256
Views
3
CrossRef citations to date
0
Altmetric
Articles

Uncovering the Secrets of Secretory Fluids During the Reproductive Process in Ginkgo biloba

, , & ORCID Icon

References

  • Atkins, C. A., and Smith, P. M. 2007. Translocation in legumes: assimilates, nutrients, and signaling molecules. Plant Physiol. 144: 550–561.
  • Bender, R. L., Fekete, M. L., Klinkenberg, P. M., Hampton, M., Bauer, B., Malecha, M., Lindgren, K., Maki, J. A., Perera, M. A. D. N., Nikolau, B. J., and Carter, C. J. 2013. PIN6 is required for nectary auxin response and short stamen development. Plant J. 74: 893–904.
  • Bino, R. J., Dafni, A., and Meeuse, A. D. J. 1984. Entomophily in the dioecious gymnosperm Ephedra aphylla Fork. (= E. alte A. Mey), with some notes on E. campylopoda C. A. Mey. II. Pollination droplets, nectaries, and nectarial secretion in Ephedra. Verhandelingen der koninklijke nederlandse akademie van wetenschappen. Amsterdam. Series C. 87: 15–24.
  • Cai, Q., He, B., Weiberg, A., Buck, A. H., and Jin, H. L. 2019. Small RNAs and extracellular vesicles: new mechanisms of cross-species communication and innovative tools for disease control. PLOS Pathog. 15: e1008090.
  • Carafa, A. M., Carratu, G., and Pizzolongo, P. 1992. Anatomical observations on the nucellar apex of Wellwitschia mirabilis and the chemical composition of the micropylar drop. Sex. Plant Reprod. 5: 275–279.
  • Che, W. Q., Mao, D. Y., Zhang, T. T., Jiang, B., Lu, Z. G., and Wang, L. 2021. Phytohormone requirements for pollination drop secretion in Ginkgo biloba ovules. Botany. 99: 251–260.
  • Chen, L. Q. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 201: 1150–1155.
  • Chen, X., Ba, Y., Ma, L. J., Cai, X., Yin, Y., Wang, K. H., Guo, J. G., Zhang, Y. J., Chen, J. N., Guo, X., Li, Q. B., Li, X. Y., Wang, W. J., Zhang, Y., Wang, J., Jiang, X. Y., Xiang, Y., Xu, C., Zheng, P. P., Zhang, J. B., Li, R. Q., Zhang, H. J., Shang, X. B., Gong, T., Ning, G., Wang, J., Zen, K., Zhang, J. F., and Zhang, C. Y. 2008. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18: 997–1006.
  • Cheng, F. M., Zhao, B. B., Jiang, B., Lu, Y., Li, W. X., Jin, B., and Wang, L. 2018. Constituent analysis and proteomic evaluation of ovular secretions in Ginkgo biloba: not just a pollination medium. Plant Signal. Behav. 13: 1559–2324.
  • Chesnoy, L. 1993. Les sécrétions dans la pollinisation des gymnospermes. Acta Bot. Gallica. 140: 145–156.
  • Chichiricco, G., Spano, L., Torraca, G., and Tartarini, A. 2009. Hydration, sporoderm breaking and germination of Cupressus arizonica pollen. Plant Biol. 11: 359–368.
  • Choi, J. S., and Friedman, W. 1991. Development of the pollen tube of Zamia furfuracea and its evolutionary implications. Am. J. Bot. 78: 655–660.
  • Coulter, A., Poulis, B. A. D., and von-Aderkas, P. 2012. Pollination drops as dynamic apoplastic secretions. Flora. 207: 482–490.
  • D'Apice, G., Moschin, S., Araniti, F., Nigris, S., Di Marzo, M., Muto, A., Banfi, C., Bruno, L., Colombo, L., and Baldan, B. 2021. The role of pollination in controlling Ginkgo biloba ovule development. New Phytol. 232: 2353–2368.
  • Dalmay, T., Horsefield, R., Braunstein, T. H., and Baulcombe, D. C. 2001. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. Embo J. 20: 2069–2077.
  • Dorken, V. M., and Jagel, A. 2014. Orientation and withdrawal of pollination drops in Cupressaceae s. l. (Coniferales). Flora. 209: 34–44.
  • Eom, J. S., Chen, L. Q., Sosso, D., Julius, B. T., Lin, I. W., Qu, X. Q., Braun, D. M., and Frommer, F. B. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 25: 53–62.
