2,274
Views
0
CrossRef citations to date
0
Altmetric
Articles

Anthracnose Resistance in Legumes for Cropping System Diversification

ORCID Icon, , ORCID Icon, ORCID Icon, , , & ORCID Icon show all

References

  • Adam-Blondon, A. F., Sévignac, M., Bannerot, H., and Dron, M. 1994. SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor. Appl. Genet. 88: 865–870. doi:10.1007/BF01253998
  • Adebanjo, A., and Bankole, S. A. 2004. Evaluation of some fungi and bacteria for biocontrol of anthracnose disease of cowpea. J. Basic Microbiol. 44: 3–9. doi:10.1002/jobm.200310310
  • Adebitan, S. A., and Olufajo, O. O. 1998. Field evaluation of cowpea (Vigna unguiculata) varieties for grain and fodder production and for multiple disease resistance in Nigeria. Indian J. Agric. Sci. 68: 152–154.
  • Adhikari, K. N., Buirchell, B. J., Thomas, G. J., Sweetingham, M. W., and Yang, H. 2009. Identification of anthracnose resistance in Lupinus albus L. and its transfer from landraces to modern cultivars. Crop Pasture Sci. 60: 472–479. doi:10.1071/CP08092
  • Adhikari, K. N., Thomas, G., Buirchell, B. J., and Sweetingham, M. W. 2011. Identification of anthracnose resistance in yellow lupin (Lupinus luteus L.) and its incorporation into breeding lines. Plant Breed 130: 660–664. doi:10.1111/j.1439-0523.2011.01880.x
  • Aggarwal, S. K., Mali, B. L., Rajput, L. S., and Choudhary, M. 2017. Epidemiology of anthracnose of black gram caused by Colletotrichum lindemuthianum. Int. J. Agric. Sci. 9: 975–3710.
  • Aggarwal, S. K., Mali, B. L., Trivedi, A., Bunker, R. N., Rajput, L. S., Kumar, S., and Tripathi, A. 2019. Host plant resistance in different black gram cultivars against anthracnose. Int. J. Curr. Microbiol. Appl. Sci. 8: 571–575. doi:10.20546/ijcmas.2019.803.069
  • Aldon, D., Mbengue, M., Mazars, C., and Galaud, J. P. 2018. Calcium signalling in plant biotic interactions. Int. J. Mol. Sci. 19: 665. doi:10.3390/ijms19030665
  • Alkan, N., Meng, X., Friedlander, G., Reuveni, E., Sukno, S., Sherman, A., Thon, M., Fluhr, R., and Prusky, D. 2013. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis. Mol. Plant. Microbe Interact. 26: 1345–1358. doi:10.1094/MPMI-03-13-0080-R
  • Alkemade, J. A., Arncken, C., Hirschvogel, C., Messmer, M. M., Leska, A., Voegele, R. T., Finckh, M. R., Kölliker, R., Groot, S. P. C., and Hohmann, P. 2022a. The potential of alternative seed treatments to control anthracnose disease in white lupin. Crop Prot. 158: 106009. doi:10.1016/j.cropro.2022.106009
  • Alkemade, J. A., Baroncelli, R., Messmer, M. M., and Hohmann, P. 2023. Attack of the clones: population genetics reveals clonality of Colletotrichum lupini, the causal agent of lupin anthracnose. Mol. Plant Pathol. 24: 616–627. doi:10.1111/mpp.13332
  • Alkemade, J. A., Messmer, M. M., Arncken, C., Leska, A., Annicchiarico, P., Nazzicari, N., Książkiewicz, M., Voegele, R. T., Finckh, M. R., and Hohmann, P. 2021a. A high-throughput phenotyping tool to identify field-relevant anthracnose resistance in white lupin. Plant Dis. 105: 1719–1727. doi:10.1094/PDIS-07-20-1531-RE
  • Alkemade, J. A., Messmer, M. M., Voegele, R. T., Finckh, M. R., and Hohmann, P. 2021b. Genetic diversity of Colletotrichum lupini and its virulence on white and Andean lupin. Sci. Rep. 11: 13547. doi:10.1038/s41598-021-92953-y
  • Alkemade, J. A., Nazzicari, N., Messmer, M. M., Annicchiarico, P., Ferrari, B., Voegele, R. T., Finckh, M. R., Arncken, C., and Hohmann, P. 2022b. Genome-wide association study reveals white lupin candidate gene involved in anthracnose resistance. Theor. Appl. Genet. 135: 1011–1024. doi:10.1007/s00122-021-04014-7
  • Almeida, C. P. D., Carvalho Paulino, J. F. D., Barbosa, C. C. F., Moraes Cunha Goncalves, G. D., Fritsche-Neto, R., Carbonell, S. A. M., Chiorato, A. F., and Benchimol-Reis, L. L. 2021. Genome-wide association mapping reveals race-specific SNP markers associated with anthracnose resistance in carioca common beans. PLOS One 16: e0251745. doi:10.1371/journal.pone.0251745
  • Altaf, R., Naz, F., Rauf, C. A., and Shah, M. K. N. 2018. The scenario of lentil anthracnose in the Punjab, Pakistan. Pak. J. Bot. 50: 407–413.
  • Alzate-Marin, A. L., Baía, G. S., Paula, T. J. D., Carvalho, G. A. D., Barros, E. G. D., and Moreira, M. A. 1997. Inheritance of anthracnose resistance in common bean differential cultivar AB 136. Plant Dis. 81: 996–998. doi:10.1094/PDIS.1997.81.9.996
  • Alzate-Marin, A. L., Baia, G. S., Paula, T. J., De Souza, K. A., De Barros, E. G., and Moreira, M. A. 2001. Inheritance of anthracnose resistance in the common bean differential cultivar G 2333 and identification of a new molecular marker linked to the Co-42 gene. J. Phytopathol. 149: 259–264. doi:10.1046/j.1439-0434.2001.00612.x
  • Alzate-Marin, A. L., Souza, K. A. D., Morais Silva, M. G. D., Oliveira, E. J. D., Moreira, M. A., and Barros, E. G. De. 2007. Genetic characterization of anthracnose resistance genes Co-43 and Co-9 in common bean cultivar tlalnepantla 64 (PI 207262). Euphytica 154: 1–8. doi:10.1007/s10681-006-9253-x
  • Amin, M., Fitsum, S., Thangavel, S., and Negeri, M. 2014. Field management of anthracnose (Colletotrichum lindemuthianum) in common bean through fungicides and bioagents. Adv. Crop Sci. Technol. 2: 1–8.
  • Amusa, N. A. 1994. Production, partial purification and bioassay of toxic metabolites of three plant pathogenic species of Colletotrichum in Nigeria. Mycopathologia 128: 161–166. doi:10.1007/BF01138478
  • Amusa, N. A., Ikotun, T., and Osikanlu, Y. O. K. 1994. Screening cowpea and soybean cultivars for resistance to anthracnose and brown blotch diseases using phytotoxin metabolites. Afr. Crop Sci. J. 2: 221–224.
  • Anand, T., Bhaskaran, R., Raguchander, T., Karthikeyan, G., Rajesh, M., and Senthilraja, G. 2008. Production of cell wall degrading enzymes and toxins by Colletotrichum capsici and Alternaria alternata causing fruit rot of chillies. J. Plant Prot. Res. 48: 437–451. doi:10.2478/v10045-008-0053-2
  • Anitha, K., Kumar, G. S., Abraham, B., and Chakrabarty, S. K. 2020. Interception of Colletotrichum lindemuthianum (Sacc. & Magn.) Bri. & Cav. on sunflower seed from Argentina, a new host record. Ann. Plant. Prot. Sci. 28: 190. doi:10.5958/0974-0163.2020.00050.6
  • Ankur, J., Shashi, T., Sunil, Z., and Sobita, S. 2012. First report of anthracnose disease on groundnut caused by Colletotrichum dematium from Allahabad (Uttar Pradesh) in India. Int. J. Agric. Sci. 8: 465–467.
  • Arumuganathan, K., and Earle, E. D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208–218. doi:10.1007/BF02672069
  • Awa, O. C., Samuel, O., Oworu, O. O., and Sosanya, O. 2012. First report of fruit anthracnose in mango caused by Colletotrichum gloeosporioides in Southwestern Nigeria. Int. J. Sci. Technol. Res. 1: 30–34.
  • Ayana, G., and Fininsa, C. 2018. Progresses in diseases management research in lowland food legumes of Ethiopia: A review. Ethiop. J. Crop Sci. 6: 329–341.
  • Baer, E., von Baer, I., and von Riegel, R. 2009. Pecosa-Baer: a new cultivar of new cultivar cultivar of white lupin with determined bushy growth habit, sweet grain and high protein content. Chil. J. Agric. Res. 69: 577–580.
  • Bahl, P. N. 2015. Climate change and pulses: approaches to combat its impact. Agric. Res. 4: 103–108. doi:10.1007/s40003-015-0163-9
  • Bailey, J. A., Nash, C., O’Connell, R. J., and Skipp, R. A. 1990. Infection process and host specificity of a Colletotrichum species causing anthracnose disease of cowpea, Vigna unguiculata. Mycol. Res. 94: 810–814. doi:10.1016/S0953-7562(09)81382-8
  • Banniza, S., Warale, R., Menat, J., Cohen-Skali, A., Armstrong-Cho, C., and Bhadauria, V. 2018. The long path to understanding the host–pathogen interactions of Colletotrichum lentis on lentil. Can. J. Plant Pathol. 40: 199–209. doi:10.1080/07060661.2018.1451391
  • Banoo, A., Nabi, A., Rasool, R. S., Mahiya-Farooq, Shah, M. D., Ahmad, M., Sofi, P. A., Aasiya-Nabi, Itoo, H., Sharma, P. N., and Padder, B. A. 2020. North-Western Himalayan common beans: population structure and mapping of quantitative anthracnose resistance through genome wide association study. Front. Plant Sci. 11: 571618. doi:10.3389/fpls.2020.571618
  • Barbieri, M. C. G., Ciampi-Guillardi, M., Moraes, S. R. G., Bonaldo, S. M., Rogério, F., Linhares, R. R., and Massola, N. S. 2017. First report of Colletotrichum cliviae causing anthracnose on soybean in Brazil. Plant Dis. 101: 1677–1677. doi:10.1094/PDIS-07-16-0963-PDN
  • Bardas, G. A., Lagopodi, A. L., Kadoglidou, K., and Tzavella-Klonari, K. 2009. Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biol. Control 49: 139–145. doi:10.1016/j.biocontrol.2009.01.012
  • Barilli, E., Moral, J., Aznar-Fernández, T., and Rubiales, D. 2020. Resistance to anthracnose (Colletotrichum lentis, race 0) in Lens spp. germplasm. Agronomy 10: 1799. doi:10.3390/agronomy10111799
  • Baroncelli, R., Pensec, F., Da Lio, D., Boufleur, T., Vicente, I., Sarrocco, S., Picot, A., Baraldi, E., Sukno, S., Thon, M., and Le Floch, G. 2021. Complete genome sequence of the plant-pathogenic fungus Colletotrichum lupini. Mol. Plant. Microbe Interact. 34: 1461–1464. doi:10.1094/MPMI-07-21-0173-A
  • Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J. E., Kiss, J., Kudsk, P., Lamichhane, J. R., Messéan, A., Moonen, A. C., Ratnadass, A., Ricci, P., Sarah, J. L., and Sattin, M. 2015. Eight principles of integrated pest management. Agron. Sustain. Dev. 35: 1199–1215. doi:10.1007/s13593-015-0327-9
  • Basandrai, A. K., Gartan, S. L., Basandrai, D., and Kalia, V. 1999. Blackgram (Phaseolus mungo) germplasm evaluation against different diseases. Indian J. Agric. Sci. 69: 506–508.
  • Basandrai, A. K., Sharma, V., Katoch, A., Basandrai, D., and Sharma, P. N. 2016. Genetic diversity of Colletotrichum truncatum infecting urdbean (Vigna mungo) in Himanchal Pradesh. Indian Phytopath. 69: 386–390.
  • Basandrai, D., Basandrai, A. K., Singh, I., and Kalia, V. 2003. Multiple disease resistance against anthracnose, cercospora leaf spot, powdery mildew and mungbean yellow mosaic virus in blackgram (Vigna mungo). J. Mycol. Plant Pathol. 33: 56–58.
  • Bawa, P. K., Halliday, J., Kapoor, K., and Banniza, S. 2022. Identification of candidate genes associated with resistance against race 0 of Colletotrichum lentis in Lens ervoides. Sci. Rep. 12: 18447. doi:10.1038/s41598-022-23175-z
  • Bele, L., Kouamé, D. K., and Atta, H. D. 2018. Sensitivity of Colletotrichum species responsible for banana anthracnose disease to some fungicides used in postharvest treatments in Côte d’Ivoire. Int. J. Environ. Agric. Biotechnol. 3: 537–542. doi:10.22161/ijeab/3.2.30
  • Bellé, C., Ramos, R. F., Moccellin, R., and Farias, C. R. J. de. 2020. Detection of Colletotrichum coccodes causing leaf anthracnose on Pisum sativum in southern Brazil. J. Plant Pathol. 102: 255–255. doi:10.1007/s42161-019-00392-6
  • Benzohra, I. E., Bendahmane, B. S., Benkada, M. Y., Mégateli, M., and Belaidi, H. 2020. Use of three synthetic fungicides to reduce the incidence of ascochyta blight (Ascochyta rabiei) in chickpea (Cicer arietinum L.): a susceptible cultivars case. Indian J. Agric. Res. 54: 459–464.
