Matsumura, H., Urasaki, N., Kamoun, S., and Terauchi, R. 2015. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat. Biotechnol. 33: 445–449.
  • Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., and Meyre, D. 2019. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20: 467–484.
  • Tang, H., Niu, L., Wei, J., Chen, X., and Chen, Y. 2019. Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition. Front. Plant Sci. 10: 856. doi:https://doi.org/10.3389/fpls.2019.00856
  • Tang, Y., Wen, X., Lu, Q., Yang, Z., Cheng, Z., and Lu, C. 2007. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 143: 629–638.
  • Tattini, M., Montagni, G., and Traversi, M. L. 2002. Gas exchange, water relations and osmotic adjustment in Phillyrea latifolia grown at various salinity concentrations. Tree Physiol. 22: 403–412.
  • Tavakkoli, E., Rengasamy, P., and McDonald, G. K. 2010. High concentrations of Na+ and Cl− ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 61: 4449–4459.
  • Teakle, L. J. H. 1937. Saline soils of Western Australia and their utilization. J. Agric. Western Aust. 14: 313–324.
  • Teich, A. 1984. Heritability of grain yield, plant height and test weight of a population of winter wheat adapted to southwestern Ontario. Theor. Appl. Genet. 68: 21–23.
  • Termaat, A., Passioura, J. B., and Munns, R. 1985. Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley. Plant Physiol. 77: 869–872.
  • Tester, M. and Langridge, P. 2010. Breeding technologies to increase crop production in a changing world. Science 327: 818–822.
  • Thomas, J. C. and Bohnert, H. J. 1993. Salt stress perception and plant growth regulators in the halophyte Mesembryanthemum crystallinum. Plant Physiol. 103: 1299–1304.
  • Tondelli, A., Xu, X., Moragues, M., Sharma, R., Schnaithmann, F., Ingvardsen, C., Manninen, O., Comadran, J., Russell, J., Waugh, R., Schulman, A. H., Pillen, K., Rasmussen, S. K., Kilian, B., Cattivelli, L., Thomas, W. T. B., and Flavell, A. J. 2013. Structural and temporal variation in genetic diversity of European spring two‐row barley cultivars and association mapping of quantitative traits. Plant Genome 6(2): 1–14. doi:https://doi.org/10.3835/plantgenome2013.03.0007
  • Uddin, M. S., Jahan, N., Rahman, M. Z., and Hossain, K. M. W. 2017. Growth and yield response of wheat genotypes to salinity at different growth stages. Int. J. Agron. Agric. Res. 11: 60–67.
  • Ueda, A., Kanechi, M., Uno, Y., and Inagaki, N. 2003. Photosynthetic limitations of a halophyte sea aster (Aster tripolium L) under water stress and NaCl stress. J. Plant Res. 116, 63–68. doi:https://doi.org/10.1007/s10265-002-0070-6
  • US Salinity Laboratory Staff. 1954. Diagnosis and Improvement of Saline and Alkali Soils. US Department of Agriculture Handbook 60, Washington, DC. https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf.
  • Van den Berg, C. 1950. Inundations during 1944-1945 and their consequences for agriculture. 6. The reaction of field crops to the salt content of the soil. Verslagen Van Landbouwkundige Onderzoekingen 56: 87.
  • Wan, H., Chen, L., Guo, J., Li, Q., Wen, J., Yi, B., Ma, C., Tu, J., Fu, T., and Shen, J. 2017. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front. Plant Sci. 8: 593.
  • Wang, W. C., Lin, T. C., Kieber, J., and Tsai, Y. C. 2019. Response regulators 9 and 10 negatively regulate salinity tolerance in rice. Plant Cell Physiol. 60: 2549–2563.
  • Wang, Y., Wang, J., Zhao, X., Yang, S., Huang, L., Du, F., Li, Z., Zhao, X., Fu, B., and Wang, W. 2020a. Overexpression of the transcription factor gene OsSTAP1 increases salt tolerance in rice. Rice 13: 50.
  • Wang, Z., Hong, Y., Zhu, G., Li, Y., Niu, Q., Yao, J., Hua, K., Bai, J., Zhu, Y., Shi, H., Huang, S., and Zhu, J.-K. 2020b. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter. EMBO J. 39: e103256.