  • Fahn, A. 2000. Structure and function of secretory cells. Adv. Bot. Res. 31: 37–75.
  • Fang, K. F., Wang, Y. N., Yu, T. Q., Zhang, L. Y., Baluška, F., Šamaj, J., and Lin, J. X. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl. and Picea wilsonii Mast. Flora Jena. 203: 332–340.
  • Ferguson, C., Teeri, T. T., Siika-Aho, M., Read, S. M., and Bacic, A. 1998. Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta. 206: 452–460.
  • Fernando, D. D., Lazzaro, M. D., and Owens, J. N. 2005. Growth and development of conifer pollen tubes. Sex. Plant Reprod. 18: 149–162.
  • Folter, S. D., Shchennikova, A. V., Franken, J., Busscher, M., Baskar, R., Grossniklaus, U., Angenent, G. C., and Immink, R. G. H. 2006. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J. 47: 934–946.
  • Friedman, W. E. 1987. Growth and development of the male gametophyte of Ginkgo biloba within the ovule (in vivo). Am. J. Bot 74: 1797–1815.
  • Gelbart, G., and von-Aderkas, P. 2002. Ovular secretions as part of pollination mechanisms in conifers. Ann. For. Sci. 59: 345–357.
  • Hao, H. Q., Li, Y. Q., Hu, Y. X., and Lin, J. X. 2005. Inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide. New Phytol. 165: 721–729.
  • Hao, L. H., Liu, J. J., Zhong, S., Gu, H. Y., and Qu, L. J. 2016. AtVPS41-mediated endocytic pathway is essential for pollen tube-stigma interaction in Arabidopsis. Proc. Natl. Acad. Sci. USA. 113: 6307–6312.
  • Happel, N., HöNing, S., Neuhaus, J. M., Paris, N., Robinson, D. G., and Holstein, S. H. E. 2004. Arabidopsis mu A-adaptin interacts with the tyrosine motif of the vacuolar sorting receptor VSR-PS1. Plant J. 37: 678–693.
  • Harrison, J., and Harrison, Y. 1987. An analysis of gamete and organelle movement in the pollen tube of Secale cereale L. Plant Sci. 51: 203–213.
  • Hater, F., Nakel, T., and Hardt, R. G. 2020. Reproductive multitasking: the female gametophyte. Annu Rev Plant Biol. 71: 517–546.
  • Heil, M. 2011. Nectar: generation, regulation and ecological functions. Trends Plant Sci. 16: 1360–1385.
  • Heil, M. 2015. Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annu. Rev. Entomol. 60: 213–232.
  • Heil, M. 2016. Nightshade wound secretion: the world's simplest extrafloral nectar? Trends Plant Sci. 21: 637–638.
  • Hu, S. Y. 2005. Reproductive Biology of Angiosperms. Beijing Higher Education Press, Beijing, pp 20–26.
  • Huang, Z. J. 2019. Molecular mechanisms of pollen tube growth and double fertilization in angiosperms. Biol. Teach. 44: 11.
  • Jackson, S., and Nicolson, S. W. 2002. Xylose as a nectar sugar: from biochemistry to ecology. Comp. Biochem. Phys. 131: 613–620.
  • Jiang, B. 2019. The composition and secretion regulation mechanisms of pollination drop in Ginkgo biloba L. Master thesis, Yangzhou University, Yangzhou, JS, China.
  • Jin, B., Jiang, X. X., Wang, D., Zhang, L., Wan, Y. L., and Wang, L. 2012a. The behavior of pollination drop secretion in Ginkgo biloba L. Plant Signal Behav. 7: 1168–1176.
  • Jin, B., Wang, D., Lu, Y., Zhang, M., and Wang, L. 2012b. Structure and function of the tentpole in the reproductive process of Ginkgo biloba L. Plant Signal Behav. 7: 1330–1336.
  • Jin, B., Zhang, L., Lu, Y., Wang, D., Jiang, X. X., Zhang, M., and Wang, L. 2012c. The mechanism of pollination drop withdrawal in Ginkgo biloba L. BMC Plant Biol. 12: 59.
  • Johri, B. M. 1992. Haustorial role of pollen tubes. Ann. Bot. 70: 471–475.
  • Kasahara, R. D., Portereiko, M. F., Sandaklie-Nikolova, L., Rabiger, D. S., and Drews, G. N. 2005. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell. 17: 2981–2992.
  • Kawano, T. 2003. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 21: 829–837.
  • Labandeira, C. C. 2010. The pollination of mid Mesozoic seed plants and the early history of long-proboscid insects. Ann. Mo. Bot. Gard. 97: 469–513.
  • Labandeira, C. C., Kvacek, J., and Mostovski, M. B. 2007. Pollination drops, pollen, and insect pollination in Mesozoic gymosperms. Taxon. 56: 663–695.
  • Lee, C. L. 1955. Fertilization in Ginkgo biloba. Bot. Gaz. 117: 97–100.
  • Li, D. H., Wu, D., Li, S. Z., Guo, N., Gao, J. S., Sun, X., and Cai, Y. P. 2019. Transcriptomic profiling identifies differentially expressed genes associated with programmed cell death of nucellar cells in Ginkgo biloba L. BMC Plant Biol. 19: 91.
  • Li, D. H., Yang, X., and Cui, K. M. 2007. Formation of archegonium chamber is associated with nucellar-cell programmed cell death in Ginkgo biloba. Protoplasma. 231: 173–181.
  • Li, D. H., Yang, X., Cui, K. M., and Li, Z. L. 2003. Morphological changes in nucellar cells undergoing programmed cell death (PCD) during pollen chamber formation in Ginkgo biloba. Acta Bot. Sin. 45: 53–63.
  • Li, D. H., Yang, X., Cui, X., Cui, K. M., and Li, Z. L. 2002. Early development of pollen chamber in Ginkgo biloba ovule. Acta Bot. Sin. 44: 757–763.
  • Li, W. X., Ye, Y. L., Cheng, F. M., Lu, Y., Jin, B., and Wang, L. 2020. Cytological and proteomic analysis of Ginkgo biloba pollen intine. Hortic. Plant J. 6: 257–266.
  • Lin, I. W., Sosso, D., Chen, L.-Q., Gase, K., Kim, S.-G., Kessler, D., Klinkenberg, P. M., Gorder, M. K., Hou, B.-H., Qu, X.-Q., Carter, C. J., Baldwin, I. T., and Frommer, W. B. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature. 508: 546–549.
  • Liu, G., Ren, G., Guirgis, A., and Thornburg, R. W. 2009. The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary. Plant Cell. 21: 2672–2687.
  • Liu, G. G., and Thornburg, R. W. 2012. Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. Plant J. 70: 377–388.
  • Liu, J. M., Zhang, H., and Li, Y. 2005. Cytoskeleton in pollen and pollen tubes of Ginkgo biloba L. J. Integrat. Plant Biol. 47: 952–958.
  • Lu, Y., Zhang, L., Cheng, F. M., Zhao, J. G., Cui, J. W., Li, W. X., Wang, L., and Jin, B. 2016. The morphology, ultrastructure, element distribution and motion behaviour in pollen of Ginkgo biloba L. Trees. 30: 2189–2201.
  • Lu, Z. G., Jiang, B., Zhao, B. B., Mao, X. Y., Lu, J. K., Jin, B., and Wang, L. 2020. Liquid profiling in plants: identification and analysis of extracellular metabolites and miRNAs in pollination drops of Ginkgo biloba. Tree Physiol. 40: 1420–1436.
  • Lyu, J. 2019. Ginkgo history told by genomes. Nat. Plants. 5: 1029.
  • Marton, M. L., Cordts, S., Broadhvest, J., and Dresselhaus, T. 2005. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science. 307: 573–576.
  • Marty, F. 1999. Plant vacuoles. Plant Cell. 11: 587–600.
  • Mcwilliam, J. R. 1958. The role of the micropyle in the pollination of pinus. Bot. Gaz. 120: 109–117.
  • Mlotshwa, S., Voinnet, O., Mette, M. F., Matzke, M., Vaucheret, H., Ding, S. W., Pruss, G., and Vance, V. B. 2002. RNA silencing and the mobile silencing signal. Plant Cell. 14: S289–S301.
  • Mugnaini, S., Nepi, M., Guarnieri, M., Piotto, B., and Pacini, E. 2007. Pollination drop in Juniperus communis: response to deposited material. Ann. Bot. 100: 1475–1481.
  • Nepi, M., Little, S., Guarnieri, M., Nocentini, D., Prior, N., Gill, J., Tomlinson, P. B., Ickert-Bond, S. M., Pirone, C., Pacini, E., and von-Aderkas, P. 2017. Phylogenetic and functional signals in gymnosperm ovular secretions. Ann. Bot. 120: 923–936.