  • Bertioli, D. J., Jenkins, J., Clevenger, J., Dudchenko, O., Gao, D., Seijo, G., Leal-Bertioli, S. C. M., Ren, L., Farmer, A. D., Pandey, M. K., Samoluk, S. S., Abernathy, B., Agarwal, G., Ballén-Taborda, C., Cameron, C., Campbell, J., Chavarro, C., Chitikineni, A., Chu, Y., Dash, S., El Baidouri, M., Guo, B., Huang, W., Kim, K. D., Korani, W., Lanciano, S., Lui, C. G., Mirouze, M., Moretzsohn, M. C., Pham, M., Shin, J. H., Shirasawa, K., Sinharoy, S., Sreedasyam, A., Weeks, N. T., Zhang, X., Zheng, Z., Sun, Z., Froenicke, L., Aiden, E. L., Michelmore, R., Varshney, R. K., Holbrook, C. C., Cannon, E. K. S., Scheffler, B. E., Grimwood, J., Ozias-Akins, P., Cannon, S. B., Jackson, S. A., and Schmutz, J. 2019. The genome sequence of segmental allotetraploid peanut (Arachis hypogaea). Nat. Genet. 51: 877–884. doi:10.1038/s41588-019-0405-z
  • Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., and Wei, Y. 2013a. Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryot. Cell. 12: 2–11. doi:10.1128/EC.00192-12
  • Bhadauria, V., Bett, K. E., Zhou, T., Vandenberg, A., Wei, Y., and Banniza, S. 2013b. Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum. BMC Genet. 14: 9. doi:10.1186/1471-2156-14-31
  • Bhadauria, V., MacLachlan, R., Pozniak, C., and Banniza, S. 2015. Candidate effectors contribute to race differentiation and virulence of the lentil anthracnose pathogen Colletotrichum lentis. BMC Genomics 16: 21. doi:10.1186/s12864-015-1836-2
  • Bhadauria, V., MacLachlan, R., Pozniak, C., Cohen-Skalie, A., Li, L., Halliday, J., and Banniza, S. 2019. Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen Colletotrichum lentis. New Phytol. 221: 431–445. doi:10.1111/nph.15369
  • Bhadauria, V., Ramsay, L., Bett, K. E., and Banniza, S. 2017a. QTL mapping reveals genetic determinants of fungal disease resistance in the wild Lentil species Lens ervoides. Sci. Rep. 7: 3231. doi:10.1038/s41598-017-03463-9
  • Bhadauria, V., Vijayan, P., Wei, Y., and Banniza, S. 2017b. Transcriptome analysis reveals a complex interplay between resistance and effector genes during the compatible lentil-Colletotrichum lentis interaction. Sci. Rep. 7: 13. doi:10.1038/srep42338
  • Bhatt, P., Singh, K. P., and Aravind, T. 2022. Screening of soybean varieties under natural epiphytotic conditions against anthracnose/pod blight (Colletotrichum truncatum (Schw.) Andrus and Moore). Indian Phytopathol. 75: 1185–1189. doi:10.1007/s42360-022-00541-5
  • Bhattacharjee, D., and Bhattacharjee, J. 2019. Identifying of mungbean resistance genotypes against mungbean yellow mosaic virus, anthracnose and cercospora diseases under natural condition in Tripura. Int. J. Curr. Microbiol. Appl. Sci. 8: 74–80. doi:10.20546/ijcmas.2019.809.011
  • Bhunjun, C. S., Phukhamsakda, C., Jayawardena, R. S., Jeewon, R., Promputtha, I., and Hyde, K. D. 2021. Investigating species boundaries in Colletotrichum. Fungal Divers. 107: 107–127. doi:10.1007/s13225-021-00471-z
  • Bindra, S., Mittal, R. K., Sood, V. K., and Sharma, P. N. 2016. Inheritance of resistance in urdbean (Vigna mungo) to anthracnose caused by Colletotrichum truncatum. Indian Phytopathol. 69: 311–313.
  • Boadi, S. A., and Owusu, K. 2019. Impact of climate change and variability on hydropower in Ghana. Afr. Geogr. Rev. 38: 19–31.
  • Borges, L. L., Santana, F. A., Castro, I., Arruda, K. M. A., Ramos, H. J. O., and Barros, E. G. 2015. Two-dimensional electrophoresis-based proteomic analysis of Phaseolus vulgaris in response to Colletotrichum lindemuthianum. J. Plant Pathol. 97: 249–257.
  • Botero, L., Vizcaíno, S., Quiñones, W., Echeverri, F., Gil, J., and Durango, D. 2021. Increased accumulation of isoflavonoids in common bean (Phaseolus vulgaris L.) tissues treated with 1-oxo-indane-4-carboxylic acid derivatives. Biotechnol. Rep. 29: e00601.
  • Boufleur, T. R., Castro, R. R. L., Rogério, F., Ciampi-Guillardi, M., Baroncelli, R., and Massola Júnior, N. S. 2020. First report of Colletotrichum musicola causing soybean anthracnose in Brazil. Plant Dis. 104: 1858. doi:10.1094/PDIS-12-19-2627-PDN
  • Boufleur, T. R., Massola Júnior, N. S., Becerra, S., Baraldi, E., Bibiano, L. B. J., Sukno, S. A., Thon, M. R., and Baroncelli, R. 2022. Comparative transcriptomic provides novel insights into the soybean response to Colletotrichum truncatum infection. Front. Plant Sci. 13: 1046418. doi:10.3389/fpls.2022.1046418
  • Buchwaldt, L., Anderson, K. L., Morrall, R. A. A., Gossen, B. D., and Bernier, C. C. 2004. Identification of lentil germ plasm resistant to Colletotrichum truncatum and characterization of two pathogen races. Phytopathology 94: 236–243. doi:10.1094/PHYTO.2004.94.3.236
  • Buchwaldt, L., Dzananovic, E., and Durkin, J. 2018. Lentil anthracnose: epidemiology, fungicide decision support system, resistance and pathogen races. Can. J. Plant Pathol. 40: 189–198. doi:10.1080/07060661.2018.1441185
  • Buchwaldt, L., Shaikh, R., Adam, J., Tullu, A., and Slinkard, A. E. 2013. Recessive and dominant genes confer resistance to Colletotrichum truncatum in cultivated lentil. Can. J. Plant Pathol. 35: 222–231. doi:10.1080/07060661.2013.768296
  • Cai, L., Hyde, K. D., Taylor, P., Weir, B. S., Waller, J. M., Abang, M. M., Zhang, J. Z., Yang, Y. L., Phoulivong, S., and Liu, Z. Y. 2009. A polyphasic approach for studying Colletotrichum. Fungal Divers. 39: 183–204.
  • Campa, A., Giraldez, R., and Ferreira, J. J. 2009. Genetic dissection of the resistance to nine anthracnose races in the common bean differential cultivars MDRK and TU. Theor. Appl. Genet. 119: 1–11. doi:10.1007/s00122-009-1011-8
  • Campa, A., Giraldez, R., and Ferreira, J. J. 2011. Genetic analysis of the resistance to eight anthracnose races in the common bean differential cultivar kaboon. Phytopathology 101: 757–764. doi:10.1094/PHYTO-11-10-0296
  • Campa, A., Rodríguez-Suárez, C., Giraldez, R., and Ferreira, J. J. 2014. Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.). BMC Plant Biol. 14: 12. doi:10.1186/1471-2229-14-115
  • Cannon, P. F., Damm, U., Johnston, P. R., and Weir, B. S. 2012. Colletotrichum current status and future directions. Stud. Mycol. 73: 181–213. doi:10.3114/sim0014
  • Chacko, R. J., Weidemann, G. J., TeBeest, D. O., and Correll, J. C. 1994. The use of vegetative compatibility and heterokaryosis to determine potential asexual gene exchange in Colletotrichum gloeosporioides. Biol. Control 4: 382–389. doi:10.1006/bcon.1994.1048
  • Chakraborty, N., Mukherjee, K., Sarkar, A., and Acharya, K. 2019. Interaction between bean and Colletotrichum gloeosporioides: understanding through a biochemical approach. Plants 8: 345. doi:10.3390/plants8090345
  • Chakraborty, N., Sarkar, A., Dasgupta, A., Paul, A., Mukherjee, K., and Acharya, K. 2022. In planta validation of nitric oxide mediated defense responses in common bean against Colletotrichum gloeosporioides infection. Indian Phytopathol. 75: 15–24. doi:10.1007/s42360-021-00425-0
  • Chakraborty, S. 2004. High-yielding anthracnose-resistant Stylosanthes for agricultural systems. Aust. Cent. Int. Agric. Res. 1: 124.
  • Chakraborty, S., Thomas, M. R., and Ellis, N. 1996. A multivariate analysis of pathogenic variation in Colletotrichum gloeosporioides infecting the tropical pasture legume, Stylosanthes scabra. Phytopathology 86: 283–289. doi:10.1094/Phyto-86-283
  • Chatak, S., and Banyal, D. K. 2021. Evaluation of IDM components for the management of urdbean anthracnose caused by Colletotrichum truncatum (Schwein) Andrus and Moore. Himachal J. Agric. Res. 46: 156–161.
  • Chaudhari, K. A., and Gohel, N. M. 2016. Management of anthracnose disease of mungbean through new fungicidal formulations. J. Pure Appl. Microbiol. 10: 691–696.
  • Chen, L. S., Chu, C., Liu, C. D., Chen, R. S., and Tsay, J. G. 2006. PCR-based detection and differentiation of anthracnose pathogens, Colletotrichum gloeosporioides and C. truncatum, from vegetable soybean in Taiwan. J. Phytopathol. 154: 654–662. doi:10.1111/j.1439-0434.2006.01163.x
  • Chen, M., Wu, J., Wang, L., Mantri, N., Zhang, X., Zhu, Z., and Wang, S. 2017. Mapping and genetic structure analysis of the anthracnose resistance locus Co-1HY in the common bean (Phaseolus vulgaris L.). PLOS One 12: e0169954. doi:10.1371/journal.pone.0169954
  • Chen, S., Wang, Y., Schnabel, G., Peng, C. A., Lagishetty, S., Smith, K., Luo, C., and Yuan, H. 2018. Inherent resistance to 14a-demethylation inhibitor fungicides in Colletotrichum truncatum is likely linked to CYP51A and/or CYP51B gene variants. Phytopathology 108: 1263–1275. doi:10.1094/PHYTO-02-18-0054-R
  • Chongo, G., Gossen, B. D., and Bernier, C. C. 2002. Infection by Colletotrichum truncatum in resistant and susceptible lentil genotypes. Can. J. Plant Pathol. 24: 81–85. doi:10.1080/07060660109506977
  • Ciampi-Guillardi, M., Baldauf, C., Souza, A. P., Silva-Junior, G. J., and Amorim, L. 2014. Recent introduction and recombination in Colletotrichum acutatum populations associated with citrus postbloom fruit drop epidemics in São Paulo, Brazil. Phytopathology 104: 769–778. doi:10.1094/PHYTO-06-13-0165-R
  • Clemente, A., and Olias, R. 2017. Beneficial effects of legumes in gut health. Curr. Opin. Food Sci. 14: 32–36. doi:10.1016/j.cofs.2017.01.005
  • Coimbra-Gonçalves, G. K., Gonçalves-Vidigal, M. C., Coelho, R. T., Valentini, G., Filho, P. S. V., Lacanallo, G. F., Sousa, L. L., and Elias, H. T. 2016. Characterization and mapping of anthracnose resistance gene in mesoamerican common bean cultivar Crioulo 159. Crop Sci. 56: 2904–2915. doi:10.2135/cropsci2015.10.0651
  • Costa Lara Fioreze, A. C. D., Grigolo, S., Piva, C. A. G., and Sartori, L. 2018. Common bean landraces as potential sources of resistance to anthracnose. Pesqui. Agropecu. Trop. 48: 126–133. doi:10.1590/1983-40632018v4851251
  • Costa, I. F. D. da., Balardin, R. S., Medeiros, L. A. M., Lenz, G., Gulart, C. A., Zemolin, C. R., and Silva, T. M. B. 2009. Reao de germoplasma comercial de soja a Colletotrichum truncatum. Trop. Plant Pathol. 34: 47–50. doi:10.1590/S1982-56762009000100009
  • Cowling, W. A., Buirchell, B. J., Sweetingham, M. W., Yang, H., Thomas, G., Luckett, D. J., Brown, A. G. P., and Hamblin, J. 2000. Anthracnose resistance in lupins–an innovative Australian research effort 1996–1998. In: Lupin, An Ancient Crop for the New Millennium: Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20-24 June, 1999. International Lupin Association: Klink; Muritz, pp 60–62.
  • Czepiel, K., Krajewski, P., Wilczura, P., Bielecka, P., Święcicki, W., and Kroc, M. 2021. Expression profiles of alkaloid-related genes across the organs of narrow-leafed lupin (Lupinus angustifolius L.) and in response to anthracnose infection. Int. J. Mol. Sci. 22: 1–22.
  • da Silva, C. M., Costa, L. C., Porto, A. C. M., Lima, A. A., Chalfun-Junior, A., Souza, E. A. D., and Pereira, W. A. 2021. Differential gene expression in common bean during interaction with race 65 of Colletotrichum lindemuthianum. Trop. Plant Pathol. 46: 518–527. doi:10.1007/s40858-021-00447-z
  • da Silva, L. L., Moreno, H. L. A., Correia, H. L. N., Santana, M. F., and Queiroz, M. V. de. 2020. Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl. Microbiol. Biotechnol. 104: 1891–1904. doi:10.1007/s00253-020-10363-y
  • Damm, U., O’Connell, R. J., Groenewald, J. Z., and Crous, P. W. 2014. The Colletotrichum destructivum species complex–hemibiotrophic pathogens of forage and field crops. Stud. Mycol. 79: 49–84. doi:10.1016/j.simyco.2014.09.003
  • Damm, U., Sato, T., Alizadeh, A., Groenewald, J. Z., and Crous, P. W. 2019. The Colletotrichum dracaenophilum. Stud. Mycol. 92: 1–46. doi:10.1016/j.simyco.2018.04.001
  • Damm, U., Woudenberg, J. H. C., Cannon, P. F., and Crous, P. W. 2009. Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers. 39: 45–87.