  • Wang, Z., Wang, F., Zhou, R., Wang, J., and Zhang, H. 2011. Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.). Euphytica 181: 405–413. doi:https://doi.org/10.1007/s10681-011-0469-z
  • Wassan, G. M., Khanzada, H., Zhou, Q., Mason, A. S., Keerio, A. A., Khanzada, S., Solangi, A. M., Faheem, M., Fu, D., and He, H. 2021. Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Mol. Genet. Genomics. 296: 391–408.
  • Watson, J. D. and Crick, F. H. 1953. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171: 737–738.
  • Weaver, W. 1970. Molecular biology: origin of the term. Science 170: 581–582. doi:https://doi.org/10.1126/science.170.3958.581.b
  • Welsh, J. and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213–7218.
  • Westgate, M. E. and Boyer, J. S. 1985. Carbohydrate reserves and reproductive development at low leaf water potentials in maize. Crop Sci. 25: 762–769. doi:https://doi.org/10.2135/cropsci1985.0011183X0025000500010x
  • Wieneke, J. and Läuchli, A. 1980. Effects of salt stress on distribution of Na+ and some other cations in two soybean varieties differing in salt tolerance. Z Pflanzenernaehr. Bodenk. 143: 55–67. doi:https://doi.org/10.1002/jpln.19801430108
  • Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.
  • Wood, W. E. 1924. Increase of salt in soil and streams following the destruction of the native vegetation. J. R. Soc. Western Aust. 10: 35–47.
  • Wu, C., Gao, X., Kong, X., Zhao, Y., and Zhang, H. 2009. Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila. Plant Mol. Biol. Rep. 27: 1–12. doi:https://doi.org/10.1007/s11105-008-0048-1
  • Wu, H., Guo, J., Wang, C., Li, K., Zhang, X., Yang, Z., Li, M., and Wang, B. 2019. An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Front. Plant Sci. 10: 530.
  • Wu, H., Shabala, L., Zhou, M., and Shabala, S. 2014. Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance. Plant Cell Physiol. 55: 1749–1762. doi:https://doi.org/10.1093/pcp/pcu105
  • Wu, X., Zhu, Z., Li, X., and Zha, D. 2012. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiol. Plant. 34: 2105–2114. doi:https://doi.org/10.1007/s11738-012-1010-2
  • Wyn Jones, R., Brady, C., Speirs, J. 1979. Ionic and osmotic relations in plant cells. In Recent Advances in Cereal Biochemistry, Laidman, D. and Wyn Jones, R., Eds. Academic Press: London; New York, NY, pp 63–103.
  • Wyn Jones, R. G. 1981.. Salt tolerance. In Physiology Processes Limiting Plant Productivity, Johnson, C., Ed. Butterworths: London, pp 271–292.
  • Wyn Jones, R. G., Gorham, J., and McDonnell, E. 1984. Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae. In Salinity Tolerance in Plants: Strategies of Crop Improvement, Staples, R. C. and Toenniessen, G. H., Eds. Wiley: New York, NY, pp 189–203.
  • Wyn Jones, R. G. and Lunt, O. R. 1967. The function of calcium in plants. Bot. Rev. 33: 407–426. doi:https://doi.org/10.1007/BF02858743
  • Xie, Y., Feng, Y., Chen, Q., Zhao, F., Zhou, S., Ding, Y., Song, X., Li, P., and Wang, B. 2019. Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.). Genes Genomics. 41: 1135–1145.
  • Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.-H.D., and Wu, R. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology 110, 249–257.
