4,652
Views
0
CrossRef citations to date
0
Altmetric
Articles

Role of Mineral Nitrogen Nutrition in Fungal Plant Diseases of Cereal Crops

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Abd-Rabboh, A. M. K., Ghazy, N. A., Awad, M. M., and Farahat, G. A. 2020. Effect of nitrogen fertilizer and foliar spraying with humic acid on productivity of maize, soybean and ear rot disease of maize. J. Plant Prod. 11:1045–1054. doi:10.21608/jpp.2020.122663
  • Abiodun, M., Nafiu, A., and Osunlaja, S. 2015. Different rates of urea as nitrogen fertilizer affect root and stalk rot diseases of maize in South West Nigeria. IJPSS. 7:55–66. doi:10.9734/IJPSS/2015/13208
  • Agrios, G. N. 2008. Plant Pathology. Elsevier Academic Press, Amsterdam.
  • Ahmad, N., Ed. 1996. Nitrogen Economy in Tropical Soils. Springer Netherlands, Dordrecht.
  • Ampt, E. A., Francioli, D., van Ruijven, J., Gomes, S. I. F., Maciá‐Vicente, J. G., Termorshuizen, A. J., Bakker, L. M., and Mommer, L. 2022. Deciphering the interactions between plant species and their main fungal root pathogens in mixed grassland communities. J. Ecol. 110:3039–3052. doi:10.1111/1365-2745.14012
  • Anderson, H., Nehring, E., and Wichser, W. 1975. Aflatoxin contamination of corn in the field. J. Agric. Food Chem. 23:775–782. doi:10.1021/jf60200a014
  • Antoni, E. A., Rybak, K., Tucker, M. P., Hane, J. K., Solomon, P. S., Drenth, A., Shankar, M., and Oliver, R. P. 2010. Ubiquity of ToxA and absence of ToxB in Australian populations of Pyrenophora tritici-repentis. Austral. Plant Pathol. 39:63–68. doi:10.1071/AP09056
  • Antoninka, A., Reich, P. B., and Johnson, N. C. 2011. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol. 192:200–214. doi:10.1111/j.1469-8137.2011.03776.x
  • Ash, G. J., and Brown, J. F. 1991. Effect of nitrogen nutrition of the host on the epidemiology of Puccinia Striiformis F.sp. Tritici and crop yield in wheat. Austral. Plant Pathol. 20:108–114. doi:10.1071/APP9910108
  • Aufhammer, W., Hermann, W., and Kubler, E. 1999. Fusarium (F. graminearum) infection of ears and toxin concentration of grains of winter wheat, triticale and rye depending on cultivars and production intensity. Pflanzenbauwissenschaften 3:32–39.
  • Avio, L., Castaldini, M., Fabiani, A., Bedini, S., Sbrana, C., Turrini, A., and Giovannetti, M. 2013. Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol. Biochem. 67:285–294. doi:10.1016/j.soilbio.2013.09.005
  • Aydogdu, M., and Boyraz, N. 2011. Effects of nitrogen and organic fertilization on corn smut (Ustilago maydis (DC) Corda). African J. Agric. Res. 6:4539–4543.
  • Ayyadurai, N., Kirubakaran, S. I., Srisha, S., and Sakthivel, N. 2005. Biological and molecular variability of Sarocladium oryzae, the sheath rot pathogen of rice (Oryza sativa L.). Curr. Microbiol. 50:319–323. doi:10.1007/s00284-005-4509-6
  • Baba, S. H. A. 2019. Molecular response of wheat to Bipolaris sorokiniana under nitrogen stress, Newcastle University, pp 1–215.
  • Bacon, C. W., Yates, I. E., Hinton, D. M., and Meredith, F. 2001. Biological control of Fusarium moniliforme in maize. Environ. Health Perspect. 109:325–332. doi:10.2307/3435026
  • Bainbridge, A. 1974. Effect of nitrogen nutrition of the host on barley powdery mildew. Plant Pathol. 23: 160–161. doi:10.1111/j.1365-3059.1974.tb01842.x
  • Ballini, E., Nguyen, T. T., and Morel, J.-B. 2013. Diversity and genetics of nitrogen-induced susceptibility to the blast fungus in rice and wheat. Rice 6: 13. doi:10.1186/1939-8433-6-32
  • Beckman, P. M., and Payne, G. A. 1982. External growth, penetration, and development of Cercospora zeae-maydis in corn leaves. Phytopathology 72:810–815. doi:10.1094/Phyto-72-810
  • Berendsen, R. L., Pieterse, C. M. J., and Bakker, P. A. H. M. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17: 478–486. doi:10.1016/j.tplants.2012.04.001
  • Bhaskar, C. V., Rao, G. R., and Reddy, K. B. 2001. Effect of nitrogen and potassium nutrition on sheath rot incidence and phenol content in rice (Oryza sativa L.). Indian J.Plant Physiol. 6: 254–257.
  • Bierman, S. M., Fitt, B. D. L., van den Bosch, F., Bateman, G. L., Jenkyn, J. F., and Welham, S. J. 2002. Changes in populations of the eyespot fungi Tapesia yallundae and T. acuformis under different fungicide regimes in successive crops of winter wheat, 1984-2000. Plant Pathol. 51: 191–201. doi:10.1046/j.1365-3059.2002.00673.x
  • Blandino, M., Reyneri, A., and Vanara, F. 2008. Influence of nitrogen fertilization on mycotoxin contamination of maize kernels. Crop Prot. 27: 222–230. doi:10.1016/j.cropro.2007.05.008
  • Bockus, W. W. 1979. Decline in Numbers and Inoculum Potential of Sclerotium oryzae in Field Soil. Phytopathology 69: 389–392. doi:10.1094/Phyto-69-389
  • Bockus, W. W., and Davis, M. A. 1993. Effect of Nitrogen Fertilizers on Severity of Tan Spot of Winter Wheat. Plant Dis. 77: 508–510. doi:10.1094/PD-77-0508
  • Boone, M. D., Bishop, C. A., Boswell, L. A., Brodman, R. D., Burger, J., Davidson, C., Gochfeld, M., Hoverman, J. T., Neuman-Lee, L. A., Relyea, R. A., Rohr, J. R., Salice, C., Semlitsch, R. D., Sparling, D., and Weir, S. 2014. Pesticide Regulation amid the Influence of Industry. BioScience 64: 917–922. doi:10.1093/biosci/biu138
  • Brefort, T., Doehlemann, G., Mendoza-Mendoza, A., Reissmann, S., Djamei, A., and Kahmann, R. 2009. Ustilago maydis as a pathogen. Annu. Rev. Phytopathol. 47: 423–445. doi:10.1146/annurev-phyto-080508-081923
  • Brennan, R. F. 1992a. Effect of superphosphate and nitrogen on yield and take-all of wheat. Fertilizer Res. 31: 43–49. doi:10.1007/BF01064226
  • Brennan, R. F. 1992b. The role of manganese and nitrogen nutrition in the susceptibility of wheat plants to take-all in Western Australia. Fertilizer Res. 31: 35–41. doi:10.1007/BF01064225
  • Brennan, R. F. 1993. Effect of ammonium chloride, ammonium sulphate, and sodium nitrate on take‐all and grain yield of wheat grown on soils in South‐western Australia. J. Plant Nutr. 16: 349–358. doi:10.1080/01904169309364536
  • Brooks, S. A., Anders, M. M., and Yeater, K. M. 2010. Effect of furrow irrigation on the severity of false smut in susceptible rice varieties. Plant Dis. 94: 570–574. doi:10.1094/PDIS-94-5-0570
  • Brooks, S. A., Anders, M. M., and Yeater, K. M. 2011. Influences from long-term crop rotation, soil tillage, and fertility on the severity of rice grain smuts. Plant Dis. 95: 990–996. doi:10.1094/PDIS-09-10-0689
  • Broscious, S. C. 1985. Influence of winter wheat management practices on the severity of powdery mildew and septoria blotch in Pennsylvania. Phytopathology 75: 538–542. doi:10.1094/Phyto-75-538
  • Bujold, I., Paulitz, T. C., and Carisse, O. 2001. Effect of Microsphaeropsis sp. on the production of perithecia and ascospores of Gibberella zeae. Plant Dis. 85: 977–984. doi:10.1094/PDIS.2001.85.9.977
  • Bürling, K., Hunsche, M., and Noga, G. 2011. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J. Plant Physiol. 168: 1641–1648. doi:10.1016/j.jplph.2011.03.016
  • Cal, A. d., Melgarejo, P., and Del Jimenez-Gasco, M. M. 2022. Editorial: necrotrophic fungal plant pathogens. Front. Plant Sci. 13: 839674. doi:10.3389/fpls.2022.839674
  • Caldwell, P. M., Ward, J. M. J., Miles, N., and Laing, M. D. 2002. Assessment of the effects of fertilizer applications on gray leaf spot and yield in maize. Plant Dis. 86: 859–866. doi:10.1094/PDIS.2002.86.8.859
  • Cameron, D. D., Neal, A. L., van Wees, S. C. M., and Ton, J. 2013. Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci. 18: 539–545. doi:10.1016/j.tplants.2013.06.004
  • Campos-Soriano, L., García-Martínez, J., and San Segundo, B. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol. Plant Pathol. 13: 579–592. doi:10.1111/j.1364-3703.2011.00773.x
  • Caravaca, F., Maboreke, H., Kurth, F., Herrmann, S., Tarkka, M. T., and Ruess, L. 2015. Synergists and antagonists in the rhizosphere modulate microbial communities and growth of Quercus robur L. Soil Biol. Biochem. 82: 65–73. doi:10.1016/j.soilbio.2014.12.004
  • Carvalho, M. P., Rodrigues, F. A., Silveira, P. R., Andrade, C. C. L., Baroni, J. C. P., Paye, H. S., and Loureiro Junior, J. E. 2010. Rice resistance to brown spot mediated by nitrogen and potassium. J Phytopathol 158: 160–166. doi:10.1111/j.1439-0434.2009.01593.x
  • Castiblanco, V., Castillo, H. E., and Miedaner, T. 2018. Candidate genes for aggressiveness in a natural Fusarium culmorum population greatly differ between wheat and rye head blight. JOF. 4: 14. doi:10.3390/jof4010014
  • Cavaglieri, L., Orlando, J., Rodríguez, M. I., Chulze, S., and Etcheverry, M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res. Microbiol. 156: 748–754. doi:10.1016/j.resmic.2005.03.001
  • Chakravarty, D. K., and Biswas, S. 1978. Estimation of yield loss in rice affected by sheath rot. Plant Dis. Rep. 62: 226–227.
  • Chaurasia, P., and Duveiller, E. 2009. Management of leaf blight (Bipolaris sorokiniana) disease of wheat with cultural practices. Nepal Agric. Res. J. 7: 63–69. doi:10.3126/narj.v7i0.1870
  • Chen, W., Radford, D., and Hambleton, S. 2022. Towards improved detection and identification of rust fungal pathogens in environmental samples using a metabarcoding approach. Phytopathology 112: 535–548. doi:10.1094/PHYTO-01-21-0020-R
  • Chen, Y., Wang, J., Yang, N., Wen, Z., Sun, X., Chai, Y., and Ma, Z. 2018a. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9: 3429. doi:10.1038/s41467-018-05683-7
  • Chen, Y., Zhang, F., Tang, L., Zheng, Y., Li, Y., Christie, P., and Li, L. 2007. Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean. Plant Soil 291: 1–13. doi:10.1007/s11104-006-9161-9
  • Chen, Y.-L., Mao, X.-W., Wang, J.-X., Wu, L.-Y., Zhou, M.-G., and Hou, Y.-P. 2018b. Activity of the dinitroaniline fungicide fluazinam against Bipolaris maydis. Pestic. Biochem. Physiol. 148: 8–15. doi:10.1016/j.pestbp.2018.03.005
  • Chen, S., Waghmode, T. R., Sun, R., Kuramae, E. E., Hu, C., and Liu, B. 2019. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7: 136. doi:10.1186/s40168-019-0750-2.
  • Chien, C. C., and Huang, C. H. 2013. Relation between sheath rot and the sterility of rice plant. J. Agric. Res. China 28: 7–16.
  • Cintas, N. A., and Webster, R. K. 2001. Effects of rice straw management on Sclerotium oryzae inoculum, stem rot severity, and yield of rice in California. Plant Dis. 85: 1140–1144. doi:10.1094/PDIS.2001.85.11.1140
  • Clark, R. B., and Zeto, S. K. 2000. Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 23: 867–902. doi:10.1080/01904160009382068
  • Cobo-Díaz, J. F., Baroncelli, R., Le Floch, G., and Picot, A. 2019a. A novel metabarcoding approach to investigate Fusarium species composition in soil and plant samples. FEMS Microbiol. Ecol. 95: 1–13. doi:10.1093/femsec/fiz084
  • Cobo-Díaz, J. F., Baroncelli, R., Le Floch, G., and Picot, A. 2019b. Combined metabarcoding and co-occurrence network analysis to profile the bacterial, fungal and fusarium communities and their interactions in maize stalks. Front. Microbiol. 10: 261. doi:10.3389/fmicb.2019.00261
  • Cohen, L., and Eyal, Z. 1993. The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici. Plant Pathol. 42: 737–743. doi:10.1111/j.1365-3059.1993.tb01560.x
  • Colbach, N., and Saur, L. 1998. Influence of crop management on eyespot development and infection cycles of winter wheat. Eur. J. Plant Pathol. 104: 37–48. doi:10.1023/A:1008673925979
  • Cona, A., Rea, G., Angelini, R., Federico, R., and Tavladoraki, P. 2006. Functions of amine oxidases in plant development and defence. Trends Plant Sci. 11: 80–88. doi:10.1016/j.tplants.2005.12.009
  • Cowley, T., and Walters, D. R. 2002a. Polyamine metabolism in an incompatible interaction between barley and the powdery mildew fungus, Blumeria graminis f. sp. hordei. J. Phytopathol. 150: 581–586. doi:10.1046/j.1439-0434.2002.00816.x
  • Cowley, T., and Walters, D. R. 2002b. Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f. sp. hordei. Plant, Cell Environ. 25: 461–468. doi:10.1046/j.0016-8025.2001.00819.x
  • Cunfer, B. M. 2002. Powdery mildew. In Bread Wheat: Improvement and Production. Food and Agriculture Organization of the United Nations, Italy, Rome, pp 317–330.
  • Curtis, B. C., Rajaram, S., and Macpherson, H. 2002. Bread Wheat: Improvement and Production. Food and Agriculture Organization of the United Nations, Italy, Rome.
  • Damalas, C. A. 2009. Understanding benefits and risks of pesticide use. Sci. Res. Essay 4: 945–949.
  • Danial, D. L., and Parlevliet, J. E. 1995. Effects of nitrogen fertilization on disease severity and infection type of yellow rust on wheat genotypes varying in quantitative resistance. J. Phytopathol. 143: 679–681. doi:10.1111/j.1439-0434.1995.tb00222.x
  • Darwinkel, A. 1980. Grain production of winter wheat in relation to nitrogen and diseases, 1: relationship between nitrogen dressing and yellow rust infection. Zeitschrift fur Acker- und Pflanzenbau 149: 299–308.
  • Darwish, W. S., Ikenaka, Y., Nakayama, S. M. M., and Ishizuka, M. 2014. An overview on mycotoxin contamination of foods in Africa. J. Vet. Med. Sci. 76: 789–797. doi:10.1292/jvms.13-0563
  • Dasgupta, M. K. 1984. The Bengal famine, 1943 and the brown spot of rice–an inquiry into their relations. Hist. Agric. 2: 1–18.
  • Datnoff, L. E., Elmer, W. H. and Huber, D. M., Eds. 2007. Mineral Nutrition and Plant Disease. APS Press American Phytopathological Soc, St. Paul, MN.
  • Debona, D., Rodrigues, F. Á., Rios, J. A., and Nascimento, K. J. T. 2012. Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 102: 1121–1129. doi:10.1094/PHYTO-06-12-0125-R
  • Delmont, T. O., Francioli, D., Jacquesson, S., Laoudi, S., Mathieu, A., Nesme, J., Ceccherini, M. T., Nannipieri, P., Simonet, P., and Vogel, T. M. 2014. Microbial community development and unseen diversity recovery in inoculated sterile soil. Biol. Fertil. Soils 50: 1069–1076. doi:10.1007/s00374-014-0925-8
  • Desjardins, A. E., Plattner, R. D., and Nelson, P. E. 1997. Production of fumonisin B (inf1) and moniliformin by Gibberella fujikuroi from rice from various geographic areas. Appl. Environ. Microbiol. 63: 1838–1842. doi:10.1128/aem.63.5.1838-1842.1997
  • Devadas, R., Simpfendorfer, S., Backhouse, D., and Lamb, D. W. 2014. Effect of stripe rust on the yield response of wheat to nitrogen. Crop J. 2: 201–206. doi:10.1016/j.cj.2014.05.002
  • Devadas, S. K., Enyedi, A., and Raina, R. 2002. The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. Plant J. 30: 467–480. doi:10.1046/j.1365-313x.2002.01300.x
  • Dietzel, K., Valle, D., Fierer, N., U'Ren, J. M., and Barberán, A. 2019. Geographical distribution of fungal plant pathogens in dust across the United States. Front. Ecol. Evol. 7: 304. doi:10.3389/fevo.2019.00304
  • Ding, J., Jiang, X., Guan, D., Zhao, B., Ma, M., Zhou, B., Cao, F., Yang, X., Li, L., and Li, J. 2017. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil Ecol. 111: 114–122. doi:10.1016/j.apsoil.2016.12.003
  • Ding, S., Shao, X., Li, J., Ahammed, G. J., Yao, Y., Ding, J., Hu, Z., Yu, J., and Shi, K. 2021. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant. Cell Environ. 44: 1596–1610. doi:10.1111/pce.14019
  • Doehlemann, G., Wahl, R., Vranes, M., de Vries, R.P., Kämper, J., and Kahmann, R. 2008. Establishment of compatibility in the Ustilago maydis/maize pathosystem. J. Plant Physiol. 165: 29–40. doi:10.1016/j.jplph.2007.05.016
  • Dong, H., Fan, S., Sun, H., Chen, C., Wang, A., Jiang, L., and Ma, D. 2021. Rhizosphere-associated microbiomes of rice (Oryza sativa L.) under the effect of increased nitrogen fertilization. Front. Microbiol. 12: 730506. doi:10.3389/fmicb.2021.730506
  • Dordas, C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 28: 33–46. doi:10.1051/agro:2007051
  • Duncan, K. E., and Howard, R. J. 2000. Cytological analysis of wheat infection by the leaf blotch pathogen Mycosphaerella graminicola. Mycol. Res. 104: 1074–1082. doi:10.1017/S0953756299002294
  • Durner, J., Wendehenne, D., and Klessig, D. F. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. U S A. 95: 10328–10333. doi:10.1073/pnas.95.17.10328
  • Duveiller, E., Kandel, Y. R., Sharma, R. C., and Shrestha, S. M. 2005. Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology 95: 248–256. doi:10.1094/PHYTO-95-0248
  • Duveiller, E., Singh, R. P., and Nicol, J. M. 2007. The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157: 417–430. doi:10.1007/s10681-007-9380-z
  • Dweba, C. C., Figlan, S., Shimelis, H. A., Motaung, T. E., Sydenham, S., Mwadzingeni, L., and Tsilo, T. J. 2017. Fusarium head blight of wheat: pathogenesis and control strategies. Crop Prot. 91: 114–122. doi:10.1016/j.cropro.2016.10.002
  • Edgerton, M. D. 2009. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 149: 7–13. doi:10.1104/pp.108.130195
  • Ekundayo, E. A., Adetuyi, F. C., and Ekundayo, F. O. 2011. In vitro antifungal activities of bacteria associated with maize husks and cobs. Res. J. Microbiol. 6: 418–424. doi:10.3923/jm.2011.418.424
  • Eom, A.-H., Hartnett, D. C., Wilson, G., and Figge, D. 1999. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am. Midland Nat. 142: 55–70. doi:10.1674/0003-0031(1999)142[0055:TEOFMA2.0.CO;2]
  • Fauzi, M. T., and Paulitz, T. C. 1994. The effect of plant growth regulators and nitrogen on fusarium head blight of the spring wheat cultivar max. Plant Dis. 78: 289–292. doi:10.1094/PD-78-0289
  • Fei, W., and Liu, Y. 2023. Biotrophic fungal pathogens: a critical overview. Appl. Biochem. Biotechnol. 195: 1–16. doi:10.1007/s12010-022-04087-0
  • Fernandes, M. S., and Rossiello, R. O. P. 1995. Mineral nitrogen in plant physiology and plant nutrition. Crit. Rev. Plant Sci. 14: 111–148. doi:10.1080/07352689509701924
  • Fernandez, M. R., DePauw, R. M., Clarke, J. M., and Lefkovitch, L. P. 1996. Red smudge in durum wheat reduces seedling vigour. Can. J. Plant Sci. 76: 321–324. doi:10.4141/cjps96-055
  • Figueroa, M., Hammond-Kosack, K. E., and Solomon, P. S. 2018. A review of wheat diseases-a field perspective. Mol. Plant Pathol. 19: 1523–1536. doi:10.1111/mpp.12618
  • Fitt, B. D. L., Goulds, A., and Polley, R. W. 1988. Eyespot (Pseudocercosporella herpotrichoides) epidemiology in relation to prediction of disease severity and yield loss in winter wheat? - A review. Plant Pathol. 37: 311–328. doi:10.1111/j.1365-3059.1988.tb02081.x
  • Fleitas, M. C., Schierenbeck, M., Gerard, G. S., Dietz, J. I., Golik, S. I., Campos, P. E., and Simón, M. R. 2018a. How leaf rust disease and its control with fungicides affect dough properties, gluten quality and loaf volume under different N rates in wheat. J. Cereal Sci. 80: 119–127. doi:10.1016/j.jcs.2018.02.003
  • Fleitas, M. C., Schierenbeck, M., Gerard, G. S., Dietz, J. I., Golik, S. I., and Simón, M. R. 2018b. Breadmaking quality and yield response to the green leaf area duration caused by fluxapyroxad under three nitrogen rates in wheat affected with tan spot. Crop Prot. 106: 201–209. doi:10.1016/j.cropro.2018.01.004
  • Fones, H. N., Bebber, D. P., Chaloner, T. M., Kay, W. T., Steinberg, G., and Gurr, S. J. 2020. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1: 332–342. doi:10.1038/s43016-020-0075-0
  • Fox, R. H., and Hoffman, L. D. 1981. The effect of N fertilizer source on grain yield, N uptake, soil pH, and lime requirement in no‐till corn. Agron. J. 73: 891–895. doi:10.2134/agronj1981.00021962007300050032x
  • Francioli, D., Lentendu, G., Lewin, S., and Kolb, S. 2021. DNA metabarcoding for the characterization of terrestrial microbiota-pitfalls and solutions. Microorganisms 9: 361. doi:10.3390/microorganisms9020361
  • Francioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F., and Reitz, T. 2016. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7: 1446. doi:10.3389/fmicb.2016.01446
  • Francioli, D., van Ruijven, J., Bakker, L., and Mommer, L. 2020. Drivers of total and pathogenic soil-borne fungal communities in grassland plant species. Fungal Ecol. 48: 100987. doi:10.1016/j.funeco.2020.100987
  • Freeman, J., and Ward, E. 2004. Gaeumannomyces graminis, the take-all fungus and its relatives. Mol. Plant Pathol. 5: 235–252. doi:10.1111/j.1364-3703.2004.00226.x
  • Gangopadhyay, S., and Chattopadhyay, S. B. 1975. Total silica and brown spot disease development of rice under varying levels of nitrogen. Curr. Sci. 44: 92–94.
  • Gao, C., Montoya, L., Xu, L., Madera, M., Hollingsworth, J., Purdom, E., Singan, V., Vogel, J., Hutmacher, R. B., Dahlberg, J. A., Coleman-Derr, D., Lemaux, P. G., and Taylor, J. W. 2020. Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nat. Commun. 11: 34. doi:10.1038/s41467-019-13913-9
  • Gebrel, E., Gad, M., and Farouk, M. 2019. Response of some wheat cultivars to different nitrogen fertilizer rates and their relation to rust diseases. Egypt. J. Agron. 42: 243–254. doi:10.21608/agro.2019.14921.1169
  • Geisseler, D., and Scow, K. M. 2014. Long-term effects of mineral fertilizers on soil microorganisms – a review. Soil Biol. Biochem. 75: 54–63. doi:10.1016/j.soilbio.2014.03.023
  • Gheorgies, C. 1974. Research concerning the influence of certain soil and crop factors upon the Septoria tritici leaf blotch of wheat. Lucràri stiintifice-Institutul Agronomic. Bucuresti Seria Agron. 15: 113–119.
  • Gilbert, G. S., and Parker, I. M. 2016. The evolutionary ecology of plant disease: a phylogenetic perspective. Annu. Rev. Phytopathol. 54: 549–578. doi:10.1146/annurev-phyto-102313-045959
  • Gilbert, G. S., and Webb, C. O. 2007. Phylogenetic signal in plant pathogen-host range. Proc. Natl. Acad. Sci. U S A. 104: 4979–4983. doi:10.1073/pnas.0607968104
  • Gilland, B. 2002. World population and food supply. Food Policy 27: 47–63. doi:10.1016/S0306-9192(02)00002-7
  • Giller, K. E., Delaune, T., Silva, J. V., Descheemaeker, K., van de Ven, G., Schut, A. G., van Wijk, M., Hammond, J., Hochman, Z., Taulya, G., Chikowo, R., Narayanan, S., Kishore, A., Bresciani, F., Teixeira, H. M., Andersson, J. A., and van Ittersum, M. K. 2021. The future of farming: who will produce our food? Food Sec. 13: 1073–1099. doi:10.1007/s12571-021-01184-6
  • Goswami, R. S., and Kistler, H. C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5: 515–525. doi:10.1111/j.1364-3703.2004.00252.x
  • Goutam, U., Kukreja, S., Yadav, R., Salaria, N., Thakur, K., and Goyal, A. K. 2015. Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front. Microbiol. 6: 861. doi:10.3389/fmicb.2015.00861
  • Grewal, S. K., and Kang, M. S. 1990. Influence of nitrogen fertilization on Fusarium sheath rot and yield of rice. Plant Dis. Res. 5: 47–52.
  • Grybauskas, A. P., Their, A. L., and Sammons, D. J. 1988. Effect of chloride fertilizers on development of powdery mildew of winter wheat. Plant Dis. 72: 605–608. doi:10.1094/PD-72-0605
  • Gunnell, P. S. 1984. Aggregate sheath spot of rice in California. Plant Dis. 68: 529. doi:10.1094/PD-68-529
  • Guo, J., Shi, G., Kalil, A., Friskop, A., Elias, E., Xu, S. S., Faris, J. D., and Liu, Z. 2020. Pyrenophora tritici-repentis race 4 isolates cause disease on tetraploid wheat. Phytopathology 110: 1781–1790. doi:10.1094/PHYTO-05-20-0179-R
  • Guo, Q., Kamio, A., Sharma, B. S., Sagara, Y., Arakawa, M., and Inagaki, K. 2006. Survival and subsequent dispersal of rice sclerotial disease fungi, Rhizoctonia oryzae and Rhizoctonia oryzae-sativae, in paddy fields. Plant Dis. 90: 615–622. doi:10.1094/PD-90-0615
  • Guo, X., Li, Y., Fan, J., Li, L., Huang, F., and Wan, W. 2012. Progress in the study of false smut disease in rice. J. Agric. Sci. Technol. 2: 1211–1217.
  • Gupta, K. J., Brotman, Y., Segu, S., Zeier, T., Zeier, J., Persijn, S. T., Cristescu, S. M., Harren, F. J. M., Bauwe, H., Fernie, A. R., Kaiser, W. M., and Mur, L. A. J. 2013. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. J. Exp. Bot. 64: 553–568. doi:10.1093/jxb/ers348
  • Han, Y., Feng, J., Han, M., and Zhu, B. 2020. Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis. Glob. Chang. Biol. 26: 7229–7241. doi:10.1111/gcb.15369
  • Hane, J. K., Lowe, R. G. T., Solomon, P. S., Tan, K.-C., Schoch, C. L., Spatafora, J. W., Crous, P. W., Kodira, C., Birren, B. W., Galagan, J. E., Torriani, S. F. F., McDonald, B. A., and Oliver, R. P. 2007. Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell. 19: 3347–3368. doi:10.1105/tpc.107.052829
  • Higgins, S., Fitt, B. D. L., and White, R. P. 1986. The development of eyespot (Pseudocercosporella herpotrichoides) leasions in winter wheat crops. J. Plant Dis. Prot. 93: 210–220.
  • Hinzman, L., Bauer, M., and Daughtry, C. 1986. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sens. Environ. 19: 47–61. doi:10.1016/0034-4257(86)90040-4
  • Hodge, A., and Fitter, A. H. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl. Acad. Sci. U S A. 107: 13754–13759. doi:10.1073/pnas.1005874107
  • Hofer, K., Barmeier, G., Schmidhalter, U., Habler, K., Rychlik, M., Hückelhoven, R., and Hess, M. 2016. Effect of nitrogen fertilization on Fusarium head blight in spring barley. Crop Prot. 88: 18–27. doi:10.1016/j.cropro.2016.05.007
  • Hollingsworth, C. R., Motteberg, C. D., Wiersma, J. V., and Atkinson, L. M. 2008. Agronomic and economic responses of spring wheat to management of fusarium head blight. Plant Dis. 92: 1339–1348. doi:10.1094/PDIS-92-9-1339
  • Hornby, D. 1998. Take-all disease of cereals: a regional perspective. CAB International, Wallingford, UK.
  • Hosford, R. M. 1982. Tan spot—developing knowledge 1902–1981, virulent races and wheat differentials, methodology, rating systems, other leaf diseases, literature. In Tan Spot of Wheat and Related Diseases Workshop, North Dakota Agricultural Experiment Station; Hosford, R. M., Ed. pp. 1–24.
  • Howard, D. D., Chambers, A. Y., and Logan, J. 1994. Nitrogen and fungicide effects on yield components and disease severity in wheat. J. Prod. Agric. 7: 448–454. doi:10.2134/jpa1994.0448
  • Huang, H., Nguyen Thi Thu, T., He, X., Gravot, A., Bernillon, S., Ballini, E., and Morel, J.-B. 2017. Increase of fungal pathogenicity and role of plant glutamine in nitrogen-induced susceptibility (NIS) to rice blast. Front. Plant Sci. 8: 265. doi:10.3389/fpls.2017.00265
  • Huber, D. M. 1987. Amelioration of tan spot-infected wheat with nitrogen. Plant Dis. 71: 49–50. doi:10.1094/PD-71-0049
  • Huber, D. M. 1990. Fertilizers and soil-borne diseases. Soil Use Manag. 6: 168–172. doi:10.1111/j.1475-2743.1990.tb00830.x
  • Huber, D. M., and Haneklaus, S. 2007. Managing nutrition to control plant disease. Landbauforschung Volkenrode 57: 313–322.
  • Huber, D. M., and Watson, R. D. 1974. Nitrogen form and plant disease. Annu. Rev. Phytopathol. 12: 139–165. doi:10.1146/annurev.py.12.090174.001035
  • Hunter, T. 1989. Occurrence of Tapesia yallundae, teleomorph of Pseudocercosporella herpotrichoides, on unharvested wheat culms in England. Plant Pathol. 38: 598–603. doi:10.1111/j.1365-3059.1989.tb01457.x
  • Jach-Smith, L. C., and Jackson, R. D. 2018. N addition undermines N supplied by arbuscular mycorrhizal fungi to native perennial grasses. Soil Biol. Biochem. 116: 148–157. doi:10.1016/j.soilbio.2017.10.009
  • Jacquet, F., Jeuffroy, M.-H., Jouan, J., Le Cadre, E., Litrico, I., Malausa, T., Reboud, X., and Huyghe, C. 2022. Pesticide-free agriculture as a new paradigm for research. Agron. Sustain. Dev. 42: 24. doi:10.1007/s13593-021-00742-8
  • Jefwa, J. M., Sinclair, R., and Maghembe, J. A. 2006. Diversity of glomale mycorrhizal fungi in maize/Sesbania intercrops and maize monocrop systems in Southern Malawi. Agroforest. Syst. 67: 107–114. doi:10.1007/s10457-004-2370-4
  • Jensen, B., and Munk, L. 1997. Nitrogen‐induced changes in colony density and spore production of Erysiphe graminis f.sp. hordei on seedlings of six spring barley cultivars. Plant Pathol. 46: 191–202. doi:10.1046/j.1365-3059.1997.d01-224.x
  • Jones, R., and Duncan, H. 1981. Effect of nitrogen fertilizer, planting date, and harvest date on aflatoxin production in corn inoculated with Aspergillus flavus. Plant Dis. 65: 741–744. doi:10.1094/PD-65-741
  • Joshi, A. K., Ortiz-Ferrara, G., Crossa, J., Singh, G., Alvarado, G., Bhatta, M. R., Duveiller, E., Sharma, R. C., Pandit, D. B., Siddique, A. B., Das, S. Y., Sharma, R. N., and Chand, R. 2007. Associations of environments in South Asia based on spot blotch disease of wheat caused by Cochliobolus sativus. Crop Sci. 47: 1071–1081. doi:10.2135/cropsci2006.07.0477
  • Junaid, M., Khan, H., Ali, A., Ahmad, M., and Raziq, F. 2009. Response of various maize cultivars to different levels of Nitrogen against Bipolaris maydis shoemaker under natural epiphytotic conditions. Sarhad J. Agric 25: 243–249.
  • Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., and Pozo, M. J. 2012. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38: 651–664. doi:10.1007/s10886-012-0134-6
  • Kahiluoto, H., Ketoja, E., Vestberg, M., and Saarela, I. 2001. Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231: 65–79. doi:10.1023/A:1010366400009
  • Kavamura, V. N., Hayat, R., Clark, I. M., Rossmann, M., Mendes, R., Hirsch, P. R., and Mauchline, T. H. 2018. Inorganic nitrogen application affects both taxonomical and predicted functional structure of wheat rhizosphere bacterial communities. Front. Microbiol. 9: 1074. doi:10.3389/fmicb.2018.01074
  • Kayin, G. B., Öztüfekci, S., Akin, H. F., Karaata, E. U., Katkat, A. V., and Turan, A. T. 2015. Effect of Bacillus subtilis Ch-13, nitrogen and phosphorus on yield, protein and gluten content of wheat (Triticum aestivum L.). Uludağ Üniversitesi Ziraat Fakültesi Dergisi 29: 19–29.
  • Kazan, K., Gardiner, D. M., and Manners, J. M. 2012. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol. Plant Pathol. 13: 399–413. doi:10.1111/j.1364-3703.2011.00762.x
  • Keim, R., and Webster, R. K. 1973. Nitrogen fertilization and severity of stem rot of rice. Phytopathology 64: 178–183.
  • Kema, G. H., Yu, D., Rijkenberg, F. H., Shaw, M. W., and Baayen, R. P. 1996. Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology 86: 777–786. doi:10.1094/Phyto-86-777
  • Kerdraon, L., Barret, M., Laval, V., and Suffert, F. 2019. Differential dynamics of microbial community networks help identify microorganisms interacting with residue-borne pathogens: the case of Zymoseptoria tritici in wheat. Microbiome 7: 17. doi:10.1186/s40168-019-0736-0
  • Khan, M. H., Bukhari, A., Dar, Z. A., and Rizvi, S. M. 2013. Status and strategies in breeding for rust resistance in wheat. Agric. Sci. 04: 292–301. doi:10.4236/as.2013.46042
  • Khush, G. S., and Virk, P. S. 2002. Rice improvement: past, present, and future. In Crop Improvement: Challenges in the Twenty-First Century; Kang, M. S. Ed. Food Products Press, New York, pp 17–42.
  • Kim, J. Y., Wu, J., Kwon, S. J., Oh, H., Lee, S. E., Kim, S. G., Wang, Y., Agrawal, G. K., Rakwal, R., Kang, K. Y., Ahn, I.-P., Kim, B.-G., and Kim, S. T. 2014. Proteomics of rice and Cochliobolus miyabeanus fungal interaction: insight into proteins at intracellular and extracellular spaces. Proteomics (Eng). 14: 2307–2318. doi:10.1002/pmic.201400066
  • Knott, D. R. 1989. The Wheat Rusts - Breeding for Resistance. Springer, Berlin Heidelberg, Berlin, Heidelberg.
  • Koeck, M., Hardham, A. R., and Dodds, P. N. 2011. The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell. Microbiol. 13: 1849–1857. doi:10.1111/j.1462-5822.2011.01665.x
  • Koiso, Y., Li, Y., Iwasaki, S., Hanaoka, K., Kobayashi, T., Sonoda, R., Fujita, Y., Yaegashi, H., and Sato, Z. 1994. Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. J. Antibiot. (Tokyo) 47: 765–773. doi:10.7164/antibiotics.47.765
  • Kostandi, S. F., and Soliman, M. F. 1991. Effect of nitrogen rates at different growth stages on corn yield and common smut disease [Ustilago maydis (D.C.) Corda]. J. Agron. Crop Sci. 167: 53–60. doi:10.1111/j.1439-037X.1991.tb00933.x
  • Kostandi, S. F., and Soliman, M. F. 1997. Smut disease incidence and mineral composition of corn as affected by N fertilizer sources and K application rates. J. Agron. Crop Sci. 178: 197–204. doi:10.1111/j.1439-037X.1997.tb00491.x
  • Kostandi, S. F., Soliman, M. F., and Ghaly, A. A. 1997. Smut disease and yield performance in corn (Zea mays L.) as influenced by nitrapyrin, urea and zinc applications in coarse-textured soils. J. Agron. Crop Sci. 179: 219–226. doi:10.1111/j.1439-037X.1997.tb00520.x
  • Krupinsky, J. M., Halvorson, A. D., Tanaka, D. L., and Merrill, S. D. 2007. Nitrogen and tillage effects on wheat leaf spot diseases in the Northern Great Plains. Agron. J. 99: 562–569. doi:10.2134/agronj2006.0263
  • Krupinsky, J. M., and Tanaka, D. L. 2001. Leaf spot diseases on winter wheat influenced by nitrogen, tillage, and haying after a grass-alfalfa mixture in the conservation reserve program. Plant Dis. 85: 785–789. doi:10.1094/PDIS.2001.85.7.785
  • Kudsk, P., and Mathiassen, S. K. 2020. Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci. 68: 214–222. doi:10.1017/wsc.2019.59
  • Kwak, Y.-S., and Weller, D. M. 2013. Take-all of wheat and natural disease suppression: a review. Plant Pathol. J. 29: 125–135. doi:10.5423/PPJ.SI.07.2012.0112
  • Lamari, L., and Bernier, C. C. 1991. Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis. Phytopathology 81: 1092–1095. doi:10.1094/Phyto-81-1092
  • Last, F. T. 1953. Some effects of temperature and nitrogen supply on wheat powdery mildew. Ann. Appl. Biol. 40: 312–322. doi:10.1111/j.1744-7348.1953.tb01085.x
  • Luo, L., Zhang, Y., and Xu, G. 2020. How does nitrogen shape plant architecture? J. Exp. Bot. 71: 4415–4427. doi:10.1093/jxb/eraa187
  • Lefevere, H., Bauters, L., and Gheysen, G. 2020. Salicylic acid biosynthesis in plants. Front. Plant Sci. 11: 338. doi:10.3389/fpls.2020.00338
  • Leitch, M. H., and Jenkins, P. D. 1995. Influence of nitrogen on the development of Septoria epidemics in winter wheat. J. Agric. Sci. 124: 361–368. doi:10.1017/S0021859600073329
  • Leite, M., Freitas, A., Silva, A. S., Barbosa, J., and Ramos, F. 2021. Maize food chain and mycotoxins: a review on occurrence studies. Trends Food Sci. Technol. 115: 307–331. doi:10.1016/j.tifs.2021.06.045
  • Lemmens, M., Haim, K., Lew, H., and Ruckenbauer, P. 2004. The effect of nitrogen fertilization on fusarium head blight development and deoxynivalenol contamination in wheat. J. Phytopathol. 152: 1–8. doi:10.1046/j.1439-0434.2003.00791.x
  • Leonard, K. J. 1977. Virulence, temperature optima, and competitive abilities of isolines of races T and 0 of Bipolaris maydis. Phytopathology 67: 1273–1279. doi:10.1094/Phyto-67-1273
  • Li, D., Tang, Q., Zhang, Y., Qin, J., Li, H., Chen, L., Yang, S., Zou, Y., and Peng, S. 2012. Effect of nitrogen regimes on grain yield, nitrogen utilization, radiation use efficiency, and sheath blight disease intensity in super hybrid rice. J. Integr. Agric. 11: 134–143. doi:10.1016/S1671-2927(12)60791-3
  • Linquist, B. A., Byous, E., Jones, G., Williams, J. F., Six, J., Horwath, W., and van Kessel, C. 2008. Nitrogen and potassium fertility impacts on aggregate sheath spot disease and yields of rice. Plant Prod. Sci. 11: 260–267. doi:10.1626/pps.11.260
  • Liu, H., and Brettell, L. E. 2019. Plant defense by VOC-induced microbial priming. Trends Plant Sci. 24: 187–189. doi:10.1016/j.tplants.2019.01.008
  • Lofgren, L. A., LeBlanc, N. R., Certano, A. K., Nachtigall, J., LaBine, K. M., Riddle, J., Broz, K., Dong, Y., Bethan, B., Kafer, C. W., and Kistler, H. C. 2018. Fusarium graminearum: pathogen or endophyte of North American grasses? New Phytol. 217: 1203–1212. doi:10.1111/nph.14894
  • Long, D. H., Lee, F. N., and TeBeest, D. O. 2000. Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars. Plant Dis. 84: 403–409. doi:10.1094/PDIS.2000.84.4.403
  • Lorrain, C., Gonçalves Dos Santos, K. C., Germain, H., Hecker, A., and Duplessis, S. 2019. Advances in understanding obligate biotrophy in rust fungi. New Phytol. 222: 1190–1206. doi:10.1111/nph.15641
  • Lucas, J. A., Dyer, P. S., and Murray, T. D. 2000. Pathogenicity, host-specificity, and population biology of Tapesia spp., causal agents of eyespot disease of cereals. In Advances in Botanical Research; Callow, J. A. Eds. Academic Press: San Diego, CA, pp 225–258.
  • Luo, C., Ma, L., Zhu, J., Guo, Z., Dong, K., and Dong, Y. 2021. Effects of nitrogen and intercropping on the occurrence of wheat powdery mildew and stripe rust and the relationship with crop yield. Front. Plant Sci. 12: 637393. doi:10.3389/fpls.2021.637393
  • Ma, M., Jiang, X., Wang, Q., Ongena, M., Wei, D., Ding, J., Guan, D., Cao, F., Zhao, B., and Li, J. 2018a. Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols. MicrobiologyOpen 7: 1–12. doi:10.1002/mbo3.597
  • Ma, M., Ongena, M., Wang, Q., Guan, D., Cao, F., Jiang, X., and Li, J. 2018b. Chronic fertilization of 37 years alters the phylogenetic structure of soil arbuscular mycorrhizal fungi in Chinese Mollisols. AMB Express 8: 10. doi:10.1186/s13568-018-0587-2
  • Maity, S. S., and Sanyal, R. P. 2002. Effect of inorganic nutrients on leaf blight severity in wheat caused by Helminthosporium sativum. Ann. Plant Prot. Sci. 10: 106–110.
  • Manoharan, L., Kushwaha, S. K., Ahrén, D., and Hedlund, K. 2017. Agricultural land use determines functional genetic diversity of soil microbial communities. Soil Biol. Biochem. 115: 423–432. doi:10.1016/j.soilbio.2017.09.011
  • Marschner, P., Gerendás, J., and Sattelmacher, B. 1999. Effect of N concentration and N source on root colonization by Pseudomonas fluorescens 2-79RLI. Plant Soil 215: 135–141. doi:10.1023/A:1004373007606
  • Martínez, S. 2021. Stem rot management by nitrogen and potassium fertilization and effect on grain yield and quality of rice in Uruguay. Can. J. Plant Pathol. 43: 783–793. doi:10.1080/07060661.2021.1922939
  • Maywald, N. J., Mang, M., Pahls, N., Neumann, G., Ludewig, U., and Francioli, D. 2022. Ammonium fertilization increases the susceptibility to fungal leaf and root pathogens in winter wheat. Front. Plant Sci. 13: 946584. doi:10.3389/fpls.2022.946584
  • Meier, M. A., Lopez-Guerrero, M. G., Guo, M., Schmer, M. R., Herr, J. R., Schnable, J. C., Alfano, J. R., and Yang, J. 2021. Rhizosphere microbiomes in a historical maize-soybean rotation system respond to host species and nitrogen fertilization at the genus and subgenus levels. Appl. Environ. Microbiol. 87: 1–13. doi:10.1128/AEM.03132-20
  • Mendes, R., Garbeva, P., and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634–663. doi:10.1111/1574-6976.12028
  • Menzies, J. D., et al. 1970. Factors affecting plant pathogen populations in soil. In Root Diseases and Soil-Borne Pathogens; Toussoun, T. A., Eds. University of Califonia Press: Berkeley, pp 16–21.
  • Meyer, S. L. F., Everts, K. L., Gardener, B. M., Masler, E. P., Abdelnabby, H. M. E., and Skantar, A. M. 2016. Assessment of DAPG-producing Pseudomonas fluorescens for management of meloidogyne incognita and Fusarium oxysporum on Watermelon. J. Nematol. 48: 43–53.
  • Milazzo, C., Zulak, K. G., Muria-Gonzalez, M. J., Jones, D., Power, M., Bransgrove, K., Bunce, M., and Lopez-Ruiz, F. J. 2021. High-throughput metabarcoding characterizes fungal endophyte diversity in the phyllosphere of a barley crop. Phytobiomes J. 5: 316–325. doi:10.1094/PBIOMES-09-20-0066-R
  • Miller, J. D. 2008. Mycotoxins in small grains and maize: old problems, new challenges. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 25: 219–230. doi:10.1080/02652030701744520
  • Miller, T. C., and Webster, R. K. 2001. Soil sampling techniques for determining the effect of cultural practices on Rhizoctonia oryzae-sativae inoculum in rice field soils. Plant Dis. 85: 967–972. doi:10.1094/PDIS.2001.85.9.967
  • Motallebi, P., Niknam, V., Ebrahimzadeh, H., Hashemi, M., and Enferadi, S. T. 2017. Exogenous methyl jasmonate treatment induces defense response against Fusarium culmorum in wheat seedlings. J. Plant Growth Regul. 36: 71–82. doi:10.1007/s00344-016-9620-3
  • Mueller, R. C., and Bohannan, B. J. M. 2015. Shifts in the phylogenetic structure of arbuscular mycorrhizal fungi in response to experimental nitrogen and carbon dioxide additions. Oecologia 179: 175–185. doi:10.1007/s00442-015-3337-z
  • Munkvold, G. P., and Desjardins, A. E. 1997. Fumonisins in maize: can we reduce their occurrence? Plant Dis. 81: 556–565. doi:10.1094/PDIS.1997.81.6.556
  • Mur, L. A. J., Santosa, I. E., Laarhoven, L. J. J., Holton, N. J., Harren, F. J. M., and Smith, A. R. 2005. Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae Pathovars. Plant Physiol. 138: 1247–1258. doi:10.1104/pp.104.055772
  • Mur, L. A. J., Simpson, C., Kumari, A., Gupta, A. K., and Gupta, K. J. 2017. Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot. 119: 703–709. doi:10.1093/aob/mcw179
  • Murrell, E. G., Hanson, C. R., and Cullen, E. M. 2015. European corn borer oviposition response to soil fertilization practices and arbuscular mycorrhizal colonization of corn. Ecosphere 6: 1–12. doi:10.1890/ES14-00501.1
  • Mutiga, S. K., Morales, L., Angwenyi, S., Wainaina, J., Harvey, J., Das, B., and Nelson, R. J. 2017. Association between agronomic traits and aflatoxin accumulation in diverse maize lines grown under two soil nitrogen levels in Eastern Kenya. Field Crops Res. 205: 124–134. doi:10.1016/j.fcr.2017.02.007
  • Nakata, K., and Kawamura, E. 1939. Studies on rice sclerotial diseases. Mat. Agric. Improv. Agric. For. Min. 139: 1–176.
  • Neumann, S., Paveley, N. D., Beed, F. D., and Sylvester-Bradley, R. 2004. Nitrogen per unit leaf area affects the upper asymptote of Puccinia striiformis f.sp. tritici epidemics in winter wheat. Plant Pathol. 53: 725–732. doi:10.1111/j.1365-3059.2004.01107.x
  • Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., and Kennedy, P. G. 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20: 241–248. doi:10.1016/j.funeco.2015.06.006
  • Nie, S., Lei, X., Zhao, L., Brookes, P. C., Wang, F., Chen, C., Yang, W., and Xing, S. 2018. Fungal communities and functions response to long-term fertilization in paddy soils. Appl. Soil Ecol. 130: 251–258. doi:10.1016/j.apsoil.2018.06.008
  • Nishad, R., Ahmed, T., Rahman, V. J., and Kareem, A. 2020. Modulation of plant defense system in response to microbial interactions. Front. Microbiol. 11: 1298. doi:10.3389/fmicb.2020.01298
  • Noritake, T., Kawakita, K., and Doke, N. 1996. Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol. 37: 113–116. doi:10.1093/oxfordjournals.pcp.a028908
  • O'Donnell, K., Ward, T. J., Geiser, D. M., Corby Kistler, H., and Aoki, T. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 41: 600–623. doi:10.1016/j.fgb.2004.03.003
  • Oerke, E.-C., and Dehne, H.-W. 2004. Safeguarding production—losses in major crops and the role of crop protection. Crop Prot. 23: 275–285. doi:10.1016/j.cropro.2003.10.001
  • Oliver, R. P., and Ipcho, S. V. S. 2004. Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol. Plant Pathol. 5: 347–352. doi:10.1111/j.1364-3703.2004.00228.x
  • Orton, E. S., Deller, S., and Brown, J. K. M. 2011. Mycosphaerella graminicola: from genomics to disease control. Mol. Plant Pathol. 12: 413–424. doi:10.1111/j.1364-3703.2010.00688.x
  • Ownley, B. H., Duffy, B. K., and Weller, D. M. 2003. Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. Appl. Environ. Microbiol. 69: 3333–3343. doi:10.1128/AEM.69.6.3333-3343.2003
  • Parry, M., Rosenzweig, C., Iglesias, A., Livermore, M., and Fischer, G. 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ. Change 14: 53–67. doi:10.1016/j.gloenvcha.2003.10.008
  • Pérez-de-Luque, A., Tille, S., Johnson, I., Pascual-Pardo, D., Ton, J., and Cameron, D. D. 2017. The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Sci. Rep. 7: 10. doi:10.1038/s41598-017-16697-4
  • Perfect, S. E., and Green, J. R. 2001. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol. Plant Pathol. 2: 101–108. doi:10.1046/j.1364-3703.2001.00055.x
  • Petti, C., Reiber, K., Ali, S. S., Berney, M., and Doohan, F. M. 2012. Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biol. 12: 9. doi:10.1186/1471-2229-12-224
  • Philippot, L., Raaijmakers, J. M., Lemanceau, P., and van der Putten, W. H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11: 789–799. doi:10.1038/nrmicro3109
  • Pholthaweechai, U., and Pengnoo, A. 2022. Effect of nitrogen and Bacillus subtilis SM1 strain on controlling Rigidoporus microporus NK6 strain the cause of white root rot disease in vitro testing. Songklanakarin J. Plant Sci. 8: 44–49.
  • Piening, L. J. 1972. Effects of leaf rust on nitrate in rye. Can. J. Plant Sci. 52: 842–843. doi:10.4141/cjps72-139
  • Pimentel, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Giordano, S., Horowitz, A., and D'Amore, M. 1992. Environmental and economic costs of pesticide use. BioScience 42: 750–760. doi:10.2307/1311994
  • Pogăcean, M. O., and Gavrilescu, M. 2009. Plant protection products and their sustainable and environmentally friendly use. Environ. Eng. Manag. 8: 608–627.
  • Porras-Alfaro, A., Herrera, J., Natvig, D. O., and Sinsabaugh, R. L. 2007. Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296: 65–75. doi:10.1007/s11104-007-9290-9
  • Pozo, M. J., Verhage, A., García-Andrade, J., García, J. M., Azcón-Aguilar, C. 2009. Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In Mycorrhizas - Functional Processes and Ecological Impact; edited by Azcón-Aguilar, C., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, pp 123–135.
  • Prew, R. D., Church, B. M., Dewar, A. M., Lacey, J., Penny, A., Plumb, R. T., Thorne, G. N., Todd, A. D., and Williams, T. D. 1983. Effects of eight factors on the growth and nutrient uptake of winter wheat and on the incidence of pests and diseases. J. Agric. Sci. 100: 363–382. doi:10.1017/S0021859600033529
  • Raaijmakers, J. M., Bonsall, R. F., and Weller, D. M. 1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89: 470–475. doi:10.1094/PHYTO.1999.89.6.470
  • Raaijmakers, J. M., and Mazzola, M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50: 403–424. doi:10.1146/annurev-phyto-081211-172908
  • Raaijmakers, J. M., and Weller, D. M. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. MPMI 11: 144–152. doi:10.1094/MPMI.1998.11.2.144
  • Raemaekers, R. H., and Tinline, R. D. 1981. Epidemic of diseases caused by Cochliobolus sativus on rainfed wheat in Zambia. Can. J. Plant Pathol. 3: 211–214. doi:10.1080/07060668109501350
  • Ramirez, M. L., Reynoso, M. M., Farnochi, M. C., and Chulze, S. 2006. Vegetative compatibility and mycotoxin chemotypes among Fusarium graminearum (Gibberella zeae) isolates from wheat in Argentina. Eur. J. Plant Pathol. 115: 139–148. doi:10.1007/s10658-006-0009-1
  • Rani, R., Sharma, V. K., Pannu, P. P. S., and Lore, J. S. 2015. Influence of nitrogen fertilizer dose on false smut of rice (Oryza sativa) caused by Ustilaginoidea virens. Indian J. Agric. Sci. 85: 19–22.
  • Rees, R. G., Platz, G. J., and Mayer, R. J. 1982. Yield losses in wheat from yellow spot: comparison of estimates derived from single tillers and plots. Aust. J. Agric. Res. 33: 899–908. doi:10.1071/AR9820899
  • Reid, L. M., Zhu, X., and Ma, B. L. 2001. Crop rotation and nitrogen effects on maize susceptibility to gibberella (Fusarium graminearum) ear rot. Plant Soil 237: 1–14. doi:10.1023/A:1013311703454
  • Roelfs, A. P. 1989. Epidemiology of the cereal rusts in North America. Can. J. Plant Pathol. 11: 86–90. doi:10.1080/07060668909501153
  • Rojas, E. C., Sapkota, R., Jensen, B., Jørgensen, H. J. L., Henriksson, T., Jørgensen, L. N., Nicolaisen, M., and Collinge, D. B. 2020. Fusarium head blight modifies fungal endophytic communities during infection of wheat spikes. Microb. Ecol. 79: 397–408. doi:10.1007/s00248-019-01426-3
  • Różewicz, M., Wyzińska, M., and Grabiński, J. 2021. The most important fungal diseases of cereals—problems and possible solutions. Agronomy 11: 714. doi:10.3390/agronomy11040714
  • Ruijven, J., Ampt, E., Francioli, D., and Mommer, L. 2020. Do soil‐borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. J. Ecol. 108: 1810–1821. doi:10.1111/1365-2745.13388
  • Sánchez-Vallet, A., McDonald, M. C., Solomon, P. S., and McDonald, B. A. 2015. Is Zymoseptoria tritici a hemibiotroph? Fungal Genet. Biol. 79: 29–32. doi:10.1016/j.fgb.2015.04.001
  • Santos, B. H. C. d., Ribeiro, R. C. F., Xavier, A. A., Neto, J. A. S., and Mizobutsi, E. H. 2018. Nitrogen fertilization and rhizobacteria in the control of Meloidogyne javanica in common bean plants. JAS 11: 430–437. doi:10.5539/jas.v11n1p430
  • Santos, J. C., Finlay, R. D., and Tehler, A. 2006. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytol. 172: 159–168. doi:10.1111/j.1469-8137.2006.01799.x
  • Sarabia, M., Cornejo, P., Azcón, R., Carreón-Abud, Y., and Larsen, J. 2017. Mineral phosphorus fertilization modulates interactions between maize, rhizosphere yeasts and arbuscular mycorrhizal fungi. Rhizosphere 4: 89–93. doi:10.1016/j.rhisph.2017.09.001
  • Saravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T., and Samiyappan, R. 2009. Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl 54: 273–286. doi:10.1007/s10526-008-9166-9
  • Savary, S. 1995. Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Phytopathology 85: 959–965. doi:10.1094/Phyto-85-959
  • Savary, S., Castilla, N. P., Elazegui, F. A., McLaren, C. G., Ynalvez, M. A., and Teng, P. S. 1995. Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Ecol. Epidemiol. 85: 959–965. doi:10.1094/Phyto-85-959
  • Savary, S., Willocquet, L., Elazegui, F. A., Castilla, N. P., and Teng, P. S. 2000. Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Dis. 84: 357–369. doi:10.1094/PDIS.2000.84.3.357
  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3: 430–439. doi:10.1038/s41559-018-0793-y
  • Savolainen, T., and Kytöviita, M.-M. 2022. Mycorrhizal symbiosis changes host nitrogen source use. Plant Soil 471: 643–654. doi:10.1007/s11104-021-05257-5
  • Scheffer, R. P. 1997. The Nature of Disease in Plants. Cambridge University Press, Cambridge.
  • Scherm, B., Balmas, V., Spanu, F., Pani, G., Delogu, G., Pasquali, M., and Migheli, Q. 2013. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 14: 323–341. doi:10.1111/mpp.12011
  • Schmidt, J. E., Kent, A. D., Brisson, V. L., and Gaudin, A. C. M. 2019. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7: 18. doi:10.1186/s40168-019-0756-9
  • Semenov, M. V., Krasnov, G. S., Semenov, V. M., and van Bruggen, A. 2022. Mineral and organic fertilizers distinctly affect fungal communities in the crop rhizosphere. JoF 8: 251. doi:10.3390/jof8030251
  • Semenov, M. V., Krasnov, G. S., Semenov, V. M., and van Bruggen, A. H. 2020. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Appl. Soil Ecol. 154: 103641. doi:10.1016/j.apsoil.2020.103641
  • Sétamou, M., Cardwell, K. F., Schulthess, F., and Hell, K. 1997. Aspergillus flavus infection and aflatoxin contamination of preharvest maize in Benin. Plant Dis. 81: 1323–1327. doi:10.1094/PDIS.1997.81.11.1323
  • Shao, D., Smith, D. L., Kabbage, M., and Roth, M. G. 2021. Effectors of plant necrotrophic fungi. Front. Plant Sci. 12: 687713. doi:10.3389/fpls.2021.687713
  • Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., and Thukral, A. K. 2019. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1: 1446. doi:10.1007/s42452-019-1485-1
  • Sharma, P., Duveiller, E., and Sharma, R. C. 2006. Effect of mineral nutrients on spot blotch severity in wheat, and associated increases in grain yield. Field Crops Res. 95: 426–430. doi:10.1016/j.fcr.2005.04.015
  • Shipton, P. J. 1972. Influence of stubble treatment and autumn application of nitrogen to stubbles on the subsequent incidence of take-all and eyespot. Plant Pathol. 21: 147–155. doi:10.1111/j.1365-3059.1972.tb01749.x
  • Simón, M. R., Cordo, C. A., Perelló, A. E., and Struik, P. C. 2003. Influence of nitrogen supply on the susceptibility of wheat to Septoria tritici. J. Phytopathol. 151: 283–289. doi:10.1046/j.1439-0434.2003.00720.x
  • Simón, M. R., Fleitas, M. C., Castro, A. C., and Schierenbeck, M. 2020. How foliar fungal diseases affect nitrogen dynamics, milling, and end-use quality of wheat. Front. Plant Sci. 11: 569401. doi:10.3389/fpls.2020.569401
  • Simón, M. R., Perelló, A. E., Cordo, C. A., and Struik, P. C. 2002. Influence of Septoria tritici on yield, yield components, and test weight of wheat under two nitrogen fertilization conditions. Crop Sci. 42: 1974–1981. doi:10.2135/cropsci2002.1974
  • Singh, A. 2006. Cell membrane injury in flag leaf of wheat by brown rust (Puccinia recondita Rob. ex. Desm. f. sp. tritici) at different nitrogen levels. J. Phytological Research 19: 111–113.
  • Singh, B. B., and Kaur, H. 2005. Effect of nitrogen fertilizer on Fusarium sheath rot in rice. J. Res. 42: 44–47.
  • Singh, V., and Singh, R. N. 2006. Effect of mineral nutrition and environmental variables on the intensity of wheat spot blotch under rice-wheat system. Indian Phytopath. 59: 417–426.
  • Sisterna, M. N., and Sarandón, S. J. 1996. Black point of wheat (Bipolaris sorokiniana (Sacc) Shoem. influenced by N fertilization under no till and conventional tillage. Cereal Res. Commun. 24: 217–221.
  • Skamnioti, P., and Gurr, S. J. 2009. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol. 27: 141–150. doi:10.1016/j.tibtech.2008.12.002
  • Slaton, N. A., Cartwright, R. D., Meng, J., Gbur, E. E., and Norman, R. J. 2003. Sheath blight severity and rice yield as affected by nitrogen fertilizer rate, application method, and fungicide. Agron. J. 95: 1489–1496. doi:10.2134/agronj2003.1489
  • Smiley, R. W. 1978. Antagonists of Gaeumannomyces graminis from the rhizoplane of wheat in soils fertilized with ammonium- or nitrate-nitrogen. Soil Biol. Biochem. 10: 169–174. doi:10.1016/0038-0717(78)90092-5
  • Smiley, R. W., and Cook, R. J. 1973. Relationship between take-all of wheat and rhizosphere pH in soils fertilized with ammonium vs. nitrate-nitrogen. Phytopathology 63: 882–890. doi:10.1094/Phyto-63-882
  • Sommermann, L., Babin, D., Behr, J. H., Chowdhury, S. P., Sandmann, M., Windisch, S., Neumann, G., Nesme, J., Sørensen, S. J., Schellenberg, I., Rothballer, M., Geistlinger, J., Smalla, K., and Grosch, R. 2022. Long-term fertilization strategy impacts Rhizoctonia solani-microbe interactions in soil and rhizosphere and defense responses in lettuce. Microorganisms 10: 1717. doi:10.3390/microorganisms10091717
  • Song, Y., Chen, D., Lu, K., Sun, Z., and Zeng, R. 2015. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 6: 786. doi:10.3389/fpls.2015.00786
  • Soonvald, L., Loit, K., Runno-Paurson, E., Astover, A., and Tedersoo, L. 2020. Characterising the effect of crop species and fertilisation treatment on root fungal communities. Sci. Rep. 10: 18741. doi:10.1038/s41598-020-74952-7
  • Srinivasachary, Laetitia, W., and Serge, S. 2011. Resistance to rice sheath blight (Rhizoctonia solani Kühn) [(teleomorph: Thanatephorus cucumeris (A.B. Frank) Donk.] disease: current status and perspectives. Euphytica 178: 1–22. doi:10.1007/s10681-010-0296-7
  • Stakman, E. C. 1924. The effect of fertilizers on the development of stem rust of wheat. J. Agric. Res. 27: 341–385.
  • Sun, S.-K., and Snyder, W. C. 1981. The bakanae disease of the rice plant. In Fusarium: Diseases, Biology and Taxonomy; Nelson, P. E. Eds. The Pennsylvania University Press, University Park, pp 104–113.
  • Sun, Y., Wang, M., Mur, L. A. J., Shen, Q., and Guo, S. 2020. Unravelling the roles of nitrogen nutrition in plant disease defences. IJMS 21: 572. doi:10.3390/ijms21020572
  • Syed Ab Rahman, S. F., Singh, E., Pieterse, C. M. J., and Schenk, P. M. 2018. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267: 102–111. doi:10.1016/j.plantsci.2017.11.012
  • Szulc, P., Rybus-Zając, M., and Jagła, M. 2014. Influence of maize hybrid type (Zea Mays L.) and N dose on nitrogen eutrophication of the environment. Electron. J. Pol. Agric. Univ. 17: 1–10.
  • Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., and Willerslev, E. 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21: 2045–2050. doi:10.1111/j.1365-294X.2012.05470.x
  • Taheri, P., and Tarighi, S. 2011. Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani. Eur. J. Plant Pathol. 129: 511–528. doi:10.1007/s10658-010-9725-7
  • Tanaka, E., Ashizawa, T., Sonoda, R., and Tanaka, C. 2008. Villosiclava virens gen. nov., comb. nov., teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 106: 491–501.
  • Tang, Q., Peng, S., Buresh, R. J., Zou, Y., Castilla, N. P., Mew, T. W., and Zhong, X. 2007. Rice varietal difference in sheath blight development and its association with yield loss at different levels of N fertilization. Field Crops Research 102: 219–227. doi:10.1016/j.fcr.2007.04.005
  • Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Villarreal Ruiz, L., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Pärtel, K., Otsing, E., Nouhra, E., Njouonkou, A. L., Nilsson, R. H., Morgado, L. N., Mayor, J., May, T. W., Majuakim, L., Lodge, D. J., Lee, S. S., Larsson, K.-H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T. W., Harend, H., Guo, L., Greslebin, A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., Kesel, A. d., Dang, T., Chen, X., Buegger, F., Brearley, F. Q., Bonito, G., Anslan, S., Abell, S., and Abarenkov, K. 2014. Fungal biogeography. Global diversity and geography of soil fungi. Science 346: 1256688. doi:10.1126/science.1256688
  • Thapa, S., Prasanna, R., Ramakrishnan, B., Sheoran, N., Kumar, A., Velmourougane, K., and Kumar, A. 2018. Interactive effects of Magnaporthe inoculation and nitrogen doses on the plant enzyme machinery and phyllosphere microbiome of resistant and susceptible rice cultivars. Arch. Microbiol. 200: 1287–1305. doi:10.1007/s00203-018-1540-0
  • Thirkell, T., Cameron, D., and Hodge, A. 2019. Contrasting nitrogen fertilisation rates alter mycorrhizal contribution to barley nutrition in a field trial. Front. Plant Sci. 10: 1312. doi:10.3389/fpls.2019.01312
  • Thompson, M. E. H., and Raizada, M. N. 2018. Fungal pathogens of maize gaining free passage along the silk road. Pathogens 7: 81. doi:10.3390/pathogens7040081
  • Tiedemann, A. V. 1996. Single and combined effects of nitrogen fertilization and ozone on fungal leaf diseases on wheat. J. Plant Dis. Prot. 103: 409–419.
  • Torsvik, V., Øvreås, L., and Thingstad, T. F. 2002. Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296: 1064–1066. doi:10.1126/science.1071698
  • Tosi, M., Deen, W., Drijber, R., McPherson, M., Stengel, A., and Dunfield, K. 2021. Long-term N inputs shape microbial communities more strongly than current-year inputs in soils under 10-year continuous corn cropping. Soil Biol. Biochem. 160: 108361. doi:10.1016/j.soilbio.2021.108361
  • Trivedi, P., Delgado-Baquerizo, M., Anderson, I. C., and Singh, B. K. 2016. Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front. Plant Sci. 7: 990. doi:10.3389/fpls.2016.00990
  • Tyc, O., Song, C., Dickschat, J. S., Vos, M., and Garbeva, P. 2017. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25: 280–292. doi:10.1016/j.tim.2016.12.002
  • van Bockhaven, J., Spíchal, L., Novák, O., Strnad, M., Asano, T., Kikuchi, S., Höfte, M., and de Vleesschauwer, D. 2015. Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol. 206: 761–773. doi:10.1111/nph.13270
  • van Diepen, L. T. A., Lilleskov, E. A., and Pregitzer, K. S. 2011. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol. Ecol. 20: 799–811. doi:10.1111/j.1365-294X.2010.04969.x
  • van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottova, D., Kristufek, V., and Salles, J. F. 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. U S A. 109: 1159–1164. doi:10.1073/pnas.1109326109
  • Verbruggen, E., van der Heijden, M. G. A., Rillig, M. C., and Kiers, E. T. 2013. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol. 197: 1104–1109. doi:10.1111/j.1469-8137.2012.04348.x
  • Veresoglou, S. D., Barto, E. K., Menexes, G., and Rillig, M. C. 2013. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol 62: 961–969. doi:10.1111/ppa.12014
  • Veresoglou, S. D., and Rillig, M. C. 2012. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol. Lett. 8: 214–217. doi:10.1098/rsbl.2011.0874
  • Waller, J. M. 1987. Rice diseases. Ex. Agric 23: 357–357. doi:10.1017/S0014479700017245
  • Walters, D. R. 2003. Polyamines and plant disease. Phytochemistry 64: 97–107. doi:10.1016/s0031-9422(03)00329-7
  • Walters, D. R., and Bingham, I. J. 2007. Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann Applied Biology 151: 307–324. doi:10.1111/j.1744-7348.2007.00176.x
  • Wang, J., Rhodes, G., Huang, Q., and Shen, Q. 2018a. Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system. Biol Fertil Soils 54: 731–742. doi:10.1007/s00374-018-1295-4
  • Wang, Q., Ma, M., Jiang, X., Zhou, B., Guan, D., Cao, F., Chen, S., and Li, J. 2019. Long-term N fertilization altered 13C-labeled fungal community composition but not diversity in wheat rhizosphere of Chinese black soil. Soil Biol. Biochem. 135: 117–126. doi:10.1016/j.soilbio.2019.04.009
  • Wang, Y., Ji, H., Hu, Y., Wang, R., Rui, J., and Guo, S. 2018b. Different selectivity in fungal communities between manure and mineral fertilizers: a study in an alkaline soil after 30 years fertilization. Front. Microbiol. 9: 2613. doi:10.3389/fmicb.2018.02613
  • Wattenburger, C. J., Halverson, L. J., and Hofmockel, K. S. 2019. Agricultural management affects root-associated microbiome recruitment over maize development. Phytobiomes Journal 3: 260–272. doi:10.1094/PBIOMES-03-19-0016-R
  • Webster, R. K., and Gunnell, P. S. 1992. Compendium of Rice Diseases. APS Press American Phytopathological Soc, St. Paul, Minn.
  • Webster, R. K., Wick, C. M., Brandon, D. M., Hall, D. H., and Bolstad, J. 1981. Epidemiology of stem rot disease of rice: effects of burning vs. soil incorporation of rice residue. Hilg 49: 1–12. doi:10.3733/hilg.v49n03p012
  • Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40: 309–348. doi:10.1146/annurev.phyto.40.030402.110010
  • Williams, A., Manoharan, L., Rosenstock, N. P., Olsson, P. A., and Hedlund, K. 2017. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol. 213: 874–885. doi:10.1111/nph.14196
  • Willocquet, L., Savary, S. and Srinivasachary, 2011. Resistance to rice sheath blight (Rhizoctonia solani Kühn) [(teleomorph: Thanatephorus cucumeris (A.B. Frank) Donk.] disease: current status and perspectives. Euphytica 178: 1–22. doi:10.1007/s10681-010-0296-7
  • Wilson, R. A., and Talbot, N. J. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7: 185–195. doi:10.1038/nrmicro2032
  • Windisch, S., Sommermann, L., Babin, D., Chowdhury, S. P., Grosch, R., Moradtalab, N., Walker, F., Höglinger, B., El-Hasan, A., Armbruster, W., Nesme, J., Sørensen, S. J., Schellenberg, I., Geistlinger, J., Smalla, K., Rothballer, M., Ludewig, U., and Neumann, G. 2020. Impact of long-term organic and mineral fertilization on rhizosphere metabolites, root-microbial interactions and plant health of lettuce. Front. Microbiol. 11: 597745. doi:10.3389/fmicb.2020.597745
  • Wu, F. 2007. Measuring the economic impacts of Fusarium toxins in animal feeds. An. Feed Sci. Technol. 137: 363–374. doi:10.1016/j.anifeedsci.2007.06.010
  • Wu, W., Huang, J., Cui, K., Nie, L., Wang, Q., Yang, F., Shah, F., Yao, F., and Peng, S. 2012. Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crops Res. 128: 101–108. doi:10.1016/j.fcr.2012.01.002
  • Wu, W., Shah, F., Shah, F., and Huang, J. 2015. Rice sheath blight evaluation as affected by fertilization rate and planting density. Australas. Plant Pathol. 44: 183–189. doi:10.1007/s13313-014-0338-z
  • Yaeno, T., and Iba, K. 2008. BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. Plant Physiol. 148: 1032–1041. doi:10.1104/pp.108.124529
  • Yamasaki, H., and Cohen, M. F. 2006. NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci. 11: 522–524. doi:10.1016/j.tplants.2006.09.009
  • Yi, Y., Luan, P., Liu, S., Shan, Y., Hou, Z., Zhao, S., Jia, S., and Li, R. 2022. Efficacy of Bacillus subtilis XZ18-3 as a biocontrol agent against Rhizoctonia cerealis on wheat. Agriculture 12: 258. doi:10.3390/agriculture12020258
  • Zalila-Kolsi, I., Ben Mahmoud, A., Ali, H., Sellami, S., Nasfi, Z., Tounsi, S., and Jamoussi, K. 2016. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiol. Res. 192: 148–158. doi:10.1016/j.micres.2016.06.012
  • Zhai, F., Li, T., Qin, X., Zhao, X., Jiang, L., and Xie, Y. 2022. Effect of fertilisation on fungal community in topsoil of winter wheat field. Plant Soil Environ 68: 317–327. doi:10.17221/117/2022-PSE
  • Zhang, W. 2018. Global pesticide use: Profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 8: 1–27.
  • Zhang, W., Wu, L., Ding, Y., Yao, X., Wu, X., Weng, F., Li, G., Liu, Z., Tang, S., Ding, C., and Wang, S. 2017. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). J. Plant Res. 130: 859–871. doi:10.1007/s10265-017-0943-3
  • Zhao, Y., Selvaraj, J. N., Xing, F., Zhou, L., Wang, Y., Song, H., Tan, X., Sun, L., Sangare, L., Folly, Y. M. E., and Liu, Y. 2014. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PloS One 9: e92486. doi:10.1371/journal.pone.0092486
  • Zheng, Y., Kim, Y.-C., Tian, X.-F., Chen, L., Yang, W., Gao, C., Song, M.-H., Xu, X.-L., and Guo, L. 2014. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiol. Ecol. 89: 594–605. doi:10.1111/1574-6941.12361
  • Zimmermann, B., Claß-Mahler, I., von Cossel, M., Lewandowski, I., Weik, J., Spiller, A., Nitzko, S., Lippert, C., Krimly, T., Pergner, I., Zörb, C., Wimmer, M. A., Dier, M., Schurr, F. M., Pagel, J., Riemenschneider, A., Kehlenbeck, H., Feike, T., Klocke, B., Lieb, R., Kühne, S., Krengel-Horney, S., Gitzel, J., El-Hasan, A., Thomas, S., Rieker, M., Schmid, K., Streck, T., Ingwersen, J., Ludewig, U., Neumann, G., Maywald, N., Müller, T., Bradáčová, K., Göbel, M., Kandeler, E., Marhan, S., Schuster, R., Griepentrog, H.-W., Reiser, D., Stana, A., Graeff-Hönninger, S., Munz, S., Otto, D., Gerhards, R., Saile, M., Hermann, W., Schwarz, J., Frank, M., Kruse, M., Piepho, H.-P., Rosenkranz, P., Wallner, K., Zikeli, S., Petschenka, G., Schönleber, N., Vögele, R. T., and Bahrs, E. 2021. Mineral-ecological cropping systems—a new approach to improve ecosystem services by farming without chemical synthetic plant protection. Agronomy 11: 1710. doi:10.3390/agronomy11091710