329
Views
0
CrossRef citations to date
0
Altmetric
Articles

Selenium Exerts an Intriguing Alteration of Primary and Secondary Plant Metabolites: Advances, Challenges, and Prospects

ORCID Icon & ORCID Icon

References

  • Abdalla, M. A., Meschede, C. A. C., and Mühling, K. H. 2020. Selenium foliar application alters patterns of glucosinolate hydrolysis products of pak choi Brassica rapa L. var. Chinensis. Sci. Hortic. 273:109614.
  • Abdalla, M. A., Famuyide, I., Wooding, M., McGaw, L. J., and Mühling, K. H. 2022. Secondary metabolite profile and pharmacological opportunities of lettuce plants following selenium and sulfur enhancement. Pharmaceutics 14:2267.
  • Abdalla, M. A., Lentz, C., and Mühling, K. H. 2022. Crosstalk between selenium and sulfur is associated with changes in primary metabolism in lettuce plants grown under Se and S enrichment. Plants 11:927.
  • Abdalla, M. A., and Mühling, K. H. 2019. Plant-derived sulfur containing natural products produced as a response to biotic and abiotic stresses: a review of their structural diversity and medicinal importance. J. Appl. Bot. Food Qual. 92:204–215.
  • Abdalla, M. A., Wick, J. E., Famuyide, I. M., McGaw, L. J., and Mühling, K. H. 2021. Selenium enrichment of green and red lettuce and the induction of radical scavenging potential. Horticulturae 7:488.
  • Agerbirk, N., and Olsen, C. E. 2012. Glucosinolate structures in evolution. Phytochemistry 77:16–45.
  • Alfthan, G., Eurola, M., Ekholm, P., Venäläinen, E.-R., Root, T., Korkalainen, K., Hartikainen, H., Salminen, P., Hietaniemi, V., Aspila, P., and Aro, A. 2015. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland. J. Trace Elem. Med. Biol. 31:142–147.
  • Ardebili, N. O., Saadatmand, S., Niknam, V., and Khavari-Nejad, R. A. 2014. The alleviating effects of selenium and salicylic acid in salinity-exposed soybean. Acta Physiol. Plant. 36:3199–3205.
  • Ávila, F. W., Faquin, V., Yang, Y., Ramos, S. J., Guilherme, L. R., Thannhauser, T. W., and Li, L. 2013. Assessment of the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (Brassica oleracea L. var. italica) sprouts and florets. J. Agric. Food Chem. 61:6216–6223.
  • Ayala, A., Muñoz, M. F., and Argüelles, S. 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014:360438.
  • Bae, M., and Kim, H. 2020. Mini-review on the roles of vitamin C, vitamin D, and selenium in the immune system against COVID-19. Molecules 25:5346.
  • Barickman, T. C., Kopsell, D. A., and Sams, C. E. 2013. Selenium influences glucosinolate and isothiocyanates and increases sulfur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea. J. Agric. Food Chem. 61:202–209.
  • Baum, M. K., Shor-Posner, G., Lai, S., Zhang, G., Lai, H., Fletcher, M. A., Sauberlich, H., and Page, J. B. 1997. High risk of HIV-related mortality is associated with selenium deficiency. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 15:370–374.
  • Beck, M. A., Levander, O. A., and Handy, J. 2003. Selenium deficiency and viral infection. J. Nutr. 5:1463–1467.
  • Benincasa, P., D’Amato, R., Falcinelli, B., Troni, E., Fontanella, M. C., Frusciante, S., Guiducci, M., Beone, G. M., Businelli, D., and Diretto, G. 2020. Grain endogenous selenium and moderate salt stress work as synergic elicitors in the enrichment of bioactive compounds in maize sprouts. Agronomy 10:735.
  • Broadley, M. R., White, P. J., Bryson, R. J., Meacham, M. C., Bowen, H. C., Johnson, S. E., Hawkesford, M. J., McGrath, S. P., Zhao, F.-J., Breward, N., Harriman, M., and Tucker, M. 2006. Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 65:169–181.
  • Brown, K. M., and Arthur, J. R. 2001. Selenium, selenoproteins and human health. A review. Public Health Nutr. 2B:593–599.
  • Brown, T. A., and Shrift, A. 1982. Selenium: Toxicity and tolerance in higher plants. Biol. Rev. 57:59–84.
  • Bruce, A. 1986. Swedish views on selenium. Ann. Clin. Res. 18:8–12.
  • Chun, O. K., Floegel, A., Chung, S.-J., Chung, C. E., Song, W. O., and Koo, S. I. 2010. Estimation of antioxidant intakes from diet and supplements in U.S. adults. J. Nutr. 140:317–324.
  • D’Amato, R., De Feudis, M., Guiducci, M., and Businelli, D. 2019. Zea mays L. grain: increase in nutraceutical and antioxidant properties due to Se fortification in low and high water regimes. J. Agric. Food Chem. 67:7050–7059.
  • Dall’Acqua, S., Ertani, A., Pilon-Smits, E. A. H., Fabrega-Prats, M., and Schiavon, M. 2019. Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca sativa Mill. and Diplotaxis tenuifolia) grown in hydroponics. Plants 8:68.
  • De-la-Cruz Chacón, I., Riley-Saldaña, C. A., and González-Esquinca, A. R. 2013. Secondary metabolites during early development in plants. Phytochem. Rev. 12:47–64.
  • Dinkova-Kostova, A. T., and Kostov, R. V. 2012. Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med. 18:337–347.
  • Dou, L., Tian, Z., Zhao, Q., Xu, M., Zhu, Y., Luo, X., Qiao, X., Ren, R., Zhang, X., and Li, H. 2021. Transcriptomic characterization of the effects of selenium on maize seedling growth. Front. Plant Sci. 12:737029.
  • Drake, E. N. 2006. Cancer chemoprevention: selenium as a prooxidant, not an antioxidant. Med. Hypotheses 67:318–322.
  • European Food Safety Authority. 2014. Scientific opinion on dietary reference values for selenium. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 10:1–67.
  • Flohé, L., Günzler, W. A., and Schock, H. H. 1973. Glutathione peroxidase: a selenoenzyme. FEBS Lett. 32:132–134.
  • Galić, L., Špoljarević, M., Jakovac, E., Ravnjak, B., Teklić, T., Lisjak, M., Perić, K., Nemet, F., and Lončarić, Z. 2021. Selenium biofortification of soybean seeds influences physiological responses of seedlings to osmotic stress. Plants 10:1498.
  • Gao, H. H., Chen, M. X., Hu, X. Q., Chai, S. S., Qin, M. L., and Cao, Z. Y. 2018. Separation of selenium species and their sensitive determination in rice samples by ion-pairing reversed-phase liquid chromatography with inductively coupled plasma tandem mass spectrometry. J. Sep. Sci. 41:432–439.
  • Ghaderzadeh, S., Mirzaei Aghjeh‐Gheshlagh, F. M., Nikbin, S., and Navidshad, B. 2016. A review on properties of selenium in animal nutrition. Iran. J. Appl. Anim. Sci. 6:753–761.
  • Groth, S., Budke, C., Weber, T., Oest, M., Brockmann, S., Holz, M., Daum, D., and Rohn, S. 2021. Selenium biofortification of different varieties of apples (Malus domestica) – influence on protein content and the allergenic proteins Mal d 1 and Mal d 3. Food Chem. 362:130134.
  • Guignardi, Z., and Schiavon, M. 2017. Biochemistry of plant selenium uptake and metabolism. In Selenium in Plants. Plant Ecophysiology; Pilon-Smits, E. A. H., Winkel, L. H. E., and Lin, Z.-Q., Eds. Springer, International Publishing AG: Cham, Switzerland, pp 21–34, Volume 11.
  • Gupta, M., and Gupta, S. 2016. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 7:2074.
  • Hagarová, I., and Nemček, L. 2022. Reliable quantification of ultratrace selenium in food, beverages, and water samples by cloud point extraction and spectrometric analysis. Nutrients 14:3530.
  • Handa, N., Kohli, S. K., Thukral, A. K., Bhardwaj, R., Alyemeni, M. N., Wijaya, L., and Ahmad, P. 2018. Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotech 8:66.
  • Hartikainen, H., Xue, T., and Piironen, V. 2000. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200.
  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Raza, A., Hawrylak-Nowak, B., Matraszek-Gawron, R., Mahmud, J. A., Nahar, K., and Fujita, M. 2020. Selenium in plants: boon or bane? Environ. Exp. Bot. 178:104170.
  • Hefnawy, A. E., and Tórtora-Pérez, J. L. 2010. The importance of selenium and the effects of its deficiency in animal health. Small Rumin. Res. 89:185–192.
  • Hsu, F. C., Wirtz, M., Heppel, S. C., Bogs, J., Krämer, U., Khan, M. S., Bub, A., Hell, R., and Rausch, T. 2011. Generation of Se-fortified broccoli as functional food: impact of Se fertilization on S metabolism. Plant. Cell Environ. 34:192–207.
  • Huang, J., Yang, J., Miao, Q., Olajide, T. M., Qian, J., Liu, H., Ou, P., and Liao, X. 2022. Effect of selenium biofortification on bioaccessibility, antioxidant, and antimicrobial potentials of phenolic compounds in germinated black soybean (Glycine max (L.) Merr). Cereal Chem. 99:1383–1393.
  • Huang, Y., Lei, N., Xiong, Y., Liu, Y., Tong, L., Wang, F., Fan, B., Maesen, P., and Blecker, C. 2022. Influence of selenium biofortification of soybeans on speciation and transformation during seed germination and sprouts quality. Foods 11:1200.
  • Jackson, M. I., and Combs, G. F. 2008. Selenium and anticarcinogenesis. Underlying mechanisms. Curr. Opin. Clin. Nutr. Metab. 6:718–726.
  • Jones, D. G., Droz, B., Greve, P., Gottschalk, P., Poffet, D., McGrath, S. P., Seneviratne, S. I., Smith, P., and Winkel, L. H. E. 2017. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. U S A. 114:2848–2853.
  • Jørgensen, M. E., Nour-Eldin, H. H., and Halkier, B. A. 2015. Transport of defense compounds from source to sink: Lessons learned from glucosinolates. Trends Plant Sci. 20:508–514.
  • Kalaei, M. H. R., Abdossi, V., and Danaee, E. 2022. Evaluation of foliar application of selenium and flowering stages on selected properties of Iranian Borage as a medicinal plant. Sci. Rep. 12:12568.
  • Kang, D., Lee, J., Wu, C., Guo, X., Lee, B. J., Chun, J.-S., and Kim, J.-H. 2020. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp. Mol. Med. 52:1198–1208.
  • Kelly, A., Bones, J., and Rossiter, T. 1998. Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206:370–377.
  • Kipp, A. P., Strohm, D., Brigelius-Flohé, R., Schomburg, L., Bechthold, A., Leschik-Bonnet, E., and Heseker, H. 2015. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 32:195–199.
  • Kliebenstein, D. J. 2013. Making new molecules–evolution of structures for novel metabolites in plants. Curr. Opin. Plant Biol. 16:112–117.
  • Kryukov, G. V., Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigó, R., and Gladyshev, V. N. 2003. Characterization of mammalian selenoproteomes. Science 300:1439–1443.
  • Kuria, A., Tian, H., Li, M., Wang, Y., Aaseth, J. O., Zang, J., and Cao, Y. 2021. Selenium status in the body and cardiovascular disease: a systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 61:3616–3625.
  • Labunskyy, V. M., Hatfield, D. L., and Gladyshev, V. N. 2014. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94:739–777.
  • Lara, M. V., Bonghi, C., Famiani, F., Vizzotto, G., Walker, R. P., and Drincovich, M. F. 2020. Stone fruit as biofactories of phytochemicals with potential roles in human nutrition and health. Front. Plant Sci. 11:562252.
  • Lee, K. H., and Jeong, D. 2012. Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (Review). Mol. Med. Rep. 5:299–304.
  • Lei, X. G., Dann, H. M., Ross, D. A., Cheng, W. H., Combs, G. F., and Roneker, K. R. 1998. Dietary selenium supplementation is required to support full expression of three selenium dependent glutathione peroxidases in various tissues of weanling pigs. J. Nutr. 128:130–135.
  • Liaskos, M., Fark, N., Ferrario, P., Engelbert, A. K., Merz, B., Hartmann, B., and Watzl, B. 2022. First review on the selenium status in Germany covering the last 50 years and on the selenium content of selected food items. Eur J. Nutr. doi: 10.1007/s00394-022-02990-0
  • Lima, L. W., Pilon-Smits, E. A. H., and Schiavon, M. 2018. Mechanisms of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues. Biochim. Biophys. Acta. Gen. Subj. 1862:2343–2353.
  • Liu, K. L., and Ning, M. R. 2021. Antioxidant activity stability and digestibility of protein from Se-enriched germinated brown rice. LWT Food Sci. Technol. 142:111032.
  • Liu, K., Chen, F., Zhao, Y., Gu, Z., and Yang, H. 2011. Selenium accumulation in protein fractions during germination of Se-enriched brown rice and molecular weights distribution of Se-containing proteins. Food Chem. 127:1526–1531.
  • Malagoli, M., Schiavon, M., dall’Acqua, S., and Pilon-Smits, E. A. H. 2015. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 6:280.
  • Maoka, T. 2020. Carotenoids as natural functional pigments. J. Nat. Med. 74:1–16.
  • McCann, J. C., and Ames, B. N. 2011. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J. 25:1793–1814.
  • Mehdi, Y., and Dufrasne, I. 2016. Selenium in cattle: a review. Molecules 21:545–14.
  • Mimmo, T., Tiziani, R., Valentinuzzi, F., Lucini, L., Nicoletto, C., Sambo, P., Scampicchio, M., Pii, Y., and Cesco, S. 2017. Selenium biofortification in Fragaria × ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Front. Plant. Sci. 8:1–12.
  • Moghaddam, A., Heller, R. A., Sun, Q., Seelig, J., Cherkezov, A., Seibert, L., Hackler, J., Seemann, P., Diegmann, J., Pilz, M., Bachmann, M., Minich, W. B., and Schomburg, L. 2020. Selenium deficiency is associated with mortality risk from COVID-19. Nutrients 12:2098.
  • Muecke, R., Waldschock, K., Schomburg, L., Micke, O., Buentzel, J., Kisters, K., Adamietz, I. A., and Huebner, J. 2018. Whole blood selenium levels and selenium supplementation in patients treated in a family doctor practice in Golßen (State of Brandenburg, Germany): a laboratory study. Integr. Cancer Ther. 17:1132–1136.
  • Muth, O. H., Oldfield, J. E., Remmert, L. F., and Schubert, J. R. 1958. Effects of selenium and vitamin E on white muscle disease. Science 128:1090–1091.
  • Navarro-Alarcon, M., and Cabrera-Vique, C. 2008. Selenium in food and the human body. A review. Sci. Total Environ. 1 400:115–141.
  • Pezzarossa, B., Piccotino, D., Shennan, C., and Malorgio, F. 1999. Uptake and distribution of selenium in tomato plants as affected by genotype and sulphate supply. J. Plant Nutr 22:1613–1635.
  • Puccinelli, M., Malorgio, F., Terry, L. A., Tosetti, R., Rosellini, I., and Pezzarossa, B. 2019. Effect of selenium enrichment on metabolism of tomato (Solanum lycopersicum) fruit during post-harvest ripening. J. Sci. Food Agric. 99:2463–2472.
  • Radomska, D., Czarnomysy, R., Radomski, D., Bielawska, A., and Bielawski, K. 2021. Selenium as a bioactive micronutrient in the human diet and its cancer chemopreventive activity. Nutrients 13:1649.
  • Ralston, N. V., Ralston, C. R., Blackwell, J. L., and Raymond, L. J. 2008. Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 29:802–811.
  • Rayman, M. 2020. Selenium intake, status, and health: a complex relationship. Hormones 19:9–14.
  • Rayman, M. P. 2000. The importance of selenium to human health. Lancet 356:233–241.
  • Rayman, M. P. 2002. The argument for increasing selenium intake. Proc. Nutr. Soc. 61:203–215.
  • Rayman, M. P. 2008. Food-chain selenium and human health. Emphasis on intake. Br. J. Nutr. 100:254–268.
  • Reich, H. J., and Hondal, R. J. 2016. Why nature chose selenium. ACS Chem. Biol. 11:821–841.
  • Saeedi, M., Soltani, F., Babalar, M., Izadpanah, F., Wiesner-Reinhold, M., and Baldermann, S. 2021. Selenium fortification alters the growth, antioxidant characteristics and secondary metabolite profiles of cauliflower (Brassica oleracea var. botrytis) cultivars in hydroponic culture. Plants 10:1537.
  • Santiago, F. E. M., Silva, M. L. S., Cardoso, A. A. S., Duan, Y., Guilherme, L. R. G., Liu, J., and Li, L. 2020. Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L). Plant Physiol. Biochem. 157:328–338.
  • Schiavon, M., Berto, C., Malagoli, M., Trentin, A., Sambo, P., Dall’Acqua, S., and Pilon-Smits, E. A. H. 2016. Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics amino acids. Front. Plant Sci. 7:1371.
  • Schiavon, M., Lima, L. W., Jiang, Y., and Hawkesford, M. J. 2017. Effects of selenium on plant metabolism and implications for crops and consumers. In Selenium in Plants. Plant Ecophysiology; Pilon-Smits, E. A. H., Winkel, L. H. E., and Lin, Z.-Q., Eds. Springer, International Publishing AG: Cham, Switzerland, pp 257–275, Volume 11.
  • Schiavon, M., Nardi, S., Pilon-Smits, E. A. H., and Dall’Acqua, S. 2022. Foliar selenium fertilization alters the content of dietary phytochemicals in two rocket species. Front. Plant Sci. 13:987935.
  • Schwarz, K., and Foltz, C. M. 1957. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 79:3292–3293.
  • Schweizer, U., and Fradejas-Villar, N. 2016. Why 21? The significance of selenoproteins for human health is revealed by inborn errors of metabolism. FASEB J. 30:3669–3681.
  • Shahidi, F., and Ambigaipalan, P. 2015. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – a review. J. Funct. Foods 18:820–897.
  • Shreenath, A. P., Ameer, M. A., and Dooley, J. 2020. Selenium Deficiency. StatPearls Publishing: Treasure Island, FL. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482260/. (accessed Jan 30, 2021).
  • Sors, T. G., Martin, C. P., and Salt, D. E. 2009. Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J. 59:110–122.
  • Sugihara, S., Kondo, M., Chihara, Y., Yuji, M., Hattori, H., and Yoshida, M. 2004. Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Biosci. Biotechnol. Biochem. 68:193–199.
  • Terry, N., Zayed, A. M., De Souza, M. P., and Tarun, A. S. 2000. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:401–432.
  • Tian, M., Hui, M., Thannhauser, T. W., Pan, S., and Li, L. 2017. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica). Front. Plant Sci. 8:1425.
  • Tian, M., Xu, X., Liu, Y., Xie, L., and Pan, S. 2016. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem. 190:374–380.
  • Tsuji, P. A., and Hatfield, D. L. 2022. Editorial to special issue molecular biology of selenium in health and disease. IJMS 23:808.
  • Van Hoewyk, D. 2013. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann. Bot. 112:965–972.
  • Van Hoewyk, D., Takahashi, H., Inoue, E., Hess, A., Tamaoki, M., and Pilon-Smits, E. A. H. 2008. Transcriptome analyses give insight into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol. Plant. 132:236–253.
  • Wang, J., Mao, S., Xu, H., Wu, Q., Liang, M., Yuan, Y., Liu, M., Huang, K., and Wu, Q. 2020. Effects of sulfur and selenium on glucosinolate biosynthesis in cabbage. Plant Mol. Biol. Rep. 38:62–74.
  • Wangeline, A. L., Valdez, J. R., Lindblom, S. D., Bowling, K. L., Reeves, F. B., and Pilon-Smits, E. A. H. 2011. Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range. Am. J. Bot. 98:1139–1147.
  • White, P. J. 2016. Selenium accumulation by plants. Ann. Bot. 117:217–235.
  • White, P. J., Bowen, H. C., Parmaguru, P., Fritz, M., Spracklen, W. P., Spiby, R. E., Meacham, M. C., Mead, A., Harriman, M., Trueman, L. J., Smith, B. M., Thomas, B., and Broadley, M. R. 2004. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 55:1927–1937.
  • Winkel, L. H. E., Vriens, B., Jones, G. D., Schneider, L. S., Pilon-Smits, E. A. H., and Bañuelos, G. S. 2015. Selenium cycling across soil-plantatmosphere interfaces: a critical review. Nutrients 7:4199–4239.
  • Wrobel, K., Guerrero Esperanza, M., Yanez Barrientos, E., Corrales Escobosa, A. R., and Wrobel, K. 2020. Different approaches in metabolomic analysis of plants exposed to selenium: a comprehensive review. Acta Physiol. Plant 42:125.
  • Wu, Q., Wang, J., Huang, H., Mao, S., Wu, Q., and Huang, K. 2022. Exogenous selenium treatment promotes glucosinolate and glucoraphanin accumulation in broccoli by activating their biosynthesis and transport pathways. Appl. Sci. 12:4101.
  • Wu, X., Zhou, Q-h., and Xu, K. 2009. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol. Sin. 30:501–512.
  • Yang, G., Yin, S., Zhou, R., Gu, L., Yan, B., and Liu, Y. 1989. Studies of safe maximal daily dietary Se-intake in a seleniferous area in China. Part II. J. Trace Elem. Electrolytes Health Dis 3:123–130.
  • Yin, H., Qi, Z., Li, M., Ahammed, G. J., Chu, X., and Zhou, J. 2019. Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content, and speciation in Oryza sativa L. Ecotoxicol. Environ. Saf. 169:911–917.
  • Zayed, A. M., and Terry, N. 1992. Selenium volatilization in broccoli as influenced by sulfate supply. J. Plant Physiol. 140:646–652.
  • Zhang, X., Liu, C., Guo, J., and Song, Y. 2016. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials. Eur. J. Clin. Nutr. 70:162–169.
  • Zhao, W., Wang, W., Weihong, X., Chai, Y., Xie, W., and Chi, S. 2018. Effects of selenium on activity of glutathione peroxidase and expression of selenium metabolism-related genes in Brassica. Toxicol. Environ. Chem. 100:191–204.
  • Zúñiga, G. E., and Corcuera, L. J. 1986. Effect of gramine of barley seedlings to the aphid Rhopalosiphum padi. Entomol. Exp. Appl. 40:259–262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.