  • Xu, X., Eales, J. M., Akbarov, A., Guo, H., Becker, L., Talavera, D., Ashraf, F., Nawaz, J., Pramanik, S., Bowes, J., Jiang, X., Dormer, J., Denniff, M., Antczak, A., Szulinska, M., Wise, I., Prestes, P. R., Glyda, M., Bogdanski, P., Zukowska-Szczechowska, E., Berzuini, C., Woolf, A. S., Samani, N. J., Charchar, F. J., and Tomaszewski, M. 2018. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat. Commun. 9: 12. doi:https://doi.org/10.1038/s41467-018-07260-4
  • Xue, Z. Y., Zhi, D. Y., Xue, G. P., Zhang, H., Zhao, Y. X., and Xia, G. M. 2004. Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 167: 849–859. doi:https://doi.org/10.1016/j.plantsci.2004.05.034
  • Yamada, S., Takeoka, A., and Yamanouchi, M. 2002. 22Na+ and 36Cl− mobility in salinized excised leaves of several crop plants. Soil Sci. Plant Nutr. 48: 23–29. doi:https://doi.org/10.1080/00380768.2002.10409167
  • Yamaguchi, T. and Blumwald, E. 2005. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10: 615–620.
  • Yang, X. and Lu, C. 2005. Photosynthesis is improved by exogenous glycinebetaine in salt‐stressed maize plants. Physiol. Plant. 124: 343–352. doi:https://doi.org/10.1111/j.1399-3054.2005.00518.x
  • Yasir, M., He, S., Sun, G., Geng, X., Pan, Z., Gong, W., Jia, Y., and Du, X. 2019. A genome-wide association study revealed key SNPs/genes associated with salinity stress tolerance in upland cotton. Genes 10: 829. doi:https://doi.org/10.3390/genes10100829
  • Yeo, A. and Flowers, T. 1984. Mechanisms of salinity resistance in rice and their role as physiological criteria in plant breeding. In Salinity Tolerance in Plants: Strategies for Crop Improvement, Staples, R. and Toenniessen, G., Eds. Wiley: New York, NY.
  • Yeo, A. R. and Flowers, T. J. 1986. Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Funct. Plant Biol. 13: 161–173. doi:https://doi.org/10.1071/PP9860161
  • Yin, W., Xiao, Y., Niu, M., Meng, W., Li, L., Zhang, X., Liu, D., Zhang, G., Qian, Y., Sun, Z., Huang, R., Wang, S., Liu, C.-M., Chu, C., and Tong, H. 2020. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice. Plant Cell. 32: 2292–2306.
  • Yu, J., Zhao, W., Tong, W., He, Q., Yoon, M.-Y., Li, F.-P., Choi, B., Heo, E.-B., Kim, K.-W., and Park, Y.-J. 2018. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. IJMS 19: 3145. doi:https://doi.org/10.3390/ijms19103145
  • Yuan, J., Wang, X., Zhao, Y., Khan, N. U., Zhao, Z., Zhang, Y., Wen, X., Tang, F., Wang, F., and Li, Z. 2020. Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Sci. Rep. 10: 9. doi:https://doi.org/10.1038/s41598-020-66604-7
  • Yuan, Y., Xing, H., Zeng, W., Xu, J., Mao, L., Wang, L., Feng, W., Tao, J., Wang, H., Zhang, H., Wang, Q., Zhang, G., Song, X., and Sun, X.-Z. 2019. Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L. at the germination stage. BMC Plant Biol. 19: 1–19. doi:https://doi.org/10.1186/s12870-019-1989-2
  • Zhang, H.-X., and Blumwald, E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology 19, 765–768.
  • Zhang, H.-X., Hodson, J. N., Williams, J. P., and Blumwald, E. 2001. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences 98, 12832-12836.
  • Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., Tang, J., Yu, X., Liu, G., and Luo, L. 2019. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol. Breed. 39: 1–10. doi:https://doi.org/10.1007/s11032-019-0954-y
  • Zhang, Y., Fang, J., Wu, X., and Dong, L. 2018. Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biol. 18: 1–14. doi:https://doi.org/10.1186/s12870-018-1586-9
  • Zhu, B., Su, J., Chang, M., Verma, D. P. S., Fan, Y.-L., and Wu, R. 1998. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci. 139: 41–48. doi:https://doi.org/10.1016/S0168-9452(98)00175-7
  • Zulfiqar, F., Akram, N. A., and Ashraf, M. 2019. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251: 3. doi:https://doi.org/10.1007/s00425-019-03293-1
  • Zulfiqar, F., and Ashraf, M. 2021. Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. Plant Mol. Biol. 105: 11–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.