  • David, P., Sévignac, M., Thareau, V., Catillon, Y., Kami, J., Gepts, P., Langin, T., and Geffroy, V. 2008. BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. Mol. Genet. Genomics 280: 521–533. doi:10.1007/s00438-008-0384-8
  • Deguine, J. P., Aubertot, J. N., Bellon, S., Côte, F., Lauri, P. E., and Lescourret, F. 2023. Agroecological crop protection for sustainable agriculture. Adv. Agron. 178: 1–59.
  • Dias, M. D., Dias-Neto, J. J., Santos, M. D. M., Formento, A. N., Bizerra, L. V. A. S., Fonseca, M. E. N., Boiteux, L. S., and Café-Filho, A. C. 2019. Current status of soybean anthracnose associated with Colletotrichum truncatum in Brazil and Argentina. Plants 8: 459. doi:10.3390/plants8110459
  • Dias, M. D., Fonseca, M. E. N., Dias-Neto, J. J., Santos, M. D. M., Pandolfo, G. M., Boiteux, L. S., and Café-Filho, A. C. 2018. Biology, pathogenicity, and haplotype analyses of Colletotrichum cliviae: a novel soybean anthracnose agent in warm tropical areas. Trop. Plant Pathol. 43: 439–451. doi:10.1007/s40858-018-0249-6
  • Dias, M. D., Pinheiro, V. F., and Café-Filho, A. C. 2016. Impact of anthracnose on the yield of soybean subjected to chemical control in the north region of Brazil. Summa Phytopathol. 42: 18–23. doi:10.1590/0100-5405/2114
  • Dubrulle, G., Picot, A., Madec, S., Corre, E., Pawtowski, A., Baroncelli, R., Zivy, M., Balliau, T., Floch, G. Le., and Pensec, F. 2020. Deciphering the infectious process of Colletotrichum lupini in lupin through transcriptomic and proteomic analysis. Microorganisms 8: 1621. doi:10.3390/microorganisms8101621
  • Dwi, S., Sri, W., Edy, B. M. S., and Erman, M. 2014. Utilization of chitinolytic bacterial isolates to control anthracnose of cocoa leaf caused by Colletotrichum gloeosporioides. Afr. J. Biotechnol. 13: 1631–1637. doi:10.5897/AJB11.3687
  • Elad, Y., and Pertot, I. 2014. Climate Change impacts on plant pathogens and plant diseases. J. Crop Improv. 28: 99–139. doi:10.1080/15427528.2014.865412
  • Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., and Mitchell, S. E. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS One 6: e19379. doi:10.1371/journal.pone.0019379
  • Enyiukwu, D. N., Awurum, A. N., Ononuju, C. C., and Nwaneri, J. A. 2014. Biology and management strategies of cowpea anthracnose disease caused by Colletrotrichum species. Greener J. Biochem. Biotechnol. 1: 52–65. doi:10.15580/GJBB.2014.2.070414288
  • Faisal Peeran, M., Kuppusami, P., and Thiruvengadam, R. 2014. Pathogenesis of Colletotrichum lindemuthianum the incitant of anthracnose disease in beans mediated by macerating enzymes. N Save Nat. Surviv. 9: 295–300.
  • Falade, M. J., and Borisade, O. A. 2018. Toxicity of copper (1) oxide metalaxyl fungicide and selected plant extracts to Colletotrichium lindemuthianum (Sensu Lato) and management of cowpea anthracnose disease in Nigeria. J. Agric. Sci. Technol. 18: 1–11. doi:10.9734/AJAAR/2017/38158
  • Fan, S., Chang, Y., Liu, G., Shang, S., Tian, L., and Shi, H. 2020. Molecular functional analysis of auxin/indole-3-acetic acid proteins (Aux/IAAs) in plant disease resistance in cassava. Physiol. Plant 168: 88–97. doi:10.1111/ppl.12970
  • Ferreira, J. J., Campa, A., and Kelly, J. D. 2013. Organization of genes conferring resistance to anthracnose in common bean. In Translational Genomics for Crop Breeding: Biotic Stress, Ames, IA: John Wiley & Sons, Inc. Vol. 1, pp 151–181.
  • Fiala, J. V., Tullu, A., Banniza, S., Séguin-Swartz, G., and Vandenberg, A. 2009. Interspecies transfer of resistance to anthracnose in lentil (Lens culinaris medic). Crop Sci. 49: 825–830. doi:10.2135/cropsci2008.05.0260
  • Fischer, K., Dieterich, R., Nelson, M. N., Kamphuis, L. G., Singh, K. B., Rotter, B., Krezdorn, N., Winter, P., Wehling, P., and Ruge-Wehling, B. 2015. Characterization and mapping of LanrBo: a locus conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.). Theor. Appl. Genet. 128: 2121–2130. doi:10.1007/s00122-015-2572-3
  • Flor, H. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9: 275–296. doi:10.1146/annurev.py.09.090171.001423
  • Fontenelle, M. R., Santana, M. F., Cnossen, A., Bazzolli, D. M. S., Bromonschenkel, S. H., Araújo, E. F. de., and Queiroz, M. V. de. 2017. Differential expression of genes during the interaction between Colletotrichum lindemuthianum and Phaseolus vulgaris. Eur. J. Plant Pathol. 147: 653–670. doi:10.1007/s10658-016-1033-4
  • Ford, R., Banniza, S., Photita, W., and Taylor, P. W. J. 2004. Morphological and molecular discrimination of Colletotrichum truncatum causing anthracnose on lentil in Canada. Austral. Plant Pathol. 33: 559–569. doi:10.1071/AP04058
  • Freeman, S., Katan, T., and Shabi, E. 1996. Characterization of Colletotrichum gloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity tests. Appl. Environ. Microbiol. 62: 1014–1020. doi:10.1128/aem.62.3.1014-1020.1996
  • Gan, P., Narusaka, M., Tsushima, A., Narusaka, Y., Takano, Y., and Shirasu, K. 2017. Draft genome assembly of Colletotrichum chlorophyti, a pathogen of herbaceous plants. Genome Announc. 5: 01733-16. doi:10.1128/genomeA.01733-16
  • Ganesh, S. K., Packiaraj, D., Geetha, S., Gnanamalar, R. P., Manivannan, N., Mahalingam, A., Narayanan, S. L., Satya, V. K., Kavitha, Z., and Ganesamurthy, K. 2022. VBN 3: a new high yielding multiple disease resistant cowpea variety. Electron. J. Plant Breed. 12: 1375–1379.
  • García-Pajón, C. M., and Collado, I. G. 2003. Secondary metabolites isolated from Colletotrichum species. Nat. Prod. Rep. 20: 426–431. doi:10.1039/b302183c
  • Garg, G., Kamphuis, L. G., Bayer, P. E., Kaur, P., Dudchenko, O., Taylor, C. M., Frick, K. M., Foley, R. C., Gao, L.-L., Aiden, E. L., Edwards, D., and Singh, K. B. 2022. A pan-genome and chromosome-length reference genome of narrow-leafed lupin (Lupinus angustifolius) reveals genomic diversity and insights into key industry and biological traits. Plant J. 111: 1252–1266. doi:10.1111/tpj.15885
  • Garzón, L. N., Blair, M. W., and Ligarreto, G. A. 2007. Use of molecular marker assisted selection for resistance to anthracnose in common beans. Agron. Colomb. 25: 207–214.
  • Geffroy, V., Sévignac, M., Billant, P., Dron, M., and Langin, T. 2008. Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes. Theor. Appl. Genet. 116: 407–415. doi:10.1007/s00122-007-0678-y
  • Geffroy, V., Sicard, D., de Oliveira, J. C., Sévignac, M., Cohen, S., Gepts, P., Neema, C., Langin, T., and Dron, M. 1999. Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol. Plant. Microbe Interact. 12: 774–784. doi:10.1094/MPMI.1999.12.9.774
  • Gela, T. S., Banniza, S., and Vandenberg, A. 2020. Lack of effective resistance to the virulent race of Colletotrichum lentis in Lens culinaris Medikus subsp. culinaris. Plant Genet. Resour. 18: 81–87. doi:10.1017/S1479262120000027
  • Gela, T. S., Koh, C. S., Caron, C. T., Chen, L. A., Vandenberg, A., and Bett, K. E. 2021b. QTL mapping of lentil anthracnose (Colletotrichum lentis) resistance from Lens ervoides accession IG 72815 in an interspecific RIL population. Euphytica 217: 1–11. doi:10.1007/s10681-021-02804-0
  • Gela, T., Ramsay, L., Haile, T. A., Vandenberg, A., and Bett, K. 2021a. Identification of anthracnose race 1 resistance loci in lentil by integrating linkage mapping and genome-wide association study. Plant Genome 14: 20131. doi:10.1002/tpg2.20131
  • Gilio, T. A. S., Hurtado-Gonzales, O. P., Gonçalves-Vidigal, M. C., Valentini, G., Ferreira Elias, J. C., Song, Q., and Pastor-Corrales, M. A. 2020. Fine mapping of an anthracnose-resistance locus in Andean common bean cultivar Amendoim Cavalo. PLOS One 15: e0239763. doi:10.1371/journal.pone.0239763
  • Girma, F., Fininsa, C., Terefe, H., and Amsalu, B. 2022. Distribution of common bacterial blight and anthracnose diseases and factors influencing epidemic development in major common bean growing areas in Ethiopia. Acta Agric. Scand. Sect. B Soil Plant Sci. 72: 685–699. doi:10.1080/09064710.2022.2063168
  • Giugliano, D., Ceriello, A., and Esposito, K. 2006. The Effects of diet on inflammation. emphasis on the metabolic syndrome. J. Am. Coll. Cardiol. 48: 677–685. doi:10.1016/j.jacc.2006.03.052
  • Gonçalves-Vidigal, M. C., and Kelly, J. D. 2006. Inheritance of anthracnose resistance in the common bean cultivar Widusa. Euphytica 151: 411–419. doi:10.1007/s10681-006-9164-x
  • Gonçalves-Vidigal, M. C., Cruz, A. S., Garcia, A., Kami, J., Filho, P. S. V., Sousa, L. L., McClean, P., Gepts, P., and Pastor-Corrales, M. A. 2011. Linkage mapping of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor. Appl. Genet. 122: 893–903. doi:10.1007/s00122-010-1496-1
  • Gonçalves-Vidigal, M. C., Cruz, A. S., Lacanallo, G. F., Vidigal Filho, P. S., Sousa, L. L., Pacheco, C. M. N. A., McClean, P., Gepts, P., and Pastor-Corrales, M. A. 2013. Co-segregation analysis and mapping of the anthracnose Co-10 and angular leaf spot Phg-ON disease-resistance genes in the common bean cultivar Ouro Negro. Theor. Appl. Genet. 126: 2245–2255. doi:10.1007/s00122-013-2131-8
  • Gonçalves-Vidigal, M. C., Gilio, T. A. S., Valentini, G., Vaz-Bisneta, M., Vidigal Filho, P. S., Song, Q., Oblessuc, P. R., and Melotto, M. 2020. New Andean source of resistance to anthracnose and angular leaf spot: fine mapping of disease-resistance genes in California Dark Red Kidney common bean cultivar. PLOS One 15: e0235215. doi:10.1371/journal.pone.0235215
  • Gonçalves-Vidigal, M. C., Lacanallo, G. F., and Vidigal Filho, P. S. 2008. A new gene conferring resistance to anthracnose in Andean common bean (Phaseolus vulgaris L.) cultivar “Jalo Vermelho”. Plant Breed. 127: 592–596. doi:10.1111/j.1439-0523.2008.01530.x
  • Gonçalves-Vidigal, M. C., Silva, C. R. da, Vidigal Filho, P. S., Gonela, A., and Kvitschal, M. V. 2007. Allelic relationships of anthracnose (Colletotrichum lindemuthianum) resistance in the common bean (Phaseolus vulgaris L.) cultivar Michelite and the proposal of a new anthracnose resistance gene, Co-11. Genet. Mol. Biol. 30: 589–593. doi:10.1590/S1415-47572007000400015
  • Gonçalves-Vidigal, M., Pacheco, C., Vidigal Filho, P., Lacanallo, G., Sousa, L., and Martins, V. 2016. Genetic mapping of the anthracnose resistance gene Co-14 in the common bean cultivar Pitanga. Annu. Rep. Bean Improv. Coop. 59: 85–86.
  • González, A. M., Yuste-Lisbona, F. J., Paula Rodiño, A., Ron, A. M., De, Capel, C., García-Alcázar, M., Lozano, R., and Santalla, M. 2015. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean. Front. Plant Sci. 6: 141. doi:10.3389/fpls.2015.00141
  • Gossen, B. D., Anderson, K. L., and Buchwaldt, L. 2009. Host specificity of Colletotrichum truncatum from lentil. Can. J. Plant Pathol. 31: 65–73. doi:10.1080/07060660909507573
  • Guilengue, N., Silva, M. C., Talhinhas, P., Neves-Martins, J., and Loureiro, A. 2022. Subcuticular–intracellular hemibiotrophy of Colletotrichum lupini in Lupinus mutabilis. Plants 11: 3028. doi:10.3390/plants11223028
  • Gupta, C., Gupta, M., Gupta, S., and Salgotra, R. K. 2021. Screening of common bean (Phaseolus vulgaris L.) germplasm against Colletotrichum lindemuthianum inciting bean anthracnose. Res. J. Biotech. 17: 13–18. doi:10.25303/1701rjbt1318
  • Gupta, O. 2021. Pulses–changing scenario of diseases and their management strategies. J. Food Legum. 34: 147–148.
  • Gupta, S., Kalha, C. S., Vaid, A., and Rizvi, S. E. H. 2005. Integrated management of anthracnose of French bean caused by Colletotrichum lindemuthianum. J. Mycol. Plant Pathol. 35: 432–436.
  • Ha, J., Satyawan, D., Jeong, H., Lee, E., Cho, K. H., Kim, M. Y., and Lee, S. H. 2021. A near-complete genome sequence of mungbean (Vigna radiata L.) provides key insights into the modern breeding program. Plant Genome 14: 20121. doi:10.1002/tpg2.20121
  • Haase, F., and Ruge-Wehling, B. 2019. Transcriptome-based mapping of anthracnose resistance gene (Llur) in yellow lupin (Lupinus luteus). In: 12th Young Scientists Meeting 2019: 6th–8th November in Kleinmachnow. https://www.openagrar.de/receive/openagrar_mods_00052350.
  • Han, Y., Zeng, X., Xiang, F., Zhang, Q., Guo, C., Chen, F., and Gu, Y. 2018. Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. J. Integr. Agric. 17: 1391–1400. doi:10.1016/S2095-3119(17)61854-9
  • Hane, J. K., Ming, Y., Kamphuis, L. G., Nelson, M. N., Garg, G., Atkins, C. A., Bayer, P. E., Bravo, A., Bringans, S., Cannon, S., Edwards, D., Foley, R., Gao, L.-L., Harrison, M. J., Huang, W., Hurgobin, B., Li, S., Liu, C.-W., McGrath, A., Morahan, G., Murray, J., Weller, J., Jian, J., and Singh, K. B. 2017. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnol. J. 15: 318–330. doi:10.1111/pbi.12615
  • Hartman, G. L., Sinclair, J. B., and Rupe, J. C. 1999. Compendium of soybean diseases. St. Paul, MN: APS Press.
  • Heffner, E. L., Sorrells, M. E., and Jannink, J. L. 2009. Genomic selection for crop improvement. Crop Sci. 49: 1–12. doi:10.2135/cropsci2008.08.0512
  • Hegay, S., Geleta, M., Bryngelsson, T., Asanaliev, A., Garkava-Gustavsson, L., Persson Hovmalm, H., and Ortiz, R. 2014. Introducing host-plant resistance to anthracnose in Kyrgyz common bean through inoculation-based and marker-aided selection. Plant Breed. 133: 86–91. doi:10.1111/pbr.12121
  • Hernández-Álvarez, A. J., Carrasco-Castilla, J., Dávila-Ortiz, G., Alaiz, M., Girón-Calle, J., Vioque-Peña, J., Jacinto-Hernández, C., and Jiménez-Martínez, C. 2013. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds. J. Sci. Food Agric. 93: 961–966. doi:10.1002/jsfa.5841
  • Hill, M. J., and Donald, G. E. 1998. Australian Temperate Pastures Database. CSIRO, CD ROM, National Pasture Improvement Coordinating Committee/CSIRO Division of Animal Production: Canberra.
  • Huang, L., Kim, K. T., Yang, J. Y., Song, H., Choi, G., Jeon, J., Cheong, K., Ko, J., Xu, H., and Lee, Y. H. 2019. A high-quality draft genome sequence of Colletotrichum gloeosporioides sensu stricto SMCG1#C, a causal agent of anthracnose on Cunninghamia lanceolata in China. Mol. Plant. Microbe Interact. 32: 139–141. doi:10.1094/MPMI-05-18-0144-A
  • Hufnagel, B., Marques, A., Soriano, A., Marquès, L., Divol, F., Doumas, P., Sallet, E., Mancinotti, D., Carrere, S., Marande, W., Arribat, S., Keller, J., Huneau, C., Blein, T., Aimé, D., Laguerre, M., Taylor, J., Schubert, V., Nelson, M., Geu-Flores, F., Crespi, M., Gallardo, K., Delaux, P.-M., Salse, J., Bergès, H., Guyot, R., Gouzy, J., and Péret, B. 2020. High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nat. Commun. 11: 492. doi:10.1038/s41467-019-14197-9
  • Hufnagel, B., Soriano, A., Taylor, J., Divol, F., Kroc, M., Sanders, H., Yeheyis, L., Nelson, M., and Péret, B. 2021. Pangenome of white lupin provides insights into the diversity of the species. Plant Biotechnol. J. 19: 2532–2543. doi:10.1111/pbi.13678
  • Hyde, K. D., Cai, L., McKenzie, E. H. C., Yang, Y. L., Zhang, J. Z., and Prihastuti, H. 2009. Colletotrichum: a catalogue of confusion. Fungal Divers. 39: 1–17.
  • Iamsupasit, N., Chakraborty, S., Cameron, D. F., and Adkins, S. W. 1993. Components of quantitative resistance to anthracnose (Colletotrichum gloeosporioides) in tetraploid accessions of the pasture legume Stylosanthes hamata. Aust. J. Exp. Agric. 33: 855–860. doi:10.1071/EA9930855
  • Intan Sakinah, M. A., Suzianti, I. V., and Latiffah, Z. 2013. First report of Colletotrichum gloeosporioides causing anthracnose of banana (Musa spp.) in Malaysia. Plant Dis. 97: 991. doi:10.1094/PDIS-10-12-0985-PDN
  • Irwin, J. A. G., and Cameron, D. F. 1978. Two diseases in Stylosanthes spp. caused by Colletotrichum gloeosporioides in Australia, and pathogenic specialization within one of the causal organisms. Aust. J. Agric. Res. 29: 305–317. doi:10.1071/AR9780305
  • Iskandar Vijaya, S., Mohd Anuar, I. S., and Zakaria, L. 2015. Characterization and pathogenicity of Colletotrichum truncatum causing stem anthracnose of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. J. Phytopathol. 163: 67–71. doi:10.1111/jph.12261
  • Jacob, I., Feuerstein, U., Heinz, M., Schott, M., and Urbatzka, P. 2017. Evaluation of new breeding lines of white lupin with improved resistance to anthracnose. Euphytica 213: 236. doi:10.1007/s10681-017-2011-4
  • Jacob, I., Hartmann, S., and Struck, C. 2016. Response of different fodder legume species to Colletotrichum trifolii. Crop Pasture Sci. 67: 1110–1115. doi:10.1071/CP16162
  • Jahan, M. A., Harris, B., Lowery, M., Coburn, K., Infante, A. M., Percifield, R. J., Ammer, A. G., and Kovinich, N. 2019. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genomics 20: 149. doi:10.1186/s12864-019-5524-5
  • Jaiganesh, V., Kiruthika, P., and Kannan, C. 2019. Integrated disease management of chilli anthracnose. J. Biopestic. 12: 126–133.
  • Jayawardena, R. S., Hyde, K. D., Damm, U., Cai, L., Liu, M., Li, X. H., Zhang, W., Zhao, W. S., and Yan, J. Y. 2016. Notes on currently accepted species of Colletotrichum. Mycosphere 7: 1192–1260. doi:10.5943/mycosphere/si/2c/9
  • Jegadeesan, S., Raizada, A., Dhanasekar, P., and Suprasanna, P. 2021. Draft genome sequence of the pulse crop blackgram [Vigna mungo (L.) Hepper] reveals potential R-genes. Sci. Rep. 11: 11247. doi:10.1038/s41598-021-90683-9
  • Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J., and Zhang, J. 2017. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 59: 86–101. doi:10.1111/jipb.12513
  • Jiang, L., Wu, P., Yang, L., Liu, C., Guo, P., Wang, H., Wang, S., Xu, F., Zhuang, Q., Tong, X., Liu, P., and Luo, L. 2021. Transcriptomics and metabolomics reveal the induction of flavonoid biosynthesis pathway in the interaction of Stylosanthes-Colletotrichum gloeosporioides. Genomics 113: 2702–2716. doi:10.1016/j.ygeno.2021.06.004
  • Júnior, M. B. S., Resende, M. L. V., Pozza, E. A., Cruz Machado, J., Resende, A. R. M., Cardoso, A. M. S., Silva Costa Guimarães, S., and Santos Botelho, D. M. dos. 2021. Effect of temperature on Colletotrichum truncatum growth, and evaluation of its inoculum potential in soybean seed germination. Eur. J. Plant Pathol. 160: 999–1004. doi:10.1007/s10658-021-02293-w
  • Kaiser, W. J., Mihov, M., Muehlbauer, F. J., and Hannan, R. M. 1998. First report of anthracnose of lentil incited by Colletotrichum truncatum in Bulgaria. Plant Dis. 82: 128. doi:10.1094/PDIS.1998.82.1.128C
  • Kale, S. L., and Barhate, B. G. 2016. Management of anthracnose in soybean caused by Colletotrichum truncatum. Int. J. Plant Prot. 9: 583–588. doi:10.15740/HAS/IJPP/9.2/583-588
  • Kamh, M., Horst, W. J., Amer, F., Mostafa, H., and Maier, P. 1999. Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 211: 19–27. doi:10.1023/A:1004543716488
  • Kang, Y. J., Kim, S. K., Kim, M. Y., Lestari, P., Kim, K. H., Ha, B.-K., Jun, T. H., Hwang, W. J., Lee, T., Lee, J., Shim, S., Yoon, M. Y., Jang, Y. E., Han, K. S., Taeprayoon, P., Yoon, N., Somta, P., Tanya, P., Kim, K. S., Gwag, J.-G., Moon, J.-K., Lee, Y.-H., Park, B.-S., Bombarely, A., Doyle, J. J., Jackson, S. A., Schafleitner, R., Srinives, P., Varshney, R. K., and Lee, S.-H. 2014. Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 5: 5443. doi:10.1038/ncomms6443
  • Katoch, A., Sharma, P., Padder, B. A., and Sharma, P. N. 2017. Population structure of Colletotrichum truncatum in Himachal Pradesh and Identification of broad-spectrum resistant sources in Capsicum. Agric. Res. 6: 296–303. doi:10.1007/s40003-017-0261-y
  • Kaur, L., Singh, P., and Sirari, A. 2011. Biplot analysis for locating multiple disease resistance diversity in mungbean germplasm. Plant Dis. Res. 26: 55–60.
  • Kaur, S., Gonçalves-Vidigal, M. C., Davidson, J., Mysore, K. S., and Pandey, A. K. 2023. Disease and pest resistance in legume crops. Front. Plant Sci. 14: 1166387. doi:10.3389/fpls.2023.1166387
  • Kaushal, R. P., and Singh, B. M. 1988. Genetics of disease resistance in urdbean (Vigna mungo (L.) Hepper) to the leaf spots caused by Colletotrichum truncatum (Schw.) Andrus & Moore. Euphytica 37: 279–281. doi:10.1007/BF00015124
  • Kavanashree, K., Jahagirdar, S., Priyanka, K., Uday, G., Kambrekar, D. N., Krishnaraj, P. U., Basavaraja, G. T., and Patil, M. S. 2022. Molecular variability of Colletotrichum spp. associated with anthracnose of soybean. Legum. Res. 45: 1048–1053.
  • Kazan, K., and Manners, J. M. 2009. Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci. 14: 373–382. doi:10.1016/j.tplants.2009.04.005
  • Kelemu, S., Skinner, D. Z., Badel, J. L., Moreno, C. X., Rodríguez, M. X., Fernandes, C. D., Charchar, M. J., and Chakraborty, S. 1999. Genetic diversity in South American Colletotrichum gloeosporioides isolates from Stylosanthes guianensis, a tropical forage legume. Eur. J. Plant Pathol. 105: 261–272. doi:10.1023/A:1008764428437
  • Kelly, J. D., and Vallejo, V. A. 2004. A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hortscience 39: 1196–1207. doi:10.21273/HORTSCI.39.6.1196
  • Khan, M. 1992. Pathogenicity of sclerotia- and nonsclerotia-forming isolates of Colletotrichum truncatum on soybean plants and roots. Phytopathology 82: 314. doi:10.1094/Phyto-82-314
  • Khan, M., and Sinclair, J. B. 1991. Effect of soil temperature on infection of soybean roots by sclerotia-forming isolates of Colletotrichum truncatum. Plant Dis. 75: 1282–1285. doi:10.1094/PD-75-1282
  • Kim, B., Cho, K., and Lee, Y. 1998. Anthracnose of Rumex crispus caused by Colletotrichum gloeosporioides. Korean J. Plant Pathol. 14: 358–360.
  • Kim, K. C., Fan, B., and Chen, Z. 2006. Pathogen-induced Arabidopsis WRKY7 is a transcriptional represser and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol. 142: 1180–1192. doi:10.1104/pp.106.082487
  • Klosterman, S. J., Rollins, J. R., Sudarshana, M. R., and Vinatzer, B. A. 2016. Disease management in the genomics era-summaries of focus issue papers. Phytopathology 106: 1068–1070. doi:10.1094/PHYTO-07-16-0276-FI
  • Książkiewicz, M., Nazzicari, N., Yang, H., Nelson, M. N., Renshaw, D., Rychel, S., Ferrari, B., Carelli, M., Tomaszewska, M., Stawiński, S., Naganowska, B., Wolko, B., and Annicchiarico, P. 2017. A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci. Rep. 7: 15335. doi:10.1038/s41598-017-15625-w
  • Książkiewicz, M., Rychel-Bielska, S., Plewiński, P., Bielski, W., Nuc, M., Kozak, B., Krajewski, P., and Jędryczka, M. 2022. A successful defense of the narrow-leafed lupin against anthracnose involves quick and orchestrated reprogramming of oxidation–reduction, photosynthesis and pathogenesis-related genes. Sci. Rep. 12: 8164. doi:10.1038/s41598-022-12257-7
  • Kulkarni, S. 2019. Epidemiology of greengram (Vigna radiate) anthracnose in northern Karnataka. J. Pharmacog. Phytochem. 8: 434–437.
  • Kulkarni, S. A. 2009. Epidemiology and integrated management of anthracnose of greengram. M.Sc. (Agri.) Thesis. UAS Dharwad, Karnataka, India.
  • Kumar, A., Rawa, R., Roy, N., Ahamad, A., and Kumar, H. 2020. Evaluation of fungicides for management of anthracnose disease of black gram (Vigna mungo L.) in growing areas of district Jhansi of Bundelkhand region. J. Appl. Nat. Sci. 12: 110–114. doi:10.31018/jans.vi.2257
  • Kumar, P., Pandey, P., Dubey, R. C., and Maheshwari, D. K. 2016. Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies. Rhizosphere 2: 13–23. doi:10.1016/j.rhisph.2016.09.002
  • Lacanallo, G. F., and Gonçalves-Vidigal, M. C. 2015. Mapping of an Andean gene for anthracnose resistance (Co-13) in common bean (Phaseolus vulgaris L.) Jalo Listras Pretas landrace. Aust. J. Crop Sci. 9: 394–400.
  • Lamichhane, J. R., Barzman, M., Booij, K., Boonekamp, P., Desneux, N., Huber, L., Kudsk, P., Langrell, S. R. H., Ratnadass, A., Ricci, P., Sarah, J. L., and Messéan, A. 2015. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 35: 443–459. doi:10.1007/s13593-014-0275-9
  • Lamichhane, J. R., Corrales, D. C., and Soltani, E. 2022. Biological seed treatments promote crop establishment and yield: a global meta-analysis. Agron. Sustain. Dev. 42: 45. doi:10.1007/s13593-022-00761-z
  • Lamichhane, J. R., You, M. P., Laudinot, V., Barbetti, M. J., and Aubertot, J. N. 2020. Revisiting sustainability of fungiside seed treatments for field crops. Plant Dis. 104: 610–623. doi:10.1094/PDIS-06-19-1157-FE
  • Lamprecht, P. S., and Knox-Davies, S. C. 1984. Preliminary survey of foliage diseases of annual Medicago spp. in South Africa. Phytophylactic 16: 177–183.
  • Lee, J. H., Jeong, S. W., Cho, Y. A., Park, S., Kim, Y.-H., Bae, D. W., Chung, J. I., Kwak, Y.-S., Jeong, M.-J., Park, S.-C., Shim, J.-H., Jin, J. S., and Shin, S. C. 2013. Determination of the variations in levels of phenolic compounds in soybean (Glycine max Merr.) sprouts infected by anthracnose (Colletotrichum gloeosporioides). J. Sci. Food Agric. 93: 3081–3086. doi:10.1002/jsfa.6142
  • Lenné, J. M. 1986. Recent advances in the understanding of anthracnose of Stylosanthes in tropical America. In: Proceedings of XV International Grasslands Congress, Kyoto, Japan.
  • Lenné, J. M. 1994. Diseases of stylosanthes. In Diseases of Tropical Pasture Plants; Lenné, J. M. and Trutmann, P., Eds. CAB International: Kent, pp 21–42.
  • Liang, C., Zhang, B., Zhou, Y., Yin, H., An, B., Lin, D., He, C., and Luo, H. 2021. CgNPG1 as a novel pathogenic gene of Colletotrichum gloeosporioides from Hevea brasiliensis in mycelial growth, conidiation, and the invasive structures development. Front. Microbiol. 12: 629387. doi:10.3389/fmicb.2021.629387
  • Lichtin, N., Salvo-Garrido, H., Till, B., Caligari, P. D. S., Rupayan, A., Westermeyer, F., and Olivos, M. 2020. Genetic and comparative mapping of Lupinus luteus L. highlight syntenic regions with major orthologous genes controlling anthracnose resistance and flowering time. Sci. Rep. 10: 19174. doi:10.1038/s41598-020-76197-w
  • Lima Castro, S. A. de, Gonçalves-Vidigal, M. C., Gilio, T. A. S., Lacanallo, G. F., Valentini, G., Silva Ramos Martins, V., Song, Q., Galván, M. Z., Hurtado-Gonzales, O. P., and Pastor-Corrales, M. A. 2017. Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma. BMC Genomics 18: 12. doi:10.1186/s12864-017-3685-7
  • Lima, L. R. L., Gonçalves‐Vidigal, M. C., Vaz Bisneta, M., Valentini, G., Vidigal Filho, P. S., Martins, V. d S. R., and de Souza, T. L. P. O. 2023. Genetic fine-mapping of anthracnose disease-resistance allele Co-14 present in the Andean common bean cultivar AND 277. Crop Sci. 63: 750–763. doi:10.1002/csc2.20905
  • Liu, B., Pavel, J. A., Hausbeck, M. K., Feng, C., and Correll, J. C. 2021. Phylogenetic analysis, vegetative compatibility, virulence, and fungal filtrates of leaf curl pathogen Colletotrichum fioriniae from celery. Phytopathology 111: 751–760. doi:10.1094/PHYTO-04-20-0123-R
  • Liu, F., Cai, L., Crous, P. W., and Damm, U. 2014. The Colletotrichum gigasporum species complex. Persoonia Mol. Phylogeny Evol. Fungi 33: 83–97. doi:10.3767/003158514X684447
  • Liu, F., Wang, M., Damm, U., Crous, P. W., and Cai, L. 2016. Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evol. Biol. 16: 1–14.
  • Liu, J.-Z., Horstman, H. D., Braun, E., Graham, M. A., Zhang, C., Navarre, D., Qiu, W.-L., Lee, Y., Nettleton, D., Hill, J. H., and Whitham, S. A. 2011. Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiol. 157: 1363–1378. doi:10.1104/pp.111.185686
  • Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., Huang, X., Li, Y., Zhang, M., Wang, Z., Zhu, B., Han, B., Liang, C., and Tian, Z. 2020. Pan-genome of wild and cultivated soybeans. Cell 182: 162–176.e13. doi:10.1016/j.cell.2020.05.023
  • Lokya Naik, B. H., and Anilkumar, T. B. 1991. Conidial production and germination in carbendazim and thiophanate resistant strains of Colletotrichum lindemuthianum from cowpea. Zentralbl. Mikrobiol. 146: 463–465. doi:10.1016/S0232-4393(11)80232-5
  • Lonardi, S., Muñoz-Amatriaín, M., Liang, Q., Shu, S., Wanamaker, S. I., Lo, S., Tanskanen, J., Schulman, A. H., Zhu, T., Luo, M.-C., Alhakami, H., Ounit, R., Hasan, A. M., Verdier, J., Roberts, P. A., Santos, J. R. P., Ndeve, A., Doležel, J., Vrána, J., Hokin, S. A., Farmer, A. D., Cannon, S. B., and Close, T. J. 2019. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 98: 767–782. doi:10.1111/tpj.14349
  • López, C. E., Acosta, I. F., Jara, C., Pedraza, F., Gaitán-Solís, E., Gallego, G., Beebe, S., and Tohme, J. 2003. Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93: 88–95. doi:10.1094/PHYTO.2003.93.1.88
  • Lozovaya, V. V., Lygin, A. V., Zernova, O. V., and Widholm, J. M. 2005. Genetic engineering of plant root disease resistance by modification of the phenylpropanoid pathway. Plant Biosyst. 139: 20–23. doi:10.1080/11263500500055247
  • Lucas, M. M., Stoddard, F. L., Annicchiarico, P., Frías, J., Martínez-Villaluenga, C., Sussmann, D., Duranti, M., Seger, A., Zander, P. M., and Pueyo, J. J. 2015. The future of lupin as a protein crop in Europe. Front. Plant Sci. 6: 705. doi:10.3389/fpls.2015.00705
  • Luo, M., and Jiang, Y. 2022. First report of anthracnose caused by Colletotrichum karsti in lentil (Lablab purpureus). Crop Prot. 155: 105903. doi:10.1016/j.cropro.2021.105903
  • Lv, T., Li, X., Fan, T., Luo, H., Xie, C., Zhou, Y., and Tian, C. E. 2019. The calmodulin-binding protein IQM1 interacts with CATALASE2 to affect pathogen defense. Plant Physiol. 181: 1314–1327. doi:10.1104/pp.19.01060
  • Mackie, J. M., Musial, J. M., O'Neill, N. R., and Irwin, J. A. G. 2003. Pathogenic specialisation within Colletotrichum trifolii in Australia, and lucerne cultivar reactions to all known Australian pathotypes. Aust. J. Agric. Res. 54: 829–836. doi:10.1071/AR03079
  • Mahiya-Farooq, Padder, B. A., Bhat, N. N., Shah, M. D., Shikari, A. B., Awale, H. E., and Kelly, J. D. 2019. Temporal expression of candidate genes at the Co-1 locus and their interaction with other defense related genes in common bean. Physiol. Mol. Plant Pathol 108: 101424. doi:10.1016/j.pmpp.2019.101424
  • Mahmodi, F., Kadir, J. B., Nasehi, A., Puteh, A., and Soleimani, N. 2013. Occurrence of anthracnose caused by Colletotrichum truncatum on chickpea (Cicer arietinum) in Malaysia. Plant Dis. 97: 1507. doi:10.1094/PDIS-03-13-0231-PDN
  • Mahmodi, F., Kadir, J. B., Puteh, A., Pourdad, S. S., Nasehi, A., and Soleimani, N. 2014. Genetic diversity and differentiation of Colletotrichum spp. isolates associated with leguminosae using multigene loci, RAPD and ISSR. Plant Pathol. J. 30: 10–24. doi:10.5423/PPJ.OA.05.2013.0054
  • Manandhar, J. B. 1986. Colletotrichum destructivum, the anamorph of Glomerella glycines. Phytopathology 76: 282. doi:10.1094/Phyto-76-282
  • Marak, T., Mahapatra, S., and Das, S. 2018. Stability analysis of disease reactions and yield of green gram [Vigna radiata (L.) Wilczck] against anthracnose caused by Colletotrichum truncatum. Legum. Res. 41: 919–924.
  • Marcon, J. R. S., Gonçalves-Vidigal, M. C., Paulino, J. F. C., Vidigal Filho, P. S., and Coêlho, M. 2020. Genetic resistance of common bean cultivar beija flor to Colletotrichum lindemuthianum. Acta Sci. Agron. 43: e44910. doi:10.4025/actasciagron.v43i1.44910
  • Marin-Felix, Y., Groenewald, J. Z., Cai, L., Chen, Q., Marincowitz, S., Barnes, I., Bensch, K., Braun, U., Camporesi, E., Damm, U., de Beer, Z. W., Dissanayake, A., Edwards, J., Giraldo, A., Hernández-Restrepo, M., Hyde, K. D., Jayawardena, R. S., Lombard, L., Luangsa-Ard, J., McTaggart, A. R., Rossman, A. Y., Sandoval-Denis, M., Shen, M., Shivas, R. G., Tan, Y. P., van der Linde, E. J., Wingfield, M. J., Wood, A. R., Zhang, J. Q., Zhang, Y., and Crous, P. W. 2017. Genera of phytopathogenic fungi: GOPHY 1. Stud. Mycol. 86: 99–216. doi:10.1016/j.simyco.2017.04.002
  • Masi, M., Castaldi, S., Sautua, F., Pescitelli, G., Carmona, M. A., and Evidente, A. 2022. Truncatenolide, a bioactive disubstituted nonenolide produced by Colletotrichum truncatum, the causal agent of anthracnose of soybean in Argentina: fungal antagonism and SAR studies. J. Agric. Food Chem. 70: 9834–9844. doi:10.1021/acs.jafc.2c02502
  • Melotto, M., Afanador, L., and Kelly, J. 1996. Development of a SCAR marker linked to the I gene in common bean. Genome 39: 1216–1219. doi:10.1139/g96-155
  • Méndez-Vigo, B., Rodríguez-Suárez, C., Pañeda, A., Ferreira, J. J., and Giraldez, R. 2005. Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica 141: 237–245. doi:10.1007/s10681-005-7075-x
  • Meziadi, C., Richard, M. M. S., Derquennes, A., Thareau, V., Blanchet, S., Gratias, A., Pflieger, S., and Geffroy, V. 2016. Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci. 242: 351–357. doi:10.1016/j.plantsci.2015.09.006
  • Misal, D., Khaire, P., Misal, M., and Hingole, D. 2019. Integrated evaluation of fungicides, botanicals and bioagents against anthracnose of mungbean on natural field condition. IJSC 7: 1975–1978.
  • Mishra, R. K., Bohra, A., Kamaal, N., Kumar, K., Gandhi, K., Sujayanand, G. K., Saabale, P. R., Satheesh Naik, S. J., Sarma, B. K., and Kumar, D. 2018. Utilization of biopesticides as sustainable solutions for management of pests in legume crops: achievements and prospects. Egypt. J. Biol. Pest Control 28: 1–11.
  • Mishra, R., Mohanty, J. N., Mahanty, B., and Joshi, R. K. 2021. A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.). Planta 254: 5. doi:10.1007/s00425-021-03660-x
  • Mohammed, A. 2013. An overview of distribution, biology and the management of common bean anthracnose. J. Plant Pathol. Microbiol. 4: 1–6.
  • Morrall, R. A. A. 1988. A new disease of lentil induced by Colletotrichum truncatum in Manitoba. Plant Dis. 72: 994. doi:10.1094/PD-72-0994D
  • Mukankusi, C., Raatz, B., Nkalubo, S., Berhanu, F., Binagwa, P., Kilango, M., Williams, M., Enid, K., Chirwa, R., and Beebe, S. 2019. Genomics, genetics and breeding of common bean in Africa: a review of tropical legume project. Plant Breed. 138: 401–414. doi:10.1111/pbr.12573
  • Murphy-Bokern, D., Stoddard, F. L., and Watson, C. A. 2017. Legumes in cropping systems. Boston: CABI Publishing.
  • Muth, D., Kachlicki, P., Krajewski, P., Przystalski, M., and Stobiecki, M. 2009. Differential metabolic response of narrow leafed lupine (Lupinus angustifolius) leaves to infection with Colletotrichum lupini. Metabolomics 5: 354–362. doi:10.1007/s11306-009-0162-6
  • Nagaraj, B. T., Shamarao, J., and Basavaraja, G. T. 2014. Identification of resistant sources in glass house and field evaluation of soybean genotypes to anthracnose caused by Colletotrichum truncatum (Schw.) Andrus and Moore. Bioscan 9: 1333–1336.
  • Naseem, M., Srivastava, M., Tehseen, M., and Ahmed, N. 2015. Auxin crosstalk to plant immune networks: a plant-pathogen interaction perspective. Curr. Protein Pept. Sci. 16: 389–394. doi:10.2174/1389203716666150330124911
  • Nataraj, V., Maranna, S., Kumawat, G., Gupta, S., Rajput, L. S., Kumar, S., Sharma, A. N., and Bhatia, V. S. 2020. Genetic inheritance and identification of germplasm sources for anthracnose resistance in soybean [Glycine max (L.) Merr.]. Genet. Resour. Crop Evol. 67: 1449–1456. doi:10.1007/s10722-020-00917-4
  • Nirenberg, H. I., Feiler, U., and Hagedorn, G. 2002. Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia 94: 307–320. doi:10.2307/3761809
  • Nkalubo, S. 2006. Study of anthracnose (Colletotrichum lindemuthianum) resistance and its inheritance in Ugandan dry bean germplasm, p 167.
  • Noor, N. M., and Zakaria, L. 2018. Identification and characterization of Colletotrichum spp. associated with chili anthracnose in peninsular Malaysia. Eur. J. Plant Pathol. 151: 961–973. doi:10.1007/s10658-018-1431-x
  • O’Connell, R. J., Bailey, J. A., and Richmond, D. V. 1985. Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum. Physiol. Plant Pathol. 27: 75–98. doi:10.1016/0048-4059(85)90058-X
  • O’Connell, R. J., Thon, M. R., Hacquard, S., Amyotte, S. G., Kleemann, J., Torres, M. F., Damm, U., Buiate, E. A., Epstein, L., Alkan, N., Altmüller, J., Alvarado-Balderrama, L., Bauser, C. A., Becker, C., Birren, B. W., Chen, Z., Choi, J., Crouch, J. A., Duvick, J. P., Farman, M. A., Gan, P., Heiman, D., Henrissat, B., Howard, R. J., Kabbage, M., Koch, C., Kracher, B., Kubo, Y., Law, A. D., Lebrun, M.-H., Lee, Y.-H., Miyara, I., Moore, N., Neumann, U., Nordström, K., Panaccione, D. G., Panstruga, R., Place, M., Proctor, R. H., Prusky, D., Rech, G., Reinhardt, R., Rollins, J. A., Rounsley, S., Schardl, C. L., Schwartz, D. C., Shenoy, N., Shirasu, K., Sikhakolli, U. R., Stüber, K., Sukno, S. A., Sweigard, J. A., Takano, Y., Takahara, H., Trail, F., van der Does, H. C., Voll, L. M., Will, I., Young, S., Zeng, Q., Zhang, J., Zhou, S., Dickman, M. B., Schulze-Lefert, P., Ver Loren van Themaat, E., Ma, L.-J., and Vaillancourt, L. J. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44: 1060–1065. doi:10.1038/ng.2372
  • O’Connell, R. J., Uronu, A. B., Waksman, G., Nash, C., Keon, J. P. R., and Bailey, J. A. 1993. Hemibiotrophic infection of Pisum sativum by Colletotrichum truncatum. Plant Pathol 42: 774–783. doi:10.1111/j.1365-3059.1993.tb01564.x
  • Oblessuc, P. R., Borges, A., Chowdhury, B., Caldas, D. G. G., Tsai, S. M., Camargo, L. E. A., and Melotto, M. 2012. Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection. PLOS One 7: e43161. doi:10.1371/journal.pone.0043161
  • Oo, M. M., and Oh, S. K. 2020. First report of anthracnose of chili pepper fruit caused by Colletotrichum truncatum in Korea. Plant Dis. 104: 564. doi:10.1094/PDIS-09-19-1874-PDN
  • Padder, B. A., Kamfwa, K., Awale, H. E., and Kelly, J. D. 2016. Transcriptome profiling of the Phaseolus vulgaris–Colletotrichum lindemuthianum pathosystem. PLOS One 11: e0165823. doi:10.1371/journal.pone.0165823
  • Padder, B. A., Sharma, P. N., and Sharma, O. P. 2008. Ribosomal DNA analysis of Colletotrichum lindemuthianum virulences from Himachal Pradesh (India). Appl. Biol. 10: 6–10.
  • Padder, B. A., Sharma, P. N., Awale, H. E., and Kelly, J. D. 2017. Colletotrichum lindemuthianum, the causal agent of bean anthracnose. J. Plant Pathol. 99: 317–330.
  • Padder, B. A., Sharma, P. N., Kapil, R., Pathania, A., and Sharma, O. P. 2010. Evaluation of bioagents and biopesticides against Colletotrichum lindemuthianum and its integrated management in common bean. Not. Sci. Biol. 2: 72–76. doi:10.15835/nsb234772
  • Pagano, M. C., and Miransari, M. 2016. Production Worldwide; Elsevier Inc.: Amsterdam.
  • Palacıoğlu, G., Özer, G., Yeken, M. Z., Çiftçi, V., and Bayraktar, H. 2021. Resistance sources and reactions of common bean (Phaseolus vulgaris L.) cultivars in Turkey to anthracnose disease. Genet. Resour. Crop Evol. 68: 3373–3381. doi:10.1007/s10722-021-01195-4
  • Pande, S., Desai, S., and Sharma, M. 2010. Impacts of climate change on rainfed crop diseases: current status and future research needs. Natl. Symp. Clim. Chang. Rainfed Agric, pp 18–20.
  • Pandey, A. K., Basandrai, A. K., Basandrai, D., Boddepalli, V. N., Rathore, A., Adapala, G., and Nair, R. M. 2021a. Field-relevant new sources of resistance to anthracnose caused by Colletotrichum truncatum in a mungbean mini-core collection. Plant Dis. 105: 2001–2010.
  • Pandey, A. K., Burlakoti, R. R., Kenyon, L., and Nair, R. M. 2018. Perspectives and challenges for sustainable management of fungal diseases of mungbean [Vigna radiata (L.) R. Wilczek var. radiata]: a review. Front. Environ. Sci. 6: 53. doi:10.3389/fenvs.2018.00053
  • Pandey, A. K., Savani, A. K., and Singh, P. 2021b. The Early blight of tomato: omics interventions toward controlling disease spread and development. In Omics Technologies for Sustainable Agriculture and Global Food Security, Vol. 1; Kumar, A., Kumar, R., Shukla, P., and Pandey, M. K., Eds. Springer: Singapore, pp 85–108.
  • Pandey, S. P., and Somssich, I. E. 2009. The role of WRKY transcription factors in plant immunity. Plant Physiol. 150: 1648–1655. doi:10.1104/pp.109.138990
  • Pangga, I. B., Chakraborty, S., and Yates, D. 2004. Canopy size and induced resistance in Stylosanthes scabra determine anthracnose severity at high CO2. Phytopathology 94: 221–227. doi:10.1094/PHYTO.2004.94.3.221
  • Pangga, I., Hanan, J., and Chakraborty, S. 2013. Climate change impacts on plant canopyarchitecture: implications for pest and pathogen management. Eur. J. Plant Pathol. 135: 595–610. doi:10.1007/s10658-012-0118-y
  • Papitha, K., Sanjeevkumar, K., Balabaskar, P., and Kumar, S. 2020. Bioefficacy evaluation of serratia marcescens against anthracnose (Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & Cavara) disease in Dolichos bean. Plant Arch. 20: 493–496.
  • Parthasarathy, S., Nagendran, K., Narayanan, P., Rajalakshmi, J., Thiribhuvanamala, G., and Prabakar, K. 2015. Novel insights into the phytotoxins production of Colletotrichum gloeosporioides causing anthracnose of mango. Trends Biosci. 8: 3924–3927.
  • Pathak, R., Kumar Singh, S., Tak, A., and Gehlot, P. 2018. Impact of climate change on host, pathogen and plant disease adaptation regime: a review. Biosci. Biotech. Res. Asia 15: 529–540. doi:10.13005/bbra/2658
  • Perfect, S. E., Hughes, H. B., O’Connell, R. J., and Green, J. R. 1999. Colletotrichum: a model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27: 186–198. doi:10.1006/fgbi.1999.1143
  • Perseguini, J. M. K. C., Oblessuc, P. R., Rosa, J. R. B. F., Gomes, K. A., Chiorato, A. F., Carbonell, S. A. M., Garcia, A. A. F., Vianello, R. P., and Benchimol-Reis, L. L. 2016. Genome-wide association studies of anthracnose and angular leaf spot resistance in common bean (Phaseolus vulgaris L.). PLOS One 11: e0150506. doi:10.1371/journal.pone.0150506
  • Phan, H. T. T., Ellwood, S. R., Adhikari, K., Nelson, M. N., and Oliver, R. P. 2007. The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res. 14: 59–70. doi:10.1093/dnares/dsm009
  • Piano, E., and Francis, C. M. 1992. The annual species of Medicago in the Mediterranean region, ecogeography and related aspects of plant introduction and breeding. In Proceedings of the Xth International Conference of the EUCARPIA Medicago Spp. Group, pp 373–385.
  • Plissonneau, C., Benevenuto, J., Mohd-Assaad, N., Fouché, S., Hartmann, F. E., and Croll, D. 2017. Using population and comparative genomics to understand the genetic basis of effector-driven fungal pathogen evolution. Front. Plant Sci. 8: 119. doi:10.3389/fpls.2017.00119
  • Poti, T., Mahawan, K., Cheewangkoon, R., Arunothayanan, H., Akimitsu, K., and Nalumpang, S. 2020. Detection and molecular characterization of carbendazim-resistant Colletotrichum truncatum isolates causing anthracnose of soybean in Thailand. J. Phytopathol. 168: 267–278. doi:10.1111/jph.12888
  • Pradhan, D., Mathew, D., Mathew, S. K., and Nazeem, P. A. 2018. Identifying the markers and tagging a leucine-rich repeat receptor-like kinase gene for resistance to anthracnose disease in vegetable cowpea [Vigna unguiculata (L.) Walp.]. J. Hortic. Sci. Biotechnol. 93: 225–231. doi:10.1080/14620316.2017.1362962
  • Pszczółkowska, A., Okorski, A., Fordoński, G., Kotecki, A., Kozak, M., and Dzienis, G. 2019. Effect of weather conditions on yield and health status of faba bean seeds in Poland. Agronomy 10: 48. doi:10.3390/agronomy10010048
  • Queiroz, C. B., Correia, H. L. N., Menicucci, R. P., Vidigal, P. M. P., and Queiroz, M. V. de. 2017. Draft genome sequences of two isolates of Colletotrichum lindemuthianum, the causal agent of anthracnose in common beans. Genome Announc. 5: 00214-17. doi:10.1128/genomeA.00214-17
  • Raman, R., Cowley, R. B., Raman, H., and Luckett, D. J. 2014. Analyses using SSR and DArT molecular markers reveal that Ethiopian accessions of white lupin (Lupinus albus L.) represent a unique genepool. Open J. Genet. 4: 87–98. doi:10.4236/ojgen.2014.42012
  • Ramos, A. M., Gally, M., García, M. C., and Levin, L. 2010. Producción de enzimas pectinolíticas por Colletotrichum truncatum, agente causal de antracnosis en soja. Rev. Iberoam. Micol. 27: 186–190. doi:10.1016/j.riam.2010.06.002
  • Ramos, A. M., Tadic, L. F., Cinto, I., Carmona, M., and Gally, M. 2013. Molecular characterization of Colletotrichum species causing soybean anthracnose in Argentina. Mycotaxon 123: 457–465. doi:10.5248/123.457
  • Rampersad, S. N., Perez-Brito, D., Torres-Calzada, C., Tapia-Tussell, R., and Carrington, C. V. F. 2013. Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico. BMC Evol. Biol. 13: 1–17.
  • Rana, D. S., Dass, A., Rajanna, G. A., and Kaur, R. 2016. Biotic and abiotic stress in pulses. Indian J. Agron. 61: 238–248.
  • Ranathunge, N. P., Ford, R., and Taylor, P. W. J. 2009. Development and optimization of sequence-tagged microsatellite site markers to detect genetic diversity within Colletotrichum capsici, a causal agent of chilli pepper anthracnose disease. Mol. Ecol. Resour. 9: 1175–1179. doi:10.1111/j.1755-0998.2009.02608.x
  • Rao, S. N., Bhattiprolu, S. L., Kumari, V. P., Gopal, A. V., and Kumar, P. A. 2020. Cross Infectivity studies of Colletotrichum spp., causing Anthracnose in different beans. Andhra Agric. J. 67: 70–75.
  • Rao, S., and Nandineni, M. R. 2017. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum. PLOS One 12: e0183567. doi:10.1371/journal.pone.0183567
  • Reckling, M., Bergkvist, G., Watson, C. A., Stoddard, F. L., Zander, P. M., Walker, R. L., Pristeri, A., Toncea, I., and Bachinger, J. 2016. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Front. Plant Sci. 7: 669. doi:10.3389/fpls.2016.00669
  • Reveglia, P., Agudo-Jurado, F. J., Barilli, E., Masi, M., Evidente, A., and Rubiales, D. 2023. Uncovering phytotoxic compounds produced by Colletotrichum spp. involved in legume diseases using an OSMAC–metabolomics approach. J. Fungi 9: 610. doi:10.3390/jof9060610
  • Riccioni, L., Conca, G., and Hartman, G. L. 1998. First report of Colletotrichum coccodes on soybean in the United States. Plant Dis. 82: 959–959. doi:10.1094/PDIS.1998.82.8.959C
  • Richard, M. M. S., Gratias, A., Alvarez Diaz, J. C., Thareau, V., Pflieger, S., Meziadi, C., Blanchet, S., Marande, W., Bitocchi, E., Papa, R., Miklas, P. N., and Geffroy, V. 2021. A common bean truncated CRINKLY4 kinase controls gene-for-gene resistance to the fungus Colletotrichum lindemuthianum. J. Exp. Bot. 72: 3569–3581. doi:10.1093/jxb/erab082
  • Richard, M. M. S., Gratias, A., Thareau, V., Kim, K., Do, Balzergue, S., Joets, J., Jackson, S. A., and Geffroy, V. 2018. Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Res. 25: 161–172. doi:10.1093/dnares/dsx046
  • Riera, N., Ramirez-Villacis, D., Barriga-Medina, N., Alvarez-Santana, J., Herrera, K., Ruales, C., and Leon-Reyes, A. 2019. First report of banana anthracnose caused by Colletotrichum gloeosporioides in Ecuador. Plant Dis. 103: 763–763. doi:10.1094/PDIS-01-18-0069-PDN
  • Rodríguez-Suárez, C., Ferreira, J. J., Campa, A., Pañeda, A., and Giraldez, R. 2008. Molecular mapping and intra-cluster recombination between anthracnose race-specific resistance genes in the common bean differential cultivars Mexico 222 and Widusa. Theor. Appl. Genet. 116: 807–814. doi:10.1007/s00122-008-0714-6
  • Rogério, F., Boufleur, T. R., Ciampi-Guillardi, M., Sukno, S. A., Thon, M. R., Massola Júnior, N. S., and Baroncelli, R. 2020. Genome sequence resources of Colletotrichum truncatum, C. plurivorum, C. musicola, and C. sojae: four species pathogenic to soybean (Glycine max). Phytopathology 110: 1497–1499. doi:10.1094/PHYTO-03-20-0102-A
  • Rogério, F., Ciampi-Guillardi, M., Barbieri, M. C. G., Bragança, C. A. D., Seixas, C. D. S., Almeida, A. M. R., and Massola, N. S. 2017. Phylogeny and variability of Colletotrichum truncatum associated with soybean anthracnose in Brazil. J. Appl. Microbiol. 122: 402–415. doi:10.1111/jam.13346
  • Rogério, F., Gladieux, P., Massola, N. S., and Ciampi-Guillardi, M. 2019. Multiple introductions without admixture of Colletotrichum truncatum associated with soybean anthracnose in Brazil. Phytopathology 109: 681–689. doi:10.1094/PHYTO-08-18-0321-R
  • Roopadevi, Jamadar, M. M., and Anusha, B. G. 2014. Survey for incidence and severity of green gram [Vigna radiata (L.) Wilczek] anthracnose caused by Colletotrichum truncatum (Schw.) Andrus and Moore. Trends Biosci. 7: 3941–3943.
  • Roy, A., Sahu, P. K., Das, C., Bhattacharyya, S., Raina, A., and Mondal, S. 2022. Conventional and new-breeding technologies for improving disease resistance in lentil (Lens culinaris Medik). Front. Plant Sci. 13: 1001682. doi:10.3389/fpls.2022.1001682
  • Rychel-Bielska, S., Nazzicari, N., Plewiński, P., Bielski, W., Annicchiarico, P., and Książkiewicz, M. 2020. Development of PCR-based markers and whole-genome selection model for anthracnose resistance in white lupin (Lupinus albus L.). J. Appl. Genet. 61: 531–545. doi:10.1007/s13353-020-00585-1
  • Salotti, I., Ji, T., and Rossi, V. 2022. Temperature requirements of Colletotrichum spp. belonging to different clades. Front. Plant Sci. 13: 953760. doi:10.3389/fpls.2022.953760
  • Sant’Anna, J. R., Miyamoto, C. T., Rosada, L. J., Franco, C. C. S., Kaneshima, E. N., and Castro-Prado, M. A. A. 2010. Genetic relatedness of Brazilian Colletotrichum truncatum isolates assessed by vegetative compatibility groups and RAPD analysis. Biol. Res. 43: 51–62.
  • Santos Vieria, W. A. dos, Santos Nunes, A. dos, Veloso, J. S., Machado, A. R., Balbino, V. Q., Silva, A. C. da, Gomes, A. Â. M., Doyle, V. P., and Câmara, M. P. S. 2020. Colletotrichum truncatum causing anthracnose on papaya fruit (Carica papaya) in Brazil. Australas. Plant Dis. Notes 15: 1–3.
  • Sarrocco, S., Herrera-Estrella, A., and Collinge, D. B. 2020. Plant disease management in the post-genomic era: from functional genomics to genome editing. Front. Microbiol. 11: 3389. doi:10.3389/fmicb.2020.00107
  • Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H. T., Wing, R. A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R. C., and Jackson, S. A. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463: 178–183. doi:10.1038/nature08670
  • Sekhwal, M. K., Li, P., Lam, I., Wang, X., Cloutier, S., and You, F. M. 2015. Disease resistance gene analogs (RGAs) in plants. Int. J. Mol. Sci. 16: 19248–19290. doi:10.3390/ijms160819248
  • Shafi, S., Saini, D. K., Khan, M. A., Bawa, V., Choudhary, N., Dar, W. A., Pandey, A. K., Varshney, R. K., and Mir, R. R. 2022. Delineating meta-quantitative trait loci for anthracnose resistance in common bean (Phaseolus vulgaris L.). Front. Plant Sci. 13: 966339. doi:10.3389/fpls.2022.966339
  • Shaikh, R., Diederichsen, A., Harrington, M., Adam, J., Conner, R. L., and Buchwaldt, L. 2013. New sources of resistance to Colletotrichum truncatum race Ct0 and Ct1 in Lens culinaris Medikus subsp. culinaris obtained by single plant selection in germplasm accessions. Genet. Resour. Crop Evol. 60: 193–201. doi:10.1007/s10722-012-9825-7
  • Sharma, N., Thakur, R., Rana, D., Sharma, P., and Basandrai, A. K. 2022. Combating bean anthracnose through integrated disease management. Plant Dis. Res. 37: 15–22. doi:10.5958/2249-8788.2022.00003.8
  • Sharma, P. N., Padder, B. A., Sharma, O. P., Pathania, A., and Sharma, P. 2007. Pathological and molecular diversity in Colletotrichum lindemuthianum (bean anthracnose) across Himachal Pradesh, a north-western Himalayan state of India. Austral. Plant Pathol. 36: 191–197. doi:10.1071/AP07013
  • Sharma, R. 2009. Genetic differentiation of host limited forms of Colletotrichum truncatum from northwestern Himalayas. Arch. Phytopathol. Plant Prot. 42: 960–966. doi:10.1080/03235400701543848
  • Sharma, S. K., Gupta, G. K., and Ramteke, R. 2011. Colletotrichum truncatum [(Schw.) Andrus and W.D.]. Soybean Res. 9: 31–52.
  • Sharma, V., Basandrai, A. K., Basandrai, D., Gautam, N. K., and Sharma, P. N. 2014. Identification of stable sources of resistance against anthracnose (Colletotrichum truncatum) in urdbean (Vigna mungo). J. Food Legum. 27: 218–220.
  • Shi, M., Xue, S. M., Zhang, M. Y., Li, S. P., Huang, B. Z., Huang, Q., Liu, Q. B., Liao, X. L., and Li, Y. Z. 2022. Colletotrichum truncatum—A new etiological anthracnose agent of sword bean (Canavalia gladiata) in Southwestern China. Pathogens 11: 1463. doi:10.3390/pathogens11121463
  • Shi, N. N., Ruan, H. C., Jie, Y. L., Chen, F. R., and Du, Y. X. 2021a. Characterization, fungicide sensitivity and efficacy of Colletotrichum spp. from chili in Fujian, China. Crop Prot. 143: 105572. doi:10.1016/j.cropro.2021.105572
  • Shi, X. C., Wang, S. Y., Duan, X. C., Gao, X., Zhu, X. Y., and Laborda, P. 2021b. First report of Colletotrichum brevisporum causing soybean anthracnose in China. Plant Dis. 105: 707. doi:10.1094/PDIS-09-20-1910-PDN
  • Shiny, A. A., Mathew, D., Nazeem, P. A., Abida, P. S., Mathew, S. K., and Valsala, P. A. 2015. Identification and confirmation of trailing-type vegetable cowpea resistance to anthracnose. Trop. Plant Pathol. 40: 169–175. doi:10.1007/s40858-015-0032-x
  • Shivas, R. G. 1989. Fungal and bacterial diseases of plants in Western Australia. J. R. Soc. West. Aust. 72: 1–62.
  • Shivas, R. G., McClements, J. L., and Sweetingham, M. W. 1998. Vegetative compatibility amongst isolates of Colletotrichum causing lupin anthracnose. Austral. Plant Pathol. 27: 269–273. doi:10.1071/AP98032
  • Sileshi, F., Mohammed, A., Selvaraj, T., and Negeri, M. 2014. Field management of anthracnose (Colletotrichum lindemuthianum) in common bean through foliar spray fungicides and seed treatment bioagents. Sci. Technol. Arts Res. J. 3: 19. doi:10.4314/star.v3i2.3
  • Singh, S., Prasad, D., and Singh, V. P. 2022. Evaluation of fungicides and genotypes against anthracnose disease of mungbean caused by Colletotrichum lindemuthianum. Int. J. Bio-Resource Stress Manag. 13: 448–453. doi:10.23910/1.2022.2884
  • Soares, M. A., Nogueira, G. B., Bazzolli, D. M. S., Araújo, E. F., Langin, T., and Queiroz, M. V. 2014. PacCl, a pH-responsive transcriptional regulator, is essential in the pathogenicity of Colletotrichum lindemuthianum, a causal agent of anthracnose in bean plants. Eur. J. Plant Pathol. 140: 769–785. doi:10.1007/s10658-014-0508-4
  • Soto, N., Hernández, Y., Delgado, C., Rosabal, Y., Ortiz, R., Valencia, L., Borrás-Hidalgo, O., Pujol, M., and Enríquez, G. A. 2020. Field resistance to Phakopsora pachyrhizi and Colletotrichum truncatum of transgenic soybean expressing the NmDef02 plant defensin gene. Front. Plant Sci. 11: 562. doi:10.3389/fpls.2020.00562
  • Sousa, L. L., Gonçalves, A. O., Gonçalves-Vidigal, M. C., Lacanallo, G. F., Fernandez, A. C., Awale, H., and Kelly, J. D. 2015. Genetic characterization and mapping of anthracnose resistance of common bean landrace cultivar corinthiano. Crop Sci. 55: 1900–1910. doi:10.2135/cropsci2014.09.0604
  • Souza-Paccola, E. A., Fávaro, L. C. L., Casela, C. R., and Paccola-Meirelles, L. D. 2003. Genetic recombination in Colletotrichum sublineolum. J. Phytopathol. 151: 329–334. doi:10.1046/j.1439-0434.2003.00727.x
  • Sozen, O., and Karadavut, U. 2018. Determination of genotype x environment interactions of some chickpea (Cicer arietinum L.) genotypes by using different stability methods. Tarim. Bilim. Derg. 24: 431–438. doi:10.15832/ankutbd.490930
  • Stephenson, S. A., Hatfield, J., Rusu, A. G., Maclean, D. J., and Manners, J. M. 2000. CgDN3: an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Mol. Plant. Microbe Interact. 13: 929–941. doi:10.1094/MPMI.2000.13.9.929
  • Subedi, S., Gharti, D. B., Neupane, S., and Ghimire, T. 2016. Management of anthracnose in soybean using fungicide. J. Nep. Agric. Res. Counc. 1: 29–32. doi:10.3126/jnarc.v1i0.15721
  • Takagi, R., Sakamoto, E., Kido, J. I., Inagaki, Y., Hiroshima, Y., Naruishi, K., and Yumoto, H. 2020. S100A9 increases IL-6 and RANKL expressions through MAPKs and STAT3 signaling pathways in osteocyte-like cells. Biomed Res. Int. 2020: 1–12. doi:10.1155/2020/7149408
  • Talhinhas, P., Baroncelli, R., and Floch, G. Le. 2016. Anthracnose of lupins caused by Colletotrichum lupini: a recent disease and a successful worldwide pathogen. J. Plant Pathol. 98: 5–14.
  • Tar’an, B., Buchwaldt, L., Tullu, A., Banniza, S., Warkentin, T. D., and Vandenberg, A. 2003. Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinaris Medik). Euphytica 134: 223–230. doi:10.1023/B:EUPH.0000003913.39616.fd
  • Thomas, G. J., Sweetingham, M. W., Yang, H. A., and Speijers, J. 2008. Effect of temperature on growth of Colletotrichum lupini and on anthracnose infection and resistance in lupins. Austral. Plant Pathol. 37: 35–39. doi:10.1071/AP07075
  • Thomas, K. 2010. Impact of climate change on diseases of cool season grain legume crops. Clim. Chang. Manag. Cool Seas. Grain Legum. Crop. 9789048137: 99–113.
  • Tivoli, B., Baranger, A., Sivasithamparam, K., and Barbetti, M. J. 2006. Annual Medicago: From a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Ann. Bot. 98: 1117–1128. doi:10.1093/aob/mcl132
  • Trabanco, N., Campa, A., and Ferreira, J. J. 2015. Identification of a new chromosomal region involved in the genetic control of resistance to anthracnose in common bean. Plant Genome 8: 2014-10. doi:10.3835/plantgenome2014.10.0079
  • Tullu, A., Buchwaldt, L., Lulsdorf, M., Banniza, S., Barlow, B., Slinkard, A. E., Sarker, A., Tar’an, B., Warkentin, T., and Vandenberg, A. 2006. Sources of resistance to anthracnose (Colletotrichum truncatum) in wild lens species. Genet. Resour. Crop Evol. 53: 111–119. doi:10.1007/s10722-004-1586-5
  • Tullu, A., Buchwaldt, L., Warkentin, T., Taran, B., and Vandenberg, A. 2003. Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theor. Appl. Genet. 106: 428–434. doi:10.1007/s00122-002-1042-x
  • Ureña-Padilla, A. R., MacKenzie, S. J., Bowen, B. W., and Legard, D. E. 2002. Etiology and population genetics of Colletotrichum spp. causing crown and fruit rot of strawberry. Phytopathology 92: 1245–1252. doi:10.1094/PHYTO.2002.92.11.1245
  • Vandenberg, A., Kiehn, F. A., Vera, C., Gaudiel, R., Buchwaldt, L., Dueck, S., Wahab, J., and Slinkard, A. E. 2002. CDC Robin lentil. Can. J. Plant Sci. 82: 111–112. doi:10.4141/P01-003
  • Varanasi, A., Prasad, P. V. V., and Jugulam, M. 2016. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agron. 135: 107–146.
  • Varshney, R. K., Chen, W., Li, Y., Bharti, A. K., Saxena, R. K., Schlueter, J. A., Donoghue, M. T. A., Azam, S., Fan, G., Whaley, A. M., Farmer, A. D., Sheridan, J., Iwata, A., Tuteja, R., Penmetsa, R. V., Wu, W., Upadhyaya, H. D., Yang, S.-P., Shah, T., Saxena, K. B., Michael, T., McCombie, W. R., Yang, B., Zhang, G., Yang, H., Wang, J., Spillane, C., Cook, D. R., May, G. D., Xu, X., and Jackson, S. A. 2011. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 30: 83–89. doi:10.1038/nbt.2022
  • Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., Cannon, S., Baek, J., Rosen, B. D., Tar’an, B., Millan, T., Zhang, X., Ramsay, L. D., Iwata, A., Wang, Y., Nelson, W., Farmer, A. D., Gaur, P. M., Soderlund, C., Penmetsa, R. V., Xu, C., Bharti, A. K., He, W., Winter, P., Zhao, S., Hane, J. K., Carrasquilla-Garcia, N., Condie, J. A., Upadhyaya, H. D., Luo, M.-C., Thudi, M., Gowda, C. L. L., Singh, N. P., Lichtenzveig, J., Gali, K. K., Rubio, J., Nadarajan, N., Dolezel, J., Bansal, K. C., Xu, X., Edwards, D., Zhang, G., Kahl, G., Gil, J., Singh, K. B., Datta, S. K., Jackson, S. A., Wang, J., and Cook, D. R. 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31: 240–246. doi:10.1038/nbt.2491
  • Vasconcelos, M. J. V., Machado, M. A., Almeida, Á. M. R., Henning, A. A., Barros, E. G., and Moreira, M. A. 1994. Differentiation of Colletotrichum truncatum isolates by random amplified polymorphic DNA. Fitopatol. Bras. 19: 520–523.
  • Vazin, M., Navabi, A., Pauls, P. K., McDonald, M. R., and Gillard, C. 2015. Characterization of anthracnose resistance in common bean. M.Sc. Thesis, University of Guelph, Ontario, Canada.
  • Velásquez, A. C., Castroverde, C. D. M., and He, S. Y. 2018. Plant–pathogen warfare under changing climate conditions. Curr. Biol. 28: R619–R634. doi:10.1016/j.cub.2018.03.054
  • Venette, J. R. 1994. First Report of lentil anthracnose (Colletotrichum truncatum) in the United States. Plant Dis. 78: 1216D. doi:10.1094/PD-78-1216D
  • Verma, V., Ravindran, P., and Kumar, P. P. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16: 86. doi:10.1186/s12870-016-0771-y
  • Vidigal Filho, P. S., Gonçalves‐Vidigal, M. C., Vaz Bisneta, M., Souza, V. B., Gilio, T. A. S., Calvi, A. A., Lima, L. R. L., Pastor‐Corrales, M. A., and Melotto, M. 2020. Genome-wide association study of resistance to anthracnose and angular leaf spot in Brazilian Mesoamerican and Andean common bean cultivars. Crop Sci. 60: 2931–2950. doi:10.1002/csc2.20308
  • Vieira, A. F., Almeida, L. C. S., Rodrigues, L. A., Costa, J. G. C., Melo, L. C., Pereira, H. S., Sanglard, D. A., and Souza, T. L. P. O. 2018. Selection of resistance sources to common bean anthracnose by field phenotyping and DNA marker-assisted screening. Genet. Mol. Res. 17: GMR18066. doi:10.4238/gmr18066
  • Walsh, M. J., Delaney, R. H., Groose, R. W., and Krall, J. M. 2001. Performance of annual medic species (Medicago spp.) in southeastern Wyoming. Agron. J. 93: 1249–1256. doi:10.2134/agronj2001.1249
  • Wang, H., Liu, R., You, M. P., Barbetti, M. J., and Chen, Y. 2021. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): role of bacterial diversity. Microorganisms 9: 1988. doi:10.3390/microorganisms9091988
  • Wang, N., Xia, E. H., and Gao, L. Z. 2016. Genome-wide analysis of WRKY family of transcription factors in common bean, Phaseolus vulgaris: chromosomal localization, structure, evolution and expression divergence. Plant Gene 5: 22–30. doi:10.1016/j.plgene.2015.11.003
  • Wang, Q. H., Fan, K., Li, D. W., Han, C. M., Qu, Y. Y., Qi, Y. K., and Wu, X. Q. 2020. Identification, virulence and fungicide sensitivity of Colletotrichum gloeosporioides s.s. responsible for walnut anthracnose disease in China. Plant Dis. 104: 1358–1368. doi:10.1094/PDIS-12-19-2569-RE
  • Wang, Y., Schuck, S., Wu, J., Yang, P., Döring, A. C., Zeier, J., and Tsuda, K. 2018. A mpk3/6-wrky33-ald1-pipecolic acid regulatory loop contributes to systemic acquired resistance. Plant Cell. 30: 2480–2494. doi:10.1105/tpc.18.00547
  • Weir, B. S., Johnston, P. R., and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73: 115–180. doi:10.3114/sim0011
  • Williams, R. J. 1977. The identification of multiple disease resistance in cowpea. Trop. Agric. Trinidad 54: 53–59.
  • Wojakowska, A., Kułak, K., Jasiński, M., Kachlicki, P., Stawiński, S., and Stobiecki, M. 2015. Metabolic response of narrow leaf lupine (Lupinus angustifolius) plants to elicitation and infection with Colletotrichum lupini under field conditions. Acta Physiol. Plant 37: 1–12.
  • Wojakowska, A., Muth, D., Narożna, D., Mądrzak, C., Stobiecki, M., and Kachlicki, P. 2013. Changes of phenolic secondary metabolite profiles in the reaction of narrow leaf lupin (Lupinus angustifolius) plants to infections with Colletotrichum lupini fungus or treatment with its toxin. Metabolomics 9: 575–589. doi:10.1007/s11306-012-0475-8
  • Wu, J., Zhu, J., Wang, L., and Wang, S. 2017. Genome-wide association study identifies NBS-LRR-encoding genes related with anthracnose and common bacterial blight in the common bean. Front. Plant Sci. 8: 1398. doi:10.3389/fpls.2017.01398
  • Xie, L., Zhang, J. Z., Wan, Y., and Hu, D. W. 2010. Identification of Colletotrichum spp. isolated from strawberry in Zhejiang Province and Shanghai City, China. J. Zhejiang Univ. Sci. B 11: 61–70. doi:10.1631/jzus.B0900174
  • Xu, S., Christensen, M. J., and Li, Y. 2017. Pathogenicity and characterization of Colletotrichum lentis: A causal agent of anthracnose in common vetch (Vicia sativa). Eur. J. Plant Pathol. 149: 719–731. doi:10.1007/s10658-017-1221-x
  • Xu, W., Zhang, Q., Yuan, W., Xu, F., Muhammad Aslam, M., and Miao, R. 2020. The genome evolution and low-phosphorus adaptation in white lupin. Nat. Commun. 11: 1069.
  • Yang, H. C., and Hartman, G. L. 2015. Anthracnose. In Compendium of Soybean Diseases and Pests; Hartman, G. L., Rupe, J., and Sikora, E. J., Eds. American Phytopathological Society: St Paul, MN, pp 31–34.
  • Yang, H. C., Haudenshield, J. S., and Hartman, G. L. 2012. First report of Colletotrichum chlorophyti causing soybean anthracnose. Plant Dis. 96: 1699. doi:10.1094/PDIS-06-12-0531-PDN
  • Yang, H. C., Haudenshield, J. S., and Hartman, G. L. 2014. Colletotrichum incanum sp. Nov., a curved-conidial species causing soybean anthracnose in USA. Mycologia 106: 32–42. doi:10.3852/13-013
  • Yang, H. C., Haudenshield, J. S., and Hartman, G. L. 2015. Multiplex real-time PCR detection and differentiation of Colletotrichum species infecting soybean. Plant Dis. 99: 1559–1568. doi:10.1094/PDIS-11-14-1189-RE
  • Yang, H., Boersma, J. G., You, M., Buirchell, B. J., and Sweetingham, M. W. 2004. Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Mol. Breed. 14: 145–151. doi:10.1023/B:MOLB.0000038003.49638.97
  • Yang, H., Lin, R., Renshaw, D., Li, C., Adhikari, K., Thomas, G., Buirchell, B., Sweetingham, M., and Yan, G. 2010. Development of sequence-specific PCR markers associated with a polygenic controlled trait for marker-assisted selection using a modified selective genotyping strategy: a case study on anthracnose disease resistance in white lupin (Lupinus albus L.). Mol. Breed. 25: 239–249. doi:10.1007/s11032-009-9325-4
  • Yang, H., Renshaw, D., Thomas, G., Buirchell, B., and Sweetingham, M. 2008. A strategy to develop molecular markers applicable to a wide range of crosses for marker assisted selection in plant breeding: a case study on anthracnose disease resistance in lupin (Lupinus angustifolius L.). Mol. Breed. 21: 473–483. doi:10.1007/s11032-007-9146-2
  • Young, R. A., and Kelly, J. D. 1996. RAPD markers flanking the Are gene for anthracnose resistance in common bean. J. Am. Soc. Hort. Sci. 121: 37–41. doi:10.21273/JASHS.121.1.37
  • Young, R. A., and Kelly, J. D. 1997. RAPD markers linked to three major anthracnose resistance genes in common bean. Crop Sci. 37: 940–946. doi:10.2135/cropsci1997.0011183X003700030039x
  • Young, R. A., Melotto, M., Nodari, R. O., and Kelly, J. D. 1998. Marker-assisted dissection of the oligogenic anthracnose resistance in the common bean cultivar, “G 2333”. Theor. Appl. Genet. 96: 87–94. doi:10.1007/s001220050713
  • Yousef, S. 2021. Bean Anthracnose Control Using Different Beneficial Bacteria, pp 1–20.
  • Yu, J., Wu, J., Guo, Z., Zhang, X., Xu, M., Yu, J., Liu, T., and Chi, Y. 2020. First report of peanut anthracnose caused by Colletotrichum truncatum in China. Plant Dis. 104: 1555. doi:10.1094/PDIS-08-19-1599-PDN
  • Zhang, L., Song, L., Xu, X., Zou, X., Duan, K., and Gao, Q. 2020. Characterization and fungicide sensitivity of Colletotrichum species causing strawberry anthracnose in eastern China. Plant Dis. 104: 1960–1968. doi:10.1094/PDIS-10-19-2241-RE
  • Zhao, Q., Chen, X., Ren, G. W., Wang, J., Liu, L., Qian, W. G., and Wang, J. 2021. First report of Colletotrichum chlorophyti causing peanut anthracnose in China. Plant Dis. 105: 226. doi:10.1094/PDIS-08-19-1605-PDN
  • Zhu, L., Yang, Q., Yu, X., Fu, X., Jin, H., and Yuan, F. 2022. Transcriptomic and metabolomic analyses reveal a potential mechanism to improve soybean resistance to anthracