762
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ecology of Powdery Mildews – Influence of Abiotic Factors on their Development and Epidemiology

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Alves, M. d C., Pozza, E. A., Costa, J. d C. d B., Ferreira, J. B., and Araújo, D. V. d. 2009. Effects of temperature and leaf wetness period in powdery mildew Microsphaera diffusa Cke. & Pk. intensity in soybean [Glycine max (L.) Merr.]. Ciênc. Agrotec. 33: 1926–1930.
  • Amsalem, L., Freeman, S., Rav-David, D., Nitzani, Y., Sztejnberg, A., Pertot, I., and Elad, Y. 2006. Effect of climatic factors on powdery mildew caused by Sphaerotheca macularis f. sp. fragariae on strawberry. Eur. J. Plant Pathol. 114: 283–292.
  • Araújo, A. L. S., Angelotti, F., and Ribeiro, P. M. 2019. Severity of melon powdery mildew as a function of increasing temperature and carbon dioxide concentration. Agraria. 14: e6916–7.
  • Asalf, B., Gadoury, D. M., Tronsmo, A. M., Seem, R. C., Cadle-Davidson, L., Brewer, M. T., and Stensvand, A. 2013. Temperature regulates the initiation of chasmothecia in powdery mildew of strawberry. Phytopathology. 103: 717–724.
  • Aust, H. J. and Hoyningen-Huene, J. 1986. Microclimate in relation to epidemics of powdery mildew. Annu. Rev. Phytopathol. 24: 491–510.
  • Austin, C. N. and Wilcox, W. F. 2012. Effects of sunlight exposure on grapevine powdery mildew development. Phytopathology. 102: 857–866.
  • Ayres, P. G. 1983. Conidial germination and germ-tube growth of Erysiphe pisi in relation to visible light and its transmission through pea leaves. Trans. Brit. Mycol. Soc. 81: 269–274.
  • Bana, J. K., Choudhary, J. S., Ghoghari, P. G., Sharma, H., and Kumar, S. 2020. Influence of weather parameters on powdery mildew of mango inflorescence in humid tropics of South Gujarat. J. Agrometeorol 22: 488–493.
  • Bardin, M., Suliman, M. E., Sage-Palloix, A. M., Mohamed, Y. F., and Nicot, P. C. 2007. Inoculum production and long-term conservation methods for cucurbits and tomato powdery mildews. Mycol. Res. 111: 740–747.
  • Bendek, C. E., Campbell, P. A., Torres, R., Donoso, A., and Latorre, B. A. 2007. The risk assessment index in grape powdery mildew control decisions and the effect of temperature and humidity on conidial germination of Erysiphe necator. Span. J. Agric. Res. 5: 522–532.
  • Blanco, C., de los Santos, B., Barrau, C., Arroyo, F. T., Porras, M., and Romero, F. 2004. Relationship among concentrations of Sphaerotheca macularis conidia in the air, environmental conditions, and the incidence of powdery mildew in strawberry. Plant Dis. 88: 878–881.
  • Blumer, S. 1967. Echte Mehltaupilze (Erysiphaceae). VEB Gustav Fischer Verlag, Jena, Germany.
  • Braun, U. 1987. A monograph of the Erysiphales (powdery mildews). Beiheft zur Nova Hedwigia. Vol. 89. E. Schweizerbart, Stuttgart, Germany.
  • Braun, U., and Cook, R. T. A. 2012. Taxonomic manual of the Erysiphales (powdery mildews). CBS Biodiver. Series. 11: 1–707.
  • Burdon, J. J. 1993. The structure of pathogen populations in natural plant communities. Annu. Rev. Phytopathol. 31: 305–323.
  • Butt, D. J. 1978. Epidemiology of the powdery mildews. In The Powdery Mildews; Spencer, D. M., Ed. Academic Press: London, pp 51–81.
  • Cao, X. R., Xu, X. M., Che, H. Y., West, J. S., and Luo, D. Q. 2021. Effects of temperature and leaf age on conidial germination and disease development of powdery mildew on rubber tree. Plant Pathol. 70: 484–491.
  • Carroll, J. E. and Wilcox, W. F. 2003. Effects of humidity on the development of grapevine powdery mildew. Phytopathology. 93: 1137–1144.
  • Carvalho, S. D. and Castillo, J. A. 2018. Influence of light on plant-phylosphere interaction. Front. Plant Sci. 9: 1482.
  • Carver, T. L. W. and Carr, J. H. 1978. The early stages of mildew colony development on susceptible oats. Ann. Appl. Biol. 89: 201–209.
  • Carver, T. L. W., Ingerson-Morris, S. M., Thomas, B. J., and Gay, A. P. 1994. Light-mediated delay of primary haustorium formation by Erysiphe graminis f. sp. Avenae. Physiol. Mol. Plant Pathol. 45: 59–79.
  • Carver, T. L. W. and Jones, J. W. 1988. Colony development by Erysiphe graminis f. sp. hordei on isolated epidermis of barley coleoptile incubated under continuous light or short-day conditions. Trans. Br. Mycol. Soc. 90: 114–117.
  • Celio, G. J. and Hausbeck, M. K. 1998. Conidial germination, infection structure formation, and early colony development of powdery mildew on poinsettia. Phytopathology. 88: 105–113.
  • Cerkauskas, F. R. and Brown, J. 2015. Aspects of the epidemiology and control of powdery mildew (Oidium neolycopersici) on tomato in Ontario. Canada. Canad. J. Plant Pathol. 37: 448–464.
  • Chellemi, D. O., and Marois, J. J. 1991. Effect of fungicides and water on sporulation of Uncinula necator. Plant Dis. 75: 455–457.
  • Chellemi, D. O. and Marois, J. J. 1992. Population dynamics of the plant pathogenic fungus Uncinula necator. Can. J. Bot. 70: 942–946.
  • Cherewick, W. J. 1944. Studies on the biology of Erysiphe graminis DC. Can. J. Res. 22c: 52–86.
  • Choudhury, R. A., McRoberts, N., and Gubler, W. D. 2014. Effects of punctuated heat stress on the grapevine powdery mildew pathogen, Erysiphe necator. Phytopathol. Mediter. 53: 148–158.
  • Cohen, R. 1993. A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Plant Dis. 77: 513–517.
  • Cole, J. S. 1966. Powdery mildew of tobacco (Erisyphe cichoracearum DC.). VI. Some effects of methods of inoculation and air humidity on germination of conidia and growth of hyphae on leaves. Ann. Applied Biology 58: 401–407.
  • Cole, J. S. and Fernandes, D. L. 1970. Effects of light, temperature and humidity on sporulation of Erysiphe cichoracearum on tobacco. Trans. Br. Mycol. Soc. 55: 345–353.
  • Cook, R. T. A. and Braun, U. 2009. Conidial germination patterns in powdery mildews. Mycol. Res. 113:616–636.
  • Cook, R. T. A., Braun, U., and Beales, P. 2011. Appressorial development on conidial germ tubes of Erysiphe species. Mycoscience. 52: 183–197.
  • Cook, R. T. A., Denton, J. O., and Denton, G. 2015. Pathology of oak-wisteria powdery mildew. Fungal Biol. 119: 657–671.
  • Corner, E. J. H. 1935. Observations on resistance to powdery mildews. New Phytol. 34:180–200.
  • Delp, C. J. 1954. Effect of temperature and humidity on the grape powdery mildew fungus. Phytopathology. 44:613–626.
  • Deslandes, J. A. 1954. Studies and observations on lettuce powdery mildew. Plant Dis. Rep. 38: 560–562.
  • Desprez-Loustau, M.-L., Massot, M., Toïgo, M., Fort, T., Aday Kaya, A. G., Boberg, J., Braun, U., Capdevielle, X., Cech, T., Chandelier, A., Christova, P., Corcobado, T., Dogmus, T., Dutech, C., Fabreguettes, O., Faivre d‘Arcier, J., Gross, A., Horta Jung, M., Iturritxa, E., Jung, T., Junker, C., Kiss, L., Kostov, K., Lehtijarvi, A., Lyubenova, A., Marçais, B., Oliva, J., Oskay, F., Pastirčák, M., Pastirčáková, K., Piou, D., Saint-Jean, G., Sallafranque, A., Slavov, S., Stenlid, J., Talgø, V., Takamatsu, S., and Tack, A. J. 2018. From leaf to continent: the multi-scale distribution of an invasive cryptic pathogen complex on oak. Fungal Ecol. 36: 39–50.
  • Dickinson, S. 1949. Studies in the physiology of obligate parasitism. I. The stimuli determining the direction of growth of germ tubes of rust and mildew spores. Annu. Bot. 13: 89–104.
  • Domsch, K. 1953. Über den Einfluss photoperiodische Behandlung auf die Befallsintensität beim Gerstenmehltau. Archiv Mikrobiol. 19: 287–318.
  • Easterling, W. E., Aggarwal, P. K., Batima, P., Brander, K. M., Erda, L., Howden, S. M., Kirilenko, A., Morton, J., Soussana, J. F., Schmidhuber, J., and Tubiello, F. N. 2007. Food fibre and forest products. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Eds. Cambridge University Press: Cambridge, UK, pp 273–313.
  • Edwards, H. H. 1993. Light affects the formation and development of primary haustoria of Erysiphe graminis hordei in leaf epidermal cells of Hordeum vulgare. Physiol. Mol. Plant Pathol. 42: 299–308.
  • Elad, Y., Messika, Y., Brand, M., Rav-David, D., and Sztejnberg, A. 2007a. Effect of microclimate on Leveillula taurica powdery mildew of sweet pepper. Phytopathology. 97: 813–824.
  • Elad, Y., Messika, Y., Brand, M., Rav-David, D., and Sztejnberg, A. 2007b. Effect of colored shade nets on pepper powdery mildew (Leveillula taurica). Phytoparasitica 35: 285–299.
  • Elad, Y. and Pertot, I. 2014. Climate change impacts on plant pathogens and plant disease. J. Crop Improv. 28: 99–139.
  • Faticov, M., Desprez-Loustau, M.-L., Kiss, L., Massot, M., D´Arcier, J. F., Mutz, J., Németh, M. Z., Roslin, T., and Tack, A. J. M. 2022. Niche differentiation within a cryptic pathogen complex: climatic drivers and hyperparasitism at multiple spatial scales. Ecography 2022: e06062.
  • Fotopoulos, V., Gilbert, M. J., Pittman, J. K., Marvier, A. C., Buchanan, A. J., Sauer, N., Hall, J. L., and Williams, L. E. 2003. The monosacharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol. 132:821–829.
  • Friedrich, S. 1995. Modelling infection probability of powdery mildew in winter wheat by meteorological input variables. J. Plant Dis. Protect. 102:354–365.
  • Gadoury, D. M. and Pearson, R. C. 1990. Germination of ascosores and infection of Vitis by Uncinula necator. Phytopathology. 80:1198–1203.
  • Gadoury, D. M., Seem, R. C., Magarey, P. A., Emmett, R., and Magarey, R. 1997. Effects of environment and fungicides on epidemics of grape powdery mildew: considerations for practical model development and disease management. Viticult. Enol. Sci. 52:225–229.
  • Garrett, K. A., Nita, M., De Wolf, E. D., Gomez, L., and Sparks, A. H. 2009. Plant pathogens as indicators of climate change, Chapter 25. In Climate Change: Observed Impacts on Planet Earth; Letcher, T. M., Eds. Elsevier Science, Amsterdam, the Netherlands, pp 425–437.
  • Ghini, R., Hamada, E., and Bettiol, W. 2008. Climate change and plant diseases. Sci. Agric. 65: 98–107.
  • Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205–227.
  • Green, J. R., Carver, T. L. W., and Gurr, S. J., 2002. The formation and function of infection and feeding structures. In The Powdery Mildews: A Comprehensive Treatise; Bélanger, R. R., Bushnell, W. R., Dik, A. J., and Carver, T. L. W., Eds. APS Press, St. Paul, MN, USA, pp 66–82.
  • Grove, G. G. 1991. Powdery mildew of sweet cherry: Influence of temperature and wetness duration on release and germination of ascospores of Podosphaera clandestina. Phytopathology. 81: 1271–1275.
  • Grove, G. G. 1998. Meteorological factors affecting airborne conidia concentrations and the latent period of powdery mildew of sweet cherry. Plant Dis. 82: 741–746.
  • Gubler, W. D., Rademacher, M. R. and Vasquez, S. J. 1999. Control of powdery mildew using the UC Davis Powdery mildew Risk Index. APSnet Feature. Online. doi: 10.1094/APSnetFeature-1999-0199.
  • Gullino, M. L., Tabone, G., Gilardi, G., and Garibaldi, A. 2020. Effects of elevated atmospheric CO2 and temperature on the management of powdery mildew of zucchini. J. Phytopathol. 168: 405–415.
  • Guzman-Plazola, R. A., Davis, R. M., and Marois, J. J. 2003. Effects of relative humidity and high temperature on spore germination and development of tomato powdery mildew (Leveillula taurica). Crop Protect. 22: 1157–1168.
  • Hibben, C. R., and Taylor, M. P. 1975. Ozone and sulfur-dioxide effects on lilac powdery mildew fungus. Environ. Pollut. 9: 107–114.
  • Hibberd, J. M., Whitbread, R., and Farrar, J. F. 1996. Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis. Physiol. Mol. Plant Pathol. 48: 37–53.
  • Holb, I. J., and Fuzi, I. 2016. Monitoring of ascospore density of Erysiphe necator in the air in relation to weather factors and powdery mildew development. Eur. J. Plant Pathol. 144: 751–762.
  • Hopkins, W. G. 1995. Introduction to Plant Physiology. John Wiley & Sons, New York, USA.
  • Husain, S. I., and Akram, M. 1995. Effect of temperature and relative humidity on conidial germination and germ tube elongation of Sphaerotheca fuliginea (Schlecht ex Fr.) Poll. on sunflower. J. Plant Dis. Protect. 102: 509–513.
  • Inman, A. J., Cook, R. T. A., and Beales, P. 2000. A contribution to the identity of Rhododendron powdery mildew in Europe. J. Phytopathol. 148: 17–27.
  • Islam, W. 2018. Plant disease epidemiology: disease triangle and forecasting mechanisms in highlights. Hosts and Viruses 5: 7–11.
  • Itagaki, K., Shibuya, T., Tojo, M., Endo, R., and Kitaya, Y. 2014. Atmospheric moisture influences on conidia development in Podosphaera xanthii through host-plant morphological responses. Eur. J. Plant Pathol. 138: 113–121.
  • Jacob, D., Rav-David, D., Sztjenberg, A., and Elad, Y. 2008. Conditions for development of powdery mildew of tomato caused by Oidium neolycopersici. Phytopathology. 98: 270–281.
  • Jailloux, F., Willocquet, L., Chapuis, L., and Froidefond, G. 1999. Effect of weather factors on the release of ascospores of Uncinula necator, the cause of grape powdery mildew, in the Bordeaux region. Can. J. Bot. 77: 1044–1051.
  • Janisiewicz, W. J., Takeda, F., Nichols, B., Glenn, D. M., Jurick Ii, W. M., and Camp, M. J. 2016. Use of low-dose UV-C irradiation to control powdery mildew caused by Podosphaera aphanis on strawberry plants. Can. J. Plant Pathol. 38: 430–439.
  • Jarvis, W. R., Gubler, W. G., and Grove, G. G., 2002. Epidemiology of powdery mildews in agricultural pathosystems. In The Powdery Mildews: A Comprehensive Treatise; Bélanger, R. R., Bushnell, W. R., and Dik, A. J., and Carver, T. L. W., Eds. APS Press: St. Paul, MN, USA, pp 169–199.
  • Jeger, M. J. 2022. The impact of climate change on disease in wild plant populations and communities. Plant Pathol. 71: 111–130.
  • Jeger, M. J. and Pautasso, M. 2008. Plant disease and global change – the importance of long-term data sets. New Phytol. 177: 8–11.
  • Jenkyn, J. F. 1973. Seasonal changes in incubation time of Erysiphe graminis f. sp. hordei. Ann. Appl Biol. 73: 15–18.
  • Jing, X., Wang, H., Gong, B., Liu, S., Wei, M., Ai, X., Li, Y., and Shi, Q. 2018. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew. Plant Physiol. Biochem. 124: 77–87.
  • Johnston, P., Quijada, L., Smith, C., Baral, H.-O., Hosoya, T., Baschien, C., Pärtel, K., Zhuang, W.-Y., Haelewaters, D., Park, D., Carl, S., López-Giráldez, F., Wang, Z. Z., and Townsend, J. 2019. A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus. 10: 1–22.
  • Jones, D. R., and Baker, R. H. A. 2007. Introductions of non-native plant pathogens into Great Britain, 1970–2004. Plant Pathol. 56: 891–910.
  • Jordan, V.W.L., and Hunter, T. V. 1972. The effect of glass cloche and coloured polyethylene tunnels on microclimate, growth, yield and disease severity of strawberry plants. J. Hortic. Sci. 47: 419–426.
  • Juroszek, P., Laborde, M., Kleinhenz, B., Mellenthin, M., Racca, P., and Sierotzki, H. 2022. A review on the potential effects of temperature on fungicide effectiveness. Plant Pathol. 71: 775–784.
  • Kanto, T., Matsuura, K., Yamada, M., Usami, T., and Amemiya, Y. 2009. UV-B radiation for control of strawberry powdery mildew. Acta Hortic. 842: 359–362.
  • Keller, M., Rogiers, S. Y., and Schultz, H. R. 2003. Nitrogen and ultraviolet radiation modify grapevines´ susceptibility to powdery mildew. Vitis. 42:87–94.
  • Kenyon, D. M., Dixon, G. R., and Helfer, S. 1998. The effect of temperature on colony growth by Erysiphe sp. infecting Rhododendron. Plant Pathol. 47: 411–416.
  • Kenyon, D. M., Dixon, G. R., and Helfer, S. 2002. Effects of relative humidity, light intensity and photoperiod on the colony development of Erysiphe sp. on Rhododendron. Plant Pathol. 51: 103–108.
  • Khan, M. R., and Khan, M. W. 1998. Interactive effects of ozone and powdery mildew (Sphaerotheca fuliginea) on bottle gourd (Lagenaria siceraria). Agric. Ecosyst. Environ. 70: 109–118.
  • Khan, M. R., Khan, M. W., and Pasha, M. J. 1998. Effects of sulfur dioxide on the development of powdery mildew of cucumber. Environ. Exp. Bot. 40: 265–273.
  • Khan, M. W., and Kulshrestha, M. 1991. Impact of sulfur-dioxide exposure on conidial germination of powdery mildew fungi. Environ. Pollut. 70: 81–88.
  • Khan, M. R., and Rizvi, T. F. 2020. Effect of elevated levels of CO2 on powdery mildew development in five cucurbit species. Sci. Rep. 10: 4986.
  • Khiavi, H. K., Shikhlinskiy, H., and Ahari, A. B., and Akrami M. 2012. Study on the biology and epidemiology of Unicinula necator the causal agent of grape powdery mildew disease. Life Sci J. 9: 1787–1792.
  • Kiss, L. 2005. Powdery mildew as invasive plant pathogens: new epidemics caused by two North American species in Europe. Mycol. Res. 109: 259–260.
  • Kiss, L., Vaghefi, N., Bransgrove, K., Dearnaley, J. D. W., Takamatsu, S., Tan, Y. P., Marston, C., Liu, S.-Y., Jin, D.-N., Adorada, D. L., Bailey, J., Cabrera de Álvarez, M. G., Daly, A., Dirchwolf, P. M., Jones, L., Nguyen, T. D., Edwards, J., Ho, W., Kelly, L., Mintoff, S. J. L., Morrison, J., Németh, M. Z., Perkins, S., Shivas, R. G., Smith, R., Stuart, K., Southwell, R., Turaganivalu, U., Váczy, K. Z., Blommestein, A. V., Wright, D., Young, A., and Braun, U. ( 2020. Australia: a continet without native powdery mildews? The first comprehensive catalog indicates recent introductions and multiple host range expansion events, and leads to the re-discovery of Salmonomyces as a new lineage of the Erysiphales. Front. Microbiol. 11: 1571.
  • Křístková, E., Lebeda, A., and Sedláková, B. 2007. Temporal and spatial dynamics of powdery mildew species on cucurbits in the Czech Republic. Acta Hortic. 731: 337–344.
  • Křístková, E., Lebeda, A., and Sedláková, B. 2009. Species spectra, distribution and host range of cucurbit powdery mildews in the Czech Republic, and in some other European and Middle Eastern countries. Phytoparasitica. 37: 337–350.
  • Lake, J. A., and Wade, R. N. 2009. Plant–pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J. Exp. Bot. 60: 3123–3131.
  • Lebeda, A., McGrath, M. T., and Sedláková, B. 2010. Fungicide resistance in cucurbit powdery mildew fungi; Chapter 11. In Fungicides; Carisse, O., Ed. InTech Publishers: Rijeka, Croatia, pp 221–246.
  • Lebeda, A., Mieslerová, B., Huszár, J., and Sedláková, B. 2017. Padlí kulturních a planých rostlin [Powdery mildews of crop and wild plants]. Olomouc, Czech Republic (Agriprint, In Czech with English Summary).
  • Lebeda, A., Mieslerová, B., Petřivalský, M., Luhová, L., Špundová, M., Sedlářová, M., Nožková-Hlaváčková, V., and Pink, D. A. C. 2014. Resistance mechanisms of wild tomato germplasm to infection of Oidium neolycopersici. Eur. J. Plant Pathol. 138: 569–596.
  • Lebeda, A., Sedláková, B., Křístková, E., and Vysoudil, M. 2010. Long-lasting changes in the species spectrum of cucurbit powdery mildew in the Czech Republic – influence of climate changes or random effect? Plant Protect. Sci. 45: S41–S47.
  • Lebeda, A., Sedláková, B., Křístková, E., Widrlechner, M. P., and Kosman, E. 2021. Understanding pathogen population structure and virulence variation for efficient resistance breeding to control cucurbit powdery mildews. Plant Pathol. 70: 1364–1377.
  • Ledermann, L., Daouda, S., Gouttesoulard, C., Aarrouf, J., and Urban, L. 2021. Flashes of UV-C light stimulate defenses of Vitis vinifera L. 'Chardonnay’ against Erysiphe necator in greenhouse and vineyard conditions. Plant Dis. 105: 2106–2113.
  • Leibovich, G., Cohen, R., and Paris, H. S. 1996. Shading of plants facilitates selection for powdery mildew resistance in squash. Euphytica. 90: 289–292.
  • Lessin, R. C., and Ghini, R. 2009. Effect of increased atmospheric CO2 concentration on powdery mildew and growth of soybean plants. Trop. plant Pathol. 34: 385–392.
  • Liyanage, K. K., Khan, S., Mortimer, P. E., Hyde, K. D., Xu, J., Brooks, S., and Ming, Z. 2016. Powdery mildew disease of rubber tree. For. Path. 46: 90–103.
  • Longree, K. 1939. The effect of temperature and relative humidity on powdery mildew of roses. Cornell University Agriculture Experimental Station Memoirs 223:1–43.
  • Luck, J., Spackman, M., Freeman, A., Tre˛bicki, P., Griffiths, W., Finlay, K., and Chakraborty, S. 2011. Climate change and diseases of food crops. Plant Pathol. 60: 113–121.
  • Madhani, H. D. 2021. Unbelievable but true: epigenetics and chromatin in fungi. Trends Genet. 37: 12–20.
  • Mahaffee, W. F., Turechek, W. W., and Ocamb, C. M. 2003. Effect of variable temperature on infection severity of Podosphaera macularis on hops. Phytopathology. 93: 1587–1592.
  • Manners, J. G., and Hossain, S. M. M. 1963. Effects of temperature and humidity on conidial germination in Erysiphe graminis. Trans. Brit. Mycol. Soc. 46: 225–IN2.
  • Manning, W. J., and Tiedemann, A. V. 1995. Climate-change – potential effects of increased atmospheric carbon-dioxide (CO2), ozone (O−3), and ultraviolet-B (UV-B) radiation on plant-diseases. Environ. Pollut. 88: 219–245.
  • Marcais, B., and Desprez-Loustau, M. L. 2014. European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Ann. Forest Sci. 71: 633–642.
  • Matić, S., Cucu, M. A., Garibaldi, A., and Gullino, M. L. 2018. Combined effect of CO2 and temperature on wheat powdery mildew development. Plant Pathol. J. 34: 316–326.
  • Mieslerová, B., and Lebeda, A. 2010. Influence of temperature and light conditions on germination, growth and conidiation of Oidium neolycopersici. J. Phytopathol. 158: 616–627.
  • Mieslerová, B., Sedlářová, M., Michutová, M., Petřeková, V., Cook, R. T. A., and Lebeda, A. 2020. Powdery mildews on trees and shrubs in botanical gardens, parks and urban green areas in the Czech Republic. Forests. 11: 967.
  • Mikkelsen, B. L., Jorgensen, R. B., and Lyngkjaer, M. F. 2015. Complex interplay of future climate levels of CO2, ozone and temperature on susceptibility to fungal diseases in barley. Plant Pathol. 64: 319–327.
  • Miletich, N., Tamas, N., Vuksa, P., Pfaf-Dolovac, E., and Dolovac, N. 2012. Influence of shading on the development of Podosphaera leucotricha under field conditions. Bulgar. J. Agric. Sci. 18: 178–184.
  • Miller, T. C., Gubler, W. D., Geng, S., and Rizzo, D. M. 2003. Effects of temperature and water vapor pressure on conidial germination and lesion expansion of Sphaerotheca macularis f. sp. fragariae. Plant Dis. 87: 484–492.
  • Mmbaga, M. T. 2002. Ascocarp formation and survival and primary inoculum production in Erysiphe (sect. Microsphaera) pulchra in dogwood powdery mildew. Ann. Appl. Biol. 141: 153–161.
  • Morishita, M., Sugiyama, K., Saito, T., and Sakata, Y. 2003. Powdery mildew resistance in cucumber. JARQ. 37: 7–14.
  • Mortensen, L. M., Pettersen, R. I., and Gislerød, H. R. 2007. Air humidity variation and control of vase life and powdery mildew in cut roses under continuous lighting. Europ. J. Hortic. Sci. 72: 255–259.
  • Mortensen, L. M., Toppe, B., and Gislerod, H. R. 2006. Influence of carbon dioxide concentration and diurnal temperature variation on growth, powdery mildew and quality of cut roses. Europ. J. Hortic. Sci. 71: 217–221.
  • Newton, A. C. 1993. The effect of humidity on the expression of partial resistance to powdery mildew in barley. Plant Pathol. 42: 364–367.
  • Newton, A. C., Johnson, S. C., and Gregory, P. J. 2011. Implications of climate change for diseases, crop yields and food security. Euphytica. 179: 3–18.
  • Nožková, V., Mieslerová, B., Luhova, L., Piterkova, J., Novak, O., Špundová, M., and Lebeda, A. 2019. Effect of heat-shock pre-treatment on tomato plants infected by powdery mildew fungus. Plant Protect. Sci. 55: 31–42.
  • O’Brien, R. G., and Wienert, M. 1994. A storage technique for cucurbit powdery mildew (Sphaerotheca fuliginea). Australas. Plant Path. 23: 86–87.
  • Oichi, W., Matsuda, Y., Nonomura, T., Toyoda, H., Xu, L., and Kusakari, S. 2006. Formation of conidial pseudochains by tomato powdery mildew Oidium neolycopersici. Plant Dis. 90: 915–919.
  • Onofre, R. B., Gadoury, D. M., Stensvand, A., Bierman, A., Rea, M., and Peres, N. A. 2021. Use of ultraviolet light to suppress powdery mildew in strawberry fruit production fields. Plant Dis. 105: 2402–2409.
  • Oriolani, E. J. A., Moschini, R. C., Salas, S., Martinez, M. I., and Banchero, S. 2015. Weather-based models for predicting grape powdery mildew (Uncinula necator (Schwein) Burrill). Epidemics. Rev. Fac. Cienc. Agrar. 47: 197–211.
  • Ota, E., Nishimura, F., Mori, M., Tanaka, M., Kanto, T., Hosokawa, M., Osakabe, M., Satou, M., and Takeshita, M. 2021. Up-regulation of pathogenesis-related genes in strawberry leaves treated with powdery mildew-suppressing ultraviolet irradiation. Plant Pathol. 70: 1378–1387.
  • Panstruga, R., and Kuhn, H. 2019. Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Mol. Plant Pathol. 20: 463–470.
  • Pap, P., Rankovic, B., and Masirevic, S. 2013. Effect of temperature, relative humidity and light on conidial germination of oak powdery mildew (Microsphaera alphitoides Griff. et Maubl.) under controlled conditions. Arch. Biol. Sci. 65:1069–1077.
  • Pastirčáková, K., Adamčík, S., Adamčíková, K., and Chater, A. O. 2021. Erysiphe hypophylla, a second powdery mildew (Erysiphales) on oaks in Britain. Field Mycol. 22: 50–54.
  • Patel, J. S., Radetsky, L. C., Nagare, R., and Rea, M. S. 2020. Night time application of UV-C to control cucumber powdery mildew. Plant Health Progr. 21: 40–46.
  • Pathak, R., Ergon, A., Stensvand, A., Gislerod, H. R., Solhaug, K. A., Cadle-Davidson, L., and Suthaparan, A. 2020. Functional characterization of Pseudoidium neolycopersici photolyase reveals mechanisms behind the efficacy of nighttime UV on powdery mildew suppression. Front. Microbiol. 11: 1091.
  • Paul, N. D., Rasanayagam, S., Moody, S. A., Hatcher, P. E., and Ayres, P. G. 1997. The role of interactions between trophic levels in determining the effects of UV-B on terrestrial ecosystems. Plant Ecol. 128: 296–308.
  • Pautasso, M., Dehnen-Schmutz, K., Holdenrieder, O., Pietravalle, S., Salama, N., Jeger, M. J., Lange, E., and Hehl-Lange, S. 2010. Plant health and global change – some implications for landscape management. Biol. Rev. Camb. Philos. Soc. 85: 729–755.
  • Peduto, F., Backup, P., Hand, E. K., Janousek, C. N., and Gubler, W. D. 2013. Effect of high temperature and exposure time on Erysiphe necator growth and reproduction: revisions to the UC Davis powdery mildew risk index. Plant Dis. 97: 1438–1447.
  • Peetz, A. B., Mahaffee, W. F., and Gent, D. H. 2009. Effect of temperature on sporulation and infectivity of Podosphaera macularis on Humulus lupulus. Plant Dis. 93: 281–286.
  • Perera, R. G., and Wheeler, B. E. J. 1975. Effect of water droplets on the development of Sphaerotheca pannosa on rose leaves. Trans. Brit. Mycol. Soc. 64: 313–319.
  • Pérez-Rodríguez, A., Monteón-Ojeda, A., Mora-Aguilera, J. A., and Hernández-Castro, E. 2017. Epidemiology and strategies for chemical management of powdery mildew in mango. Pesq. agropec. Bras. 52: 715–723.
  • Pettersen, R.I., Mortensen, L.M., Moe, R., and Gislerod, H.R. 2006. Air humidity control essential for rose production under continuous ligthing. Acta Hortic. 711: 323–332.
  • Pirondi, A., Pérez-Garcia, A., Battistini, G., Muzzi, E., Brunelli, A., and Collina, M. 2015. Seasonal variations in the occurrence of Golovinomyces orontii and Podosphaera xanthii, causal agents of cucurbit powdery mildew in Northern Italy. Ann. Appl. Biol. 167: 298–313.
  • Prokopová, J., Mieslerová, B., Hlaváčková, V., Hlavinka, J., Lebeda, A., Nauš, J., and Špundová, M. 2010. Changes in photosynthesis of Lycopersicon spp. plants induced by tomato powdery mildew infection in combination with heat shock pre-treatment. Physiol. Mol. Plant Pathol. 74: 205–213.
  • Pugliese, M., Gullino, M. L., and Garibaldi, A. 2010. Effects of elevated CO2 and temperature on interactions of grapevine and powdery mildew: first results under phytotron conditions. J. Plant Dis. Prot. 117: 9–14.
  • Pugliese, M., Liu, J., Titone, P., Garibaldi, A., and Gullino, M. L. 2012. Effects of elevated CO2 and temperature on interactions of zucchini and powdery mildew. Phytopathol. Mediter. 51: 480–487.
  • Punja, Z. K. 2022. First report of the powdery mildew pathogen of hops, Podosphaeria macularis, naturally infecting cannabis (Cannabis sativa L., marijuana) plants under field conditions. Can. J. Plant Pathol. 44: 235–249.
  • Reuveni, R., Cohen, Y., and Rotem, J. 1971. Sporulation of Erysiphe cichoracearum as influenced by conditions favouring photosynthesis in the host. Israel J. Bot. 20: 78–83.
  • Reuveni, R., and Rotem, J. 1974. Effect of humidity on epidemiological patterns of the powdery mildew (Sphaerotheca fuliginea) on squash. Phytoparasitica. 2: 25–33.
  • Rossi, V., Caffi, T., and Legler, S. E. 2010. Dynamics of ascospore maturation and discharge in Erysiphe necator, the causal agent of grape powdery mildew. Phytopathology. 100: 1321–1329.
  • Schnathorst, W. C. 1959. Spread and life cycle of the lettuce powdery mildew fungus. Phytopathology. 49: 464–468.
  • Schnathorst, W. C. 1960. Effect of temperature and moisture stress on the lettuce powdery mildew fungus. Phytopathology. 50: 304–308.
  • Schnathorst, W. C. 1965. Environmental relationships in the powdery mildew. Annu. Rev. Phytopathol. 3: 343–366.
  • Schweizer, P., Vallélian-Bindschedler, L., and Mösinger, E. 1995. Heat-induced resistance in barley to the powdery mildew fungus Erysiphe graminis f. sp. hordei. Physiol. Mol. Plant Pathol. 47: 51–66.
  • Scott, C. , and Punja, Z. K. 2021. Evaluation of disease management approaches for powdery mildew on Cannabis sativa L. (marijuana) plants. Can. J. Plant Pathol. 43: 394–412.
  • Seko, Y., Bolay, A., Kiss, L., Heluta, V., Grigaliunaite, B., and Takamatsu, S. 2008. Molecular evidence in support of recent migration of a powdery mildew fungus on Syringa spp. into Europe from East Asia. Plant Pathol. 57: 243–250.
  • Shibuya, T., Itagaki, K., Tojo, M., Endo, R., and Kitaya, Y. 2011. Fluorescent illumination with high red-to-far-red ratio improves resistance of cucumber seedlings to powdery mildew. Horts. 46: 429–431.
  • Singh, H. B. and Singh, U.P. 1981. Reversible phototropism in germ tubes of Erysiphe polygoni. Zeitschr. Planzenkrankenh. Pflanzenschutz. 88: 626–630.
  • Sinha, P. 2005. Epidemiology and development of forecasting model for powdery mildew (Oidium erysiphoides) in jujube (Ziziphus mauritiana) for Delhi. Ind. J. Agric. Sci 75:272–276.
  • Sombardier, A., Savary, S., Blancard, D., Jolivet, J., and Willocquet, L. 2009. Effects of leaf surface and temperature on monocyclic processes in Podosphaera aphanis, causing powdery mildew of strawberry. Can. J. Plant Pathol. 31: 439–448.
  • Spanu, P. D., Abbott, J. C., Amselem, J., Burgis, T. A., Soanes, D. M., Stüber, K., Ver Loren van Themaat, E., Brown, J. K. M., Butcher, S. A., Gurr, S. J., Lebrun, M.-H., Ridout, C. J., Schulze-Lefert, P., Talbot, N. J., Ahmadinejad, N., Ametz, C., Barton, G. R., Benjdia, M., Bidzinski, P., Bindschedler, L. V., Both, M., Brewer, M. T., Cadle-Davidson, L., Cadle-Davidson, M. M., Collemare, J., Cramer, R., Frenkel, O., Godfrey, D., Harriman, J., Hoede, C., King, B. C., Klages, S., Kleemann, J., Knoll, D., Koti, P. S., Kreplak, J., López-Ruiz, F. J., Lu, X., Maekawa, T., Mahanil, S., Micali, C., Milgroom, M. G., Montana, G., Noir, S., O'Connell, R. J., Oberhaensli, S., Parlange, F., Pedersen, C., Quesneville, H., Reinhardt, R., Rott, M., Sacristán, S., Schmidt, S. M., Schön, M., Skamnioti, P., Sommer, H., Stephens, A., Takahara, H., Thordal-Christensen, H., Vigouroux, M., Wessling, R., Wicker, T., and Panstruga, R. 2010. Genome expansion and gene loss in powdery mildew fungi reveal trade offs in extreme parasitism. Science. 330: 1543–1546.
  • Stummer, B. E., Zanker, T., and Scott, E. S. 1999. Cryopreservation of air-dried conidia of Uncinula necator. Austral. Plant Pathol. 28: 82–84.
  • Sugai, K., Inoue, H., Inoue, C., Sato, M., Wakazaki, M., Kobayashi, K., Nishiguchi, M., Toyooka, K., Yamaoka, N., and Yaeno, T. 2020. High humidity causes abnormalities in the process of appressorial formation of Blumeria graminis f. sp. hordei. Pathogens. 9: 45.
  • Suthaparan, A., Solhaug, K. A., Stensvand, A., and Gislerød, H. R. 2016a. Determination of UV action spectra affecting the infection process of Oidium neolycopersici, the cause of tomato powdery mildew. J. Photochem. Photobiol. B. 156: 41–49.
  • Suthaparan, A., Solhaug, K. A., Bjugstad, N., Gislerød, R. H., Gadoury, D. M., and Stensvand, A. 2016b. Suppression of powdery mildews by UV-B: application frequency and timing, dose, reflectance, and automation. Plant Dis. 100: 1643–1650.
  • Suthaparan, A., Solhaug, K. A., Stensvand, A., and Gislerod, H. R. 2017. Daily light integral and day light quality: potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew. J. Photochem. Photobiol. B. 175: 141–148.
  • Suthaparan, A., Stensvand, A., Torre, S., Herrero, M. L., Pettersen, R. I., Gadoury, D. M., and Gislerod, H. R. 2010a. Continuous lighting reduces conidial production and germinability in the rose powdery mildew pathosystem. Plant Dis. 94: 339–344.
  • Suthaparan, A., Stensvand, A., Solhaug, K. A., Torre, S., Telfer, K. H., Ruud, A. K., Mortensen, L. M., Gadoury, D. M., Seem, R. C., and Gislerød, R. H. 2014. Suppression of cucumber powdery mildew by supplemental UV-B radiation in greenhouses can be augmented or reduced by background radiation quality. Plant Dis. 98: 1349–1357.
  • Suthaparan, A., Torre, S., Stensvand, A., Herrero, M. L., Pettersen, R. I., Gadoury, D. M., and Gislerød, H. R. 2010b. Specific light emitting diodes can suppress sporulation of Podosphaera pannosa on greenhouse roses. Plant Dis. 94: 1105–1110.
  • Sutton, T. B., and Jones, A. L. 1979. Analysis of factors affecting dispersal of Podosphaera leucotricha conidia. Phytopathology. 69: 380–383.
  • Suzuki, T., Nishimura, S., Yagi, K., Nakamura, R., Takikawa, Y., Matsuda, Y., Kakutani, K., and Nonomura, T. 2018. Effects of light quality on conidiophore formation of the melon powdery mildew pathogen Podosphaera xanthii. Phytoparasitica. 46: 31–43.
  • Taiz, L. and Zeiger, E. 2010. Plant Physiology. 5th Edition. Sinauer Associates, Sunderland, Massachusetts, USA.
  • Tang, X. L., Cao, X. R., Xu, X. M., Jiang, Y. Y., Luo, Y., Ma, Z. H., Fan, J. R., and Zhou, Y. L. 2017. Effects of climate change on epidemics of powdery mildew in winter wheat in China. Plant Dis. 101: 1753–1760.
  • Thakur, M. P. and Agrawal, K. C. 1995. Epidemiologic studies on powdery mildew of mungbean and urdbean. Inter. J. Pest Manag. 41: 146–153.
  • Trecate, L., Sedláková, B., Mieslerová, B., Manstretta, V., Rossi, V., and Lebeda, A. 2019. Effect of temperature on infection and development of powdery mildew on cucumber. Plant Pathol. 68: 1165–1178.
  • Uloth, M. B., You, M. P., and Barbetti, M. J. 2018. Plant age and ambient temperature: significant drivers for powdery mildew (Erysiphe cruciferarum) epidemics on oilseed rape (Brassica napus). Plant Pathol. 67: 445–456.
  • Vankuik, A. J. 1995. A weather-based forecasting model of powdery mildew in rose seedlings. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische [Wet. Univ. Gent.]. 60: 439–446.
  • Věchet, L. 1993. System management of protection interferences against powdery mildew on spring barley. Ochrana Rostlin. 29: 51–60.
  • Velásquez, A. C., Castroverde, C. D. M., and He, S. Y. 2018. Plant and pathogen warfare under changing climate conditions. Curr. Biol. 28: R619–R634.
  • Verhaar, M. A., Kerssies, A., and Hijwegen, T. 1999. Effect of relative humidity on mycoparasitism of rose powdery mildew with and without treatments with mycoparasites. J. Plant Dis. Protect. 106: 158–165.
  • Wada, S., and Reed, B. M. 2017. Hop powdery mildew (Podosphaera macularis) spore cryopreservation. Cryo Letters. 38:250–256.
  • Wang, H., Jiang, Y. P., Yu, H. J., Xia, X. J., Shi, K., Zhou, Y. H., and Yu, J. Q. 2010. Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. Eur. J. Plant Pathol. 127: 125–135.
  • Ward, S. V., and Manners, J. G. 1974. Environmental effects on the quantity and viability of conidia produced by Erysiphe graminis. Trans. Brit. Mycol. Soc. 62:119–128.
  • Watanabe, M., Kitaoka, S., Eguchi, N., Watanabe, Y., Satomura, T., Takagi, K., Satoh, F., and Koike, T. 2014. Photosynthetic traits and growth of Quercus mongolica var. crispula sprouts attacked by powdery mildew under free-air CO2 enrichment. Eur. J. Forest Res. 133: 725–733.
  • Weltzien, H. C. 1978. Geographical distribution of powdery mildews. In The Powdery Mildews; Spencer, D. M., Ed. Academic Press: London, UK, pp 39–49.
  • Wheeler, B. E. J., Cook, R. T. A., Fagan, H. J., Chandarasrivongs, C., Khan, A. N., and Achavasmit, P. 1973. Erysiphe cichoracearum on Arctium lappa: Cleisthocarp dehiscence, ascospore germination, and infection of cucumber by ascospores and conidia. Trans. Brit. Mycol. Soc. 60: 177–186.
  • Whipps, J. M., and Budge, S. P. 2000. Effect of humidity on development of tomato powdery mildew (Oidium lycopersici) in the glasshouse. Europ. J. Plant Pathol. 106: 395–397.
  • Willocquet, L., Berud, F., Raoux, L., and Clerjeau, M. 1998. Effects of wind, relative humidity, leaf movement and colony age on dispersal of conidia of Uncinula necator, causal agent of grape powdery mildew. Plant Pathol. 47: 234–242.
  • Willocquet, L., and Clerjeau, M. 1998. An analysis of the effects of environmental factors on conidial dispersal of Uncinula necator (grape powdery mildew) in vineyards. Plant Pathol. 47:227–233.
  • Willocquet, L., Colombet, D., Rougier, M., Fargues, J., and Clerjeau, M. 1996. Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. Eur. J. Plant Pathol. 102: 441–449.
  • Xu, X. M. 1996. The effects of constant and fluctuating temperatures on the length of the incubation period of apple powdery mildew (Podosphaera leucotricha). Plant Pathol. 45: 924–932.
  • Xu, X. M. 1999. Effects of temperature on the length of the incubation period of rose powdery mildew (Spaherotheca pannosa var. rosae). Europ. J. Plant Pathol. 105: 13–21.
  • Xu, X. M. and Butt, D. J. 1993. PC-based disease warning systems for use by apple growers. Bull. EPPO. 23: 595–600.
  • Xu, X. M. and Butt, D. J. 1998. Effects of temperature and atmospheric moisture on the early growth of apple powdery mildew (Podosphaera leucotricha) colonies. Europ. J. Plant Pathol. 104: 133–140.
  • Xu, X. M. and Robinson, J. D. 2000. Effects of temperature on the incubation and latent periods of hawthorn powdery mildew (Podosphaera clandestina). Plant Pathol. 49: 791–797.
  • Xu, X. M. and Robinson, J. 2001. The effects of temperature on the incubation and latent periods of powdery mildew (Erysiphe polygoni) on Clematis. J. Phytopathol. 149: 565–568.
  • Yarwood, C. E. 1932. Reversible phototropism of the germ tubes of clover powdery mildew. Phytopathology. 22: 31.
  • Yarwood, C. E. 1936. The tolerance of Erysiphe polygoni and certain other powdery mildews to low humidity. Phytopathology. 26: 845–849.
  • Yarwood, C. E. 1957. Powdery mildews. Bot. Rev. 23: 235–301.
  • Zeyen, R. J., Carver, T. L. W., and Lyngkjaer, M. F., 2002. Epidermal cell papillae. In The Powdery Mildews: A Comprehensive Treatise; Bélanger, R. R., Bushnell, W. R., Dik, A. J., and Carver, T. L. W., Eds. APS Press: St. Paul, MN, USA, pp 107–125.
  • Zhang, L., Yang, B. Y., Li, S., and Guo, A. H. 2017. Disease-weather relationships for wheat powdery mildew under climate change in China. J. Agric. Sci. 155: 1239–1252.
  • Zhu, M., Riederer, M., and Hildebrandt, U. 2019. UV-C irradiation compromises conidial germination, formation of appressoria, and induces transcription of three putative photolyase genes in the barley powdery mildew fungus, Blumeria graminis f. sp. hordei. Fungal Biol. 123: 218–230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.