426
Views
1
CrossRef citations to date
0
Altmetric
Articles

Photosynthesis in Carnivorous Plants: From Genes to Gas Exchange of Green Hunters

ORCID Icon

References

  • Adamec, L. 1997. Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. Aquat. Bot. 59:297–306.
  • Adamec, L. 2002. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytol. 155:89–100.
  • Adamec, L. 2006. Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species. Plant Biol. 8:765–769.
  • Adamec, L. 2008. The influence of prey capture on photosynthetic rate in two aquatic carnivorous plant species. Aquat. Bot. 89:66–70.
  • Adamec, L. 2009. Photosynthetic CO2 affinity of the aquatic carnivorous plant Utricularia australis (Lentibulariaceae) and its investment in carnivory. Ecol. Res. 24:327–333.
  • Adamec, L. 2010. Dark respiration of leaves and traps of terrestrial carnivorous plants: are there greater energetic costs in traps? Cent. Eur. J. Biol. 5:121–124.
  • Adamec, L., Matušíková, I., and Pavlovič, A. 2021. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. Ann. Bot. 128:241–259.
  • Aldenius, J., Carlsson, B., and Karlsson, S. 1983. Effects of insect trapping on growth and nutrient content of Pinguicula vulgaris L. in relation to the nutrient content of the substrate. New Phytol. 93:53–59.
  • Attaran, E., Major, I. T., Cruz, J. A., Rosa, B. A., Koo, A. J., Chen, J., Kramer, D. M., He, S. Y., and Howe, G. A. 2014. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol. 165:1302–1314.
  • Baby, S., Johnson, A. J., Zachariah, E. J., and Hussain, A. A. 2017. Nepenthes pitchers are CO2-enriched cavities, emit CO2 to attract preys. Sci. Rep. 7:11281.
  • Bulychev, A. A. and Kamzolkina, N. A. 2006a. Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells. Bioelectrochemistry 69:209–215.
  • Bulychev, A. A. and Kamzolkina, N. A. 2006b. Effect of action potential on photosynthesis and spatially distributed H+ fluxes in cells and chloroplasts of Chara corallina. Russ. J. Plant Physiol. 53:1–9.
  • Capó-Bauçà, S., Font-Carrascosa, M., Ribas-Carbó, M., Pavlovič, A., and Galmés, J. 2020. Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes × ventrata. Ann. Bot. 126:25–37.
  • Carretero-Paulet, L., Chang, T.-H., Librado, P., Ibarra-Laclette, E., Herrera-Estrella, L., Rozas, J., and Albert, V. A. 2015. Genome-wide analysis of adaptive molecular evolution in the carnivorous plant Utricularia gibba. Genome Biol. Evol. 7:444–456.
  • Chandler, G. E. and Anderson, J. W. 1976. Studies on the nutrition and growth of Drosera species with reference to the carnivorous habit. New Phytol. 76:129–141.
  • Dančák, M., Majeský, Ľ., Čermák, V., Golos, M. R., Płachno, B. J., and Tjiasmanto, W. 2022. First record of functional underground traps in a pitcher plant: Nepenthes pudica (Nepenthaceae), a new species from North Kalimantan, Borneo. Phytokeys. 201:77–97.
  • Darwin, C. 1875. Insectivorous Plants. London: John Murray.
  • Dávila-Lara, A., Reichelt, M., Wang, D., Vogel, H., Mithöfer, A. 2021. Proof of anthocyanins in the carnivorous plant genus Nepenthes. FEBS Open Bio 11:2576–2585.
  • Dkhar, J., Bhaskar, Y. K., Lynn, A., and Pareek, A. 2020. Pitchers of Nepenthes khasiana express several digestive-enzyme encoding genes, harbor mostly fungi and probably evolved through changes in the expression of leaf polarity genes. BMC Plant Biol. 20:e524.
  • Drescher, A., Ruf, S., Calsa, T., Jr, Carrer, H., and Bock, R. 2000. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 22:97–104.
  • Ellison, A. M. 2006. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol. 8:740–747.
  • Ellison, A. M. and Farnsworth, E. J. 2005. The cost of carnivory for Darlingtonia californica (Sarraceniaceae): Evidence from relationships among leaf traits. Am. J. Bot. 92:1085–1093.
  • Ellison, A. M. and Gotelli, N. J. 2001. Evolutionary ecology of carnivorous plants. Trends Ecol. Evol. 16:623–629.
  • Ellison, A. M., and Gotelli, N. J. 2002. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea. Proc. Natl. Acad. Sci. USA. 99:4409–4412.
  • Ellison, A. M. and Gotelli, N. J. 2009. Energetics and the evolution of carnivorous plants – Darwin’s ‘most wonderful plants in the world.' J. Exp. Bot. 60:19–42.
  • Ettinger, W. F., Clear, A. M., Fanning, K. J., and Peck, M. L. 1999. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiol. 119:1379–1386.
  • Farmer, E. E., Gao, Y.-Q., Lenzoni, G., Wolfender, J.-L., and Wu, Q. 2020. Wound- and mechanostimulated electrical signals control hormone responses. New Phytol. 227:1037–1050.
  • Farnsworth, E. J. and Ellison, A. M. 2008. Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. J. Ecol. 96:213–221.
  • Fasbender, L., Maurer, D., Kreuzwieser, J., Kreuzer, I., Schulze, W. X., Kruse, J., Becker, D., Alfarraj, S., Hedrich, R., Werner, C., and Rennenberg, H. 2017. The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration. New Phytol. 214:597–606.
  • Fleischmann, A., Schlauer, J., Smith, S. A., and Givnish, T. J. 2018. Evolution of carnivory in angiosperms. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A. M. and Adamec, L., Eds. New York, USA: Oxford University press, pp 22–41.
  • Fukushima, K., Fang, X., Alvarez-Ponce, D., Cai, H., Carretero-Paulet, L., Chen, C., Chang, T.-H., Farr, K. M., Fujita, T., Hiwatashi, Y., Hoshi, Y., Imai, T., Kasahara, M., Librado, P., Mao, L., Mori, H., Nishiyama, T., Nozawa, M., Pálfalvi, G., Pollard, S. T., Rozas, J., Sánchez-Gracia, A., Sankoff, D., Shibata, T. F., Shigenobu, S., Sumikawa, N., Uzawa, T., Xie, M., Zheng, C., Pollock, D. D., Albert, V. A., Li, S., and Hasebe, M. 2017. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol. 1:e0059.
  • Fukushima, K., Narukawa, H., Palfalvi, G., and Hasebe, M. 2021. A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant Cephalotus follicularis. Proc. Biol. Sci. 288:20202568.
  • Gabruk, M., and Mysliwa-Kurdziel, B. 2015. Light-dependent protochlorophyllide oxidoreductase: phylogeny, regulation, and catalytic properties. Biochemistry. 54:5255–5262.
  • Galmés, J., Kapralov, M. V., Andralojc, P. J., Conesa, M. A., Keys, A. J., Parry, M. A. J., and Flexas, J. 2014. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant. Cell Environ. 37:1989–2001.
  • Gao, P., Loeffler, T. S., Honsel, A., Kruse, J., Krol, E., Scherzer, S., Kreuzer, I., Bemm, F., Buegger, F., Burzlaff, T., Hedrich, R., and Rennenberg, H. 2015. Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula. New Phytol. 205:1320–1329.
  • Givnish, T. J., Burkhardt, E. L., Happel, R. E., and Weintraub, J. D. 1984. Carnivory in the bromeliad Brocchinia reducta with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient poor habitats. Am. Nat. 124:479–497.
  • Givnish, T. J. and Shiba, Z. W. 2022. Leaf NPK stoichiometry, δ15N, and apparent nutrient limitation of co-occurring carnivorous vs. noncarnivorous plants. Ecology in press. doi: 10.1002/ecy.3825.
  • Givnish, T. J., Sparks, K. W., Hunter, S. J., and Pavlovič, A. 2018. Why are plants carnivorous? Cost/benefit analysis, whole-plant growth, and the context-specific advantages of botanical carnivory. In Carnivorous Plants: Physiology, Ecology, and Evolution; Ellison, A. M. and Adamec, L., Eds. Oxford: Oxford University Press, pp 232–255.
  • Graham, S. W., Lam, V. K. Y., and Merckx, V. S. F. T. 2017. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytol. 214:48–55.
  • Grams, T. E. E., Lautner, S., Felle, H. H., Matyssek, R., and Fromm, J. 2009. Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant. Cell Environ. 32:319–326.
  • Green, S. 1967. Notes on the distribution of Nepenthes species in Singapore. Gard. Bull. 22:53–65.
  • Greilhuber, J., Borsch, T., Müller, K., Worberg, A., Porembski, S., and Barthlott, W. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol. 8:770–777.
  • Gruzdev, E. V., Kadnikov, V. V., Beletsky, A. V., Kochieva, E. Z., Mardanov, A. V., Skryabin, K. G., and Ravin, N. V. 2019. Plastid genomes of carnivorous plants Drosera rotundifolia and Nepenthes × ventrata reveal evolutionary patterns resembling those observed in parasitic plants. Int. J. Mol. Sci. 20:e4107.
  • Gruzdev, E. V., Mardanov, A. V., Beletsky, A. V., Ravin, N. V., and Skryabin, K. G. 2018. The complete mitochondrial genome of the carnivorous flowering plant Nepenthes x Ventrata. Mitochondrial DNA. B Resour. 3:1259–1260.
  • Hájek, T., and Adamec, L. 2010. Photosynthesis and dark respiration of leaves of terrestrial carnivorous plants. Biologia. 65:69–74.
  • He, J., and Zain, A. 2012. Photosynthesis and nitrogen metabolism of Nepenthes alata in response to inorganic NO3– and organic prey N in the greenhouse. ISRN Bot. 2012:1–8.
  • Hertig, C. M., and Wolosiuk, R. A. 1983. Studies on the hysteretic properties of chloroplast fructuse-1,6-bisphospatase. J. Biol. Chem. 258:984–989.
  • Ibarra-Laclette, E., Albert, V. A., Pérez-Torres, C. A., Zamudio-Hernández, F., Ortega-Estrada, M. J., Herrera-Estrella, A., and Herrera-Estrella, L. 2011. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome. BMC Plant Biol. 11: 101.
  • Ibarra-Laclette, E., Lyons, E., Hernández-Guzmán, G., Pérez-Torres, C. A., Carretero-Paulet, L., Chang, T.-H., Lan, T., Welch, A. J., Juárez, M. J. A., Simpson, J., Fernández-Cortés, A., Arteaga-Vázquez, M., Góngora-Castillo, E., Acevedo-Hernández, G., Schuster, S. C., Himmelbauer, H., Minoche, A. E., Xu, S., Lynch, M., Oropeza-Aburto, A., Cervantes-Pérez, S. A., de Jesús Ortega-Estrada, M., Cervantes-Luevano, J. I., Michael, T. P., Mockler, T., Bryant, D., Herrera-Estrella, A., Albert, V. A., and Herrera-Estrella, L. 2013. Architecture and evolution of a minute plant genome. Nature. 498:94–98.
  • Jobson, R. W., Nielsen, R., Laakkonen, L., Wikström, M., and Albert, V. A. 2004. Adaptive evolution of cytochrome c oxidase: infrastructure for a carnivorous plant radiation. Proc. Natl. Acad. Sci. USA. 101:18064–18068.
  • Kaiser, H., and Grams, T. E. E. 2006. Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica. J. Exp. Bot. 57:2087–2092.
  • Karlsson, P. S., and Pate, J. S. 1992. Contrasting effect of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorous economy of pygmy species of Drosera. Oecologia. 92:8–13.
  • Karlsson, P. S., Svensson, B. M., and Carlsson, B. Å. 1996. The significance of carnivory for three Pinguicula species in a subarctic environment. Ecol. Bull. 45:115–120.
  • Knight, S. E. 1992. Costs of carnivory in the common bladderwort, Utricularia macrorhiza. Oecologia. 89:348–355.
  • Kocáb, O., Jakšová, J., Novák, O., Petřík, I., Lenobel, R., Chamrád, I., and Pavlovič, A. 2020. Jasmonate-independent regulation of digestive enzyme activity in the carnivorous butterwort Pinguicula × Tina. J. Exp. Bot. 71:3749–3758.
  • Kode, V., Mudd, E. A., Iamtham, S., and Day, A. 2005. The tobacco plastid accD gene is essential and is required for leaf development. Plant J. 44:237–244.
  • Kouřil, R., Strouhal, O., Nosek, L., Lenobel, R., Chamrád, I., Boekema, E. J., Šebela, M., and Ilík, P. 2014. Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J. 77:568–576.
  • Koziolek, C., Grams, T. E. E., Schreiber, U., Matyssek, R., and Fromm, J. 2004. Transient knockout of photosynthesis mediated by electrical signals. New Phytol. 161:715–722.
  • Kreimer, G., Melkonian, M., Holtum, J. A. M., and Latzko, E. 1988. Stromal free calcium concentration and light-mediated activation of chloroplast fructose-1,6-bisphosphatase. Plant Physiol. 86:423–428.
  • Krishnan, N. M., and Panda, B. 2022. Photosystem genes in chloroplast and their interacting partners: A case for molecular adaptation to carnivory in Nepenthaceae. BioRxiv. doi: 10.1101/2022.05.24.493228.
  • Kruse, J., Gao, P., Honsel, A., Kreuzwieser, J., Burzlaff, T., Alfarraj, S., Hedrich, R., and Rennenberg, H. 2014. Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula. Oecologia. 174:839–851.
  • Kruse, J., Gao, P., Honsel, A., Kreuzwieser, J., Burzlaff, T., Alfarraj, S., Hedrich, R., and Rennenberg, H. 2014. Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula. Oecologia. 174:839–851.
  • Kuroda, H. and Maliga, P. 2003. The plastid clpP1 protease gene is essential for plant development. Nature. 425:86–89.
  • Laakkonen, L., Jobson, R. W., and Albert, V. A. 2006. A new model for the evolution of carnivory in the bladderwort plant (Utricularia): Adaptive changes in cytochrome c oxidase (COX) provide respiratory power. Plant Biol. 8:758–764.
  • Lautner, S., Grams, T. E. E., Matyssek, R., and Fromm, J. 2005. Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol. 138:2200–2209.
  • Li, M.-H., Liu, K.-W., Li, Z., Lu, H.-C., Ye, Q.-L., Zhang, D., Wang, J.-Y., Li, Y.-F., Zhong, Z.-M., Liu, X., Yu, X., Liu, D.-K., Tu, X.-D., Liu, B., Hao, Y., Liao, X.-Y., Jiang, Y.-T., Sun, W.-H., Chen, J., Chen, Y.-Q., Ai, Y., Zhai, J.-W., Wu, S.-S., Zhou, Z., Hsiao, Y.-Y., Wu, W.-L., Chen, Y.-Y., Lin, Y.-F., Hsu, J.-L., Li, C.-Y., Wang, Z.-W., Zhao, X., Zhong, W.-Y., Ma, X.-K., Ma, L., Huang, J., Chen, G.-Z., Huang, M.-Z., Huang, L., Peng, D.-H., Luo, Y.-B., Zou, S.-Q., Chen, S.-P., Lan, S., Tsai, W.-C., Van de Peer, Y., and Liu, Z.-J. 2022. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nat. Plants. 8:373–388.
  • Libiaková, M., Floková, K., Novák, O., Slováková, Ľ., and Pavlovič, A. 2014. Abundance of cysteine endopeptidase Dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates. PLOS One. 9:e104424.
  • Lin, Q., Ané, C., Givnish, T. J., and Graham, S. W. 2021. A new carnivorous plant lineage (Triantha) with a unique sticky-influorescence trap. Proc. Natl. Acad. Sci. USA. 118:e2022724118.
  • Maberly, S. C., and Gontero, B. 2018. Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environment. In The Leaf: A Platform for Performing Photosynthesis; Adams, W.W. III and Terashima, I., Eds. Berlin: Springer, pp 307–344.
  • Matos, R. G., Silva, S. R., Płachno, B. J., Adamec, L., Michael, T. P., Varani, A. M., and Miranda, V.F.O. 2022. The complete mitochondrial genome of carnivorous Genlisea tuberosa (Lentibulariaceae): Structure and evolutionary aspects. Gene. 824:146391.
  • Matušíková, I., Pavlovič, A., and Renner, T. 2018. Biochemistry of prey digestion and nutrient absorption. In Carnivorous Plants: physiology, Ecology, and Evolution; Ellison, A. M. and Adamec, L., Eds. New York, USA: Oxford University Press, pp 207–220.
  • Maurer, D., Weber, D., Ballering, E., Alfarraj, S., Albasher, G., Hedrich, R., Werner, C., and Rennenberg, H. 2020. Photosynthetic cyclic electron transport provides ATP for homeostasis during trap closure in Dionaea muscipula. Ann. Bot. 125:485–494.
  • Méndez, M., and Karlsson, P. S. 1999. Costs and benefits of carnivory in plants: insights from the photosynthetic performance of four carnivorous plants in a subarctic environment. Oikos. 86:105–112.
  • Moeller, R. E. 1978. Carbon uptake by the submerged hydrophyte Utricularia purpurea. Aquat. Bot. 5:209–216.
  • Moldowan, P.D., Smith, M.A., Baldwin, T., Bartley, T., Rollinson, N., and Wynen, H. 2019. Nature’s pitfall trap: salamanders as rich prey for carnivorous plants in a nutrient-poor northern bog ecosystem. Ecology. 100:e02770.
  • Morales, F., Pavlovič, A., Abadía, A., and Abadía, J. 2018. Photosynthesis in poor nutrient soils, in compacted soils, and under drought. In The Leaf: A Platform for Performing Photosynthesis; Adams, W. W. III and Terashima, I., Eds. Berlin: Springer, p 371–399.
  • Moran, J. A., Merbach, M. A., Livingston, N. J., Clarke, C. M., and Booth, W. E. 2001. Termite prey specialization in the pitcher plant Nepenthes albomarginata – evidence from stable isotope analysis. Ann. Bot. 88:307–311.
  • Nabity, P. D., Zavala, J. A., and DeLucia, E. H. 2013. Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotiana attenuata. J. Exp. Bot. 64:685–694.
  • Nevill, P. G., Howell, K. A., Cross, A. T., Williams, A. V., Zhong, X., Tonti-Filippini, J., Boykin, L. M., Dixon, K. W., and Small, I. 2019. Plastome-wide rearrangements and gene losses in carnivorous Droseraceae. Genome Biol. Evol. 11:472–485.
  • Nishi, A. H., Vasconcellos-Neto, J., and Romero, G. Q. 2013. The role of multiple partners in a digestive mutualism with a protocarnivorous plant. Ann. Bot. 111:143–150.
  • Olsen, J. L., Rouzé, P., Verhelst, B., Lin, Y.-C., Bayer, T., Collen, J., Dattolo, E., De Paoli, E., Dittami, S., Maumus, F., Michel, G., Kersting, A., Lauritano, C., Lohaus, R., Töpel, M., Tonon, T., Vanneste, K., Amirebrahimi, M., Brakel, J., Boström, C., Chovatia, M., Grimwood, J., Jenkins, J. W., Jueterbock, A., Mraz, A., Stam, W. T., Tice, H., Bornberg-Bauer, E., Green, P. J., Pearson, G. A., Procaccini, G., Duarte, C. M., Schmutz, J., Reusch, T. B. H., and Van de Peer, Y. 2016. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature. 530:331–335.
  • Pavlovič, A. 2010. Spatio-temporal changes of photosynthesis in carnivorous plants in response to prey capture, retention and digestion. Plant Signal. Behav. 5:1325–1329.
  • Pavlovič, A. 2011. Photosynthetic characterization of Australian pitcher plant Cephalotus follicularis. Photosynthetica. 49:253–258.
  • Pavlovič, A. 2012. The effect of electrical signals on photosynthesis and respiration. In Plant Electrophysiology: Signalling and Responses; Volkov, A. G., Ed. Berlin, Heidelberg Springer, pp 33–62.
  • Pavlovič, A., Demko, V., and Hudák, J. 2010. Trap closure and prey retention in Venus flytrap (Dionaea muscipula Ellis.) temporarily reduces photosynthesis and stimulates respiration. Ann. Bot. 105:37–44.
  • Pavlovič, A., Jakšová, J., and Novák, O. 2017. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytol. 216:927–938.
  • Pavlovič, A. and Kocáb, O. 2022. Alternative oxidase (AOX) in the carnivorous pitcher plants of the genus Nepenthes: What is it good for? Ann. Bot. 129:357–365.
  • Pavlovič, A., Krausko, M., and Adamec, L. 2016. A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps. Plant Physiol. Biochem. 104:11–16.
  • Pavlovič, A., Krausko, M., Libiaková, M., and Adamec, L. 2014. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis. Ann. Bot. 113:69–78.
  • Pavlovič, A., and Mancuso, S. 2011. Electrical signaling and photosynthesis: Can they co-exist together? Plant Signal. Behav. 6:840–842.
  • Pavlovič, A., Masarovičová, E., and Hudák, J. 2007. Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes. Ann. Bot. 100:527–536.
  • Pavlovič, A., and Mithöfer, A. 2019. Jasmonate signalling in carnivorous plants: Copycat of plant defence mechanisms. J. Exp. Bot. 70:3379–3389.
  • Pavlovič, A., and Saganová, M. 2015. A novel insight into the cost–benefit model for the evolution of botanical carnivory. Ann. Bot. 115:1075–1092.
  • Pavlovič, A., Singerová, L., Demko, V., and Hudák, J. 2009. Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis. Ann. Bot. 104:307–314.
  • Pavlovič, A., Singerová, L., Demko, V., Šantrůček, J., and Hudák, J. 2010. Root nutrient uptake enhances photosynthetic assimilation in prey-deprived carnivorous pitcher plant Nepenthes talangensis. Photosynthetica. 48:227–233.
  • Pavlovič, A., Slováková, L., Pandolfi, C., and Mancuso, S. 2011. On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis.). J. Exp. Bot. 62:1991–2000.
  • Pavlovič, A., Slováková, L., and Šantrůček, J. 2011. Nutritional benefit from leaf litter utilization in the pitcher plants Nepenthes ampullaria. Plant. Cell Environ. 34:1865–1873.
  • Pereira, C. G., Almenara, D. P., Winter, C. E., Fritsch, P. W., Lambers, H., and Oliveira, R. S. 2012. Underground leaves of Philcoxia trap and digest nematodes. Proc. Natl. Acad. Sci. USA. 109:1154–1158.
  • Płachno, B. J., Adamec, L., Świątek, P., Kapusta, M., and Miranda, V. F. O. 2020. Life in the current: Anatomy and morphology of Utricularia neottioides. Int. J. Mol. Sci. 21:4474.
  • Rischer, H., Hamm, A., and Bringmann, G. 2002. Nepenthes insignis uses a C2-portion of the carbon skeleton of L-alanine acquired via its carnivorous organs to build up the allelochemical plumbagin. Phytochemistry. 59:603–609.
  • Robins, R. J., and Juniper, B. E. 1980. The secretory cycle of Dionaea muscipula Ellis. I. The fine structure and the effect of stimulation on the fine structure of the digestive gland cells. New Phytol. 86:279–296.
  • Scherzer, S., Böhm, J., Huang, S., Iosip, A. L., Kreuzer, I., Becker, D., Heckmann, M., Al-Rasheid, K. A. S., Dreyer, I., and Hedrich, R. 2022. A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves. Curr. Biol. 32:1–9.
  • Schulze, W., Schulze, E. D., Pate, J. S., and Gillison, A. N. 1997. The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia california. Oecologia. 112:464–471.
  • Shchennikova, A. V., Beletsky, A. V., Filyushin, M. A., Slugina, M. A., Gruzdev, E. V., Mardanov, A. V., Kochieva, E. Z., and Ravin, N. V. 2021. Nepenthes × ventrata transcriptome profiling reveals a similarity between the evolutionary origins of carnivorous traps and floral organs. Front. Plant Sci. 12:643137.
  • Shikanai, T. 2016. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase. Biochim. Biophys. Acta. 1857:1015–1022.
  • Shtratnikova, V. Y., Schelkunov, M. I., Penin, A. A., and Logacheva, M. D. 2020. Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa, its structure, gene expression and RNA editing. PeerJ. 8:e9309.
  • Silva, S. R., Alvarenga, D. O., Aranguren, Y., Penha, H. A., Fernandes, C. C., Pinheiro, D. G., Oliveira, M. T., Michael, T. P., Miranda, V. F. O., and Varani, A. M. 2017. The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): Structure, comparative analysis and evolutionary landmarks. PLOS One. 12:e0180484.
  • Silva, S. R., Diaz, Y. C. A., Penha, H. A., Pinheiro, D. G., Fernandes, C. C., Miranda, V. F. O., Michael, T. P., and Varani, A. M. 2016. The chloroplast genome of Utricularia reniformis sheds light on the evolution of the ndh gene complex of terrestrial carnivorous plants from the Lentibulariaceae family. PLOS One. 11:e0165176.
  • Skippington, E., Barkman, T. J., Rice, D. W., and Palmer, J. D. 2015. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc. Natl. Acad. Sci. USA. 112:E3515–E3524.
  • Studnička, M. 1991. Interesting succulent features in the Pinguicula species from the Mexican evolutionary centre. Folia Geobot. Phytotax. 26:459–462.
  • Suda, H., Mano, H., Toyota, M., Fukushima, K., Mimura, T., Tsutsui, I., Hedrich, R., Tamada, Y., and Hasebe, M. 2020. Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nat. Plants. 6:1219–1224.
  • Sun, G., Xu, Y., Liu, H., Sun, T., Zhang, J., Hettenhausen, C., Shen, G., Qi, J., Qin, Y., Li, J., Wang, L., Chang, W., Guo, Z., Baldwin, I. T., and Wu, J. 2018. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat. Commun. 9:2683.
  • Thoren, L. M. and Karlsson, P. S. 1998. Effects of supplementary feeding on growth and reproduction of three carnivorous plant species in a subarctic environment. J. Ecol. 86:501–510.
  • Thorogood, C. J., Bauer, U., and Hiscock, S. J. 2018. Convergent and divergent evolution in carnivorous pitcher plant traps. New Phytol. 217:1035–1041.
  • Veleba, A., Šmarda, P., Zedek, F., Horová, L., Šmerda, J., and Bureš, P. 2017. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Ann. Bot. 119:409–416.
  • Veleba, A., Zedek, F., Horová, L., Veselý, P., Srba, M., Šmarda, P., and Bureš, P. 2020. Is the evolution of carnivory connected with genome size reduction? Am. J. Bot. 107:1253–1259.
  • Wakefield, A. E., Gotelli, N. J., Wittman, S. E., and Ellison, A. M. 2005. Prey addition alters nutrient stoichiometry of the carnivorous plant Sarracenia purpurea. Ecology. 86:1737–1743.
  • Wicke, S., Müller, K. F., de Pamphilis, C. W., Quandt, D., Wickett, N. J., Zhang, Y., Renner, S. S., and Schneeweiss, G. M. 2013. Mechanisms of functional and physical genome reduction in photosynthetic and non-photosynthetic parasitic plants of the broomrape family. Plant Cell. 25:3711–3725.
  • Wicke, S., Schäferhoff, B., dePamphilis, C. W., and Müller, K. F. 2014. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. Mol. Biol. Evol. 31:529–545.
  • Xiong, J., Minagawa, J., Crofts, A. and Govindjee. 1998. Loss of inhibition by formate in newly constructed photosystem II D1 mutants D1-R257E and D1-R257M, of Chlamydomonas reinhardtii. Biochim. Biophys. Acta. 1365:473–491.
  • Xu, C. H., Taoka, S., and Crofts, A. R. and Govindjee. 1991. Kinetic characteristics of formate formic acid binding at the plastoquinone reductase site in spinach thylakoids. Biochim. Biophys. Acta 1098:32–40.
  • Zervas, A., Petersen, G., and Seberg, O. 2019. Mitochondrial genome evolution in parasitic plants. BMC Evol. Biol. 19:87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.