  • Nicolson, S. W., and Thornburg, R. W. 2007. Nectar chemistry. In: Nicolson, S. W., Nepi, M., Pacini, E. (Eds). Springer, Dordrecht. Nectaries and Nectar (pp. 215–264).
  • O'Leary, S. J. B., Poulis, B. A. D., and von Aderkas, P. 2007. Identification of two thaumatin-like proteins (TLPs) in the pollination drop of hybrid yew that may play a role in pathogen defence during pollen collection. Tree Physiol. 27: 1649–1659.
  • O’Leary, S. J. B., and von-Aderkas, P. 2006. Postpollination drop production in hybrid larch is not related to the diurnal pattern of xylem water potential. Trees. 20: 61–66.
  • Okuda, S., Tsutsui, H., Shiina, K., Sprunck, S., Takeuchi, H., Yui, R., Kasahara, R. D., Hamamura, Y., Mizukami, A., Susaki, D., Kawano, N., Sakakibara, T., Namiki, S., Itoh, K., Otsuka, K., Matsuzaki, M., Nozaki, H., Kuroiwa, T., Nakano, A., Kanaoka, M. M., Dresselhaus, T., Sasaki, N., and Higashiyama, T. 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature. 458: 357–361.
  • Owens, J. N., and Morris, S. J. 1990. Cytological basis for cytoplasmic inheritance in Pseudotsuga menziesii. I. pollen tube and archegonial development. Am. J. Bot. 77: 433–445.
  • Owens, J. N., Takaso, T., and Runions, C. J. 1998. Pollination in conifers. Trends Plant Sci. 3: 1360–1385.
  • Pacini, E., Franchi, G. G., and Ripaccioli, M. 1999. Ripe pollen structure and histochemistry of some gymnosperms. Pl. Syst. Evol. 217: 81–99.
  • Paiva, E. A. S. 2016. How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann. Bot. 117: 53–540.
  • Paiva, E. A. S., Oliveira, D. M. T., and Machado, S. R. 2008. Anatomy and ontogeny of the pericarp of Pterodon emarginatus Vogel (Fabaceae, Faboideae), with emphasis on secretory ducts. An. Acad. Bras. Cienc. 80: 455–465.
  • Park, N. J., Zhou, H., Elashoff, D., Henson, B. S., Kastratovic, D. A., Abemayor, E., and Wong, D. T. 2009. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res. 15: 5473–5477.
  • Penalver, E., Arillo, A., Fuente, R. P. L., Riccio, M. L., Delclos, X., Barron, E., and Grimaldi, D. A. 2015. Long-proboscid flies as pollinators of cretaceous gymnosperms. Curr. Biol. 25: 1917–1923.
  • Pirone-Davies, C., Prior, N., von-Aderkas, P., Smith, D., Hardie, D., Friedman, W. E., and Mathews, S. 2016. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production. Ann. Bot. 117: 973–984.
  • Poulis, B. A. D., O’Leary, S. J. B., Haddow, J. D., and von-Aderkas, P. 2005. Identification of proteins present in the Douglas fir ovular secretion: an insight into conifer pollen selection and development. Int. J. Plant Sci. 166: 733–739.
  • Price, A., Wickner, W., and Ungermann, C. 2000. Proteins needed for vesicle budding from the golgi complex are also required for the docking step of homotypic vacuole fusion. J Cell Biol. 148: 1223–1229.
  • Prior, N., Little, S. A., Pirone, C., Gill, J. E., Smith, D., Han, J., Hardie, D., O'Leary, S. J. B., Wagner, R. E., Cross, T., Coulter, A., Borchers, C., Olafson, R. W., and Aderkas, P. v. 2013. Application of proteomics to the study of pollination drops. Appl. Plant Sci. 1: 1300008.
  • Punwani, J. A., Rabiger, D. S., and Drews, G. N. 2007. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. Plant Cell. 19: 2557–2568.
  • Punwani, J. A., Rabiger, D. S., Lloyd, A., and Drews, G. N. 2008. The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. Plant J. 55: 406–414.
  • Qu, L. J., Li, L., Lan, Z. J., and Dresselhaus, T. 2015. Peptide signalling during the pollen tube journey and double fertilization. J. Exp. Bot. 66: 5139–5150.
  • Radhika, V., Kost, C., Boland, W., and Heil, M. 2010. The role of jasmonates in floral nectar secretion. PLoS One. 5: e9265.
  • Reeves, P. H., Ellis, C. M., Ploense, S. E., Wu, M. F., Yadav, V., Tholl, D., Chetela, A., Haupt, I., Kennerley, B. J., Hodgens, C., Farmer, E. E., Nagpal, P., and Reed, J. W. 2012. A regulatory network for coordinated flower maturation. PLOS Genet. 8: e1002506.
  • Ruhlmann, J. M., Kram, B. W., & Carter, C. J. 2010. Cell wall invertase 4 is required for nectar production in Arabidopsis. J. Exp. Bot. 61: 395--404.
  • Safavian, D., Zayed, Y., Indriolo, E., Chapman, L., Ahmed, A., and Goring, D. R. 2015. RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol. 169: 2526–2538.
  • Shigehara, K., Yokomuro, S., Ishibashi, O., Mizuguchi, Y., Arima, Y., Kawahigashi, Y., Kanda, T., Akagi, I., Tajiri, T., Yoshida, H., Takizawa, T., and Uchida, E. 2011. Real-time PCR-Based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLOS One. 6: e23584.
  • Slavković, F., Dogimont, C., Morin, H., Boualem, A., and Bendahmane, A. 2021. The genetic control of nectary development. Trends Plant Sci. 26: 3.
  • Smaczniak, C., Immink, R. G. H., Angenent, G. C., and Kaufmann, K. 2012. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development. 139: 3081–3098.
  • Solhaug, E. M., Roy, R., Chatt, E. C., Klinkenberg, P. M., Mohd-Fadzil, N. A., Hampton, M., Nikolau, B. J., and Carter, C. J. 2019. An integrated transcriptomics and metabolomics analysis of the Cucurbita pepo nectary implicates key modules of primary metabolism involved in nectar synthesis and secretion. Plant Direct. 3: 1–13.
  • Stitz, M., Hartl, M., Baldwin, I. T., and Gaquerel, E. 2014. Jasmonoyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata). Plant Cell. 26: 3964–3983.
  • Takaso, T., Kimoto, Y., Owens, J. N., Kono, M., and Mimura, T. 2013. Secretions from the female gametophyte and their role in spermatozoid induction in Cycas revoluta. Plant Reprod. 26: 17–23.
  • Takaso, T., and Owens, J. N. 1996. Ovulate cone, pollination drop, and pollen capture in Sequoiadendron (Taxodiaceae). Am. J. Bot. 83: 1175–1180.
  • Takeuchi, H., Higashiyama, T., and Grossniklaus, U. 2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLOS Biol. 10: e1001449.
  • Tomlinson, P. B., Braggins, J. E., and Rattenbury, J. A. 1991. Pollination drop in relation to cone morphology in Podocarp paceae: a novel reproductive mechanism. Am. J. Bot. 78: 1289–1303.
  • Tu, C. X. 1984. Origin and distribution of Ginkgo biloba. B. Biol. 4: 15.
  • Updegraff, E. P., Zhao, F., and Preuss, D. 2009. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod. 22: 197–204.
  • Varkonyi-Gasic, E., Gould, N., Sandanayaka, M., Sutherland, P., and MacDiarmid, R. M. 2010. Characterisation of microRNAs from apple (Malus domestica ‘Royal Gala') vascular tissue and phloem sap. BMC Plant Biol. 10: 159.
  • von-Aderkas, P., Little, S., Nepi, M., Guarnieri, M., Antony, M., and Takaso, T. 2022. Composition of sexual fluids in Cycas revolute ovules during pollination and fertilization. Bot. Rev. 4: 87.
  • von-Aderkas, P., Nepi, M., Rise, M., Buffi, F., Guarnieri, M., Coulter, A., Gill, K., Lan, P., Rzemieniak, S., and Pacini, E. 2012. Post-pollination prefertilization drops affect germination rates of heterospecific pollen in larch and Douglas-fir. Sex Plant Reprod. 25: 215–225.
  • von-Aderkas, P., Prior, N. A., and Little, S. A. 2018. The evolution of sexual fluids in gymnosperms from pollination drops to nectar. Front Plant Sci. 9: 1844.
  • Wagner, R. E., Mugnaini, S., Sniezko, R., Hardie, D., Poulis, B., Nepi, M., Pacini, E., and von-Aderkas, P. 2007. Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sex. Plant Reprod. 20: 181–189.
  • Wang, B. J., Ji, C. J., and Hu, D. 2005. Cytological study of the development of male game to phytes of Ginkgo biloba. Acta Bot. Boreali-Occident. Sin. 25: 1350–1356.
  • Wang, D., and Wang, L. 2014. Structure and function of neck cells in archegoniate. Acta Bot. Boreali-Occident. Sin. 5: 1064–1074.
  • Wang, D., Lu, Y., Zhang, M., Lu, Z. G., Luo, K. G., Cheng, F. M., and Wang, L. 2014. Structure and function of the neck cell during fertilization in Ginkgo biloba L. Trees. 28: 995–1005.
  • Wang, F. X., and Chen, Z. K. 1983. A contribution to the embryology of Ginkgo with a discussion on the affinity of the Ginkgoales. Chin. B. Bot. 25: 199–207.
  • Wang, L., Cui, J. W., Jin, B., Zhao, J. G., Xu, H. M., Lu, Z. G., Li, W. X., Li, X. X., Li, L. L., Liang, E. Y., Rao, X. L., Wang, S. F., Fu, C. X., Cao, F. L., Dixon, R. A., and Lin, J. X. 2019. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. P. Natl. Acad. Sci. 117: 201916548.
  • Wang, X. H., Hao, H. Q., Wang, Q. L., Zheng, M. Z., and Lin, J. X. 2007. Structure of the pollen tube and the mechanism of tip growth. Chin. B. Bot. 24: 340–354.
  • Wang, X. H., Teng, Y., Wang, Q. L., Li, X., Sheng, X. Y., Zheng, M. Z., Samaj, J., Baluska, F., and Lin, J. X. 2006. Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol. 141: 1591–1603.
  • Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., Huang, K. H., Lee, M. J., Galas, D. J., and Wang, K. 2010. The microRNA spectrum in 12 body fluids. Clin. Chem. 56: 1733–1741.
  • Wiesen, L. B., Bender, R. C., Paradis, T., Larson, A., Perera, M. A. D. N., Nikolau, B. J., Olszewski, N. E., and Carter, C. J. 2016. A role for gibberellin 2-oxidase6 and gibberellins in regulating nectar production. Mol. Plant. 9: 753–756.
  • Yoo, B. C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y. M., Lough, T. J., and Lucas, W. J. 2004. A systemic small RNA signaling system in Plants. Plant Cell. 16: 1979–2000.
  • Zarsky, V., Kulich, I., Fendrych, M., and Pecenkova, T. 2013. Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16: 726–733.
  • Zhang, Z. M. 1997. Current status on male gametophyte and fertilization in Ginkgo biloba. Chin. B. Bot. 25: 1350–1356.
  • Zhang, Z. M., Cui, K. M., and Li, Z. L. 2000. Morphology and lateral germination of pollen in Ginkgo biloba and their implications in evolution. J. Syst. Evol. 38: 141–147.
  • Zheng, M., Wang, Q., Teng, Y., Wang, X., Wang, F., Chen, T., Šamaj, J., Lin, J., and Logan, D. C. 2010. The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. Planta. 231: 779–791.
  • Zhong, S., Liu, M. L., Wang, Z. J., Huang, Q. P., Hou, S. Y., Xu, Y. C., Ge, Z. X., Song, Z. H., Huang, J. Y., Qiu, X. Y., Shi, Y. H., Xiao, J. Y., Liu, P., Guo, Y. L., Dong, J., Dresselhaus, T., Gu, H. Y., and Qu, L. J. 2019. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Plant Sci. 307: 573–576.
  • Zhong, S., and Qu, L. J. 2019. Peptide/receptor-like kinase-mediated signaling involved in male-female interactions. Curr Opin Plant Biol. 51: 7–14.
  • Zhou, Q., Li, M. Z., Wang, X. Y., Li, Q. Z., Wang, T., Zhu, Q., Zhou, X. C., Wang, X., Gao, X. L., and Li, X. W. 2012. Immune-related microRNAs are abundant in breast milk exosomes. Int. J. Biol. Sci. 8: 118–123.
  • Zhou, Y. L., Qin, Y., and Ma, L. X. 1996. Studies on microspore karyotype and male gametophyte development in Ginkgo biloba L. Chin. B. Bot. 13: 48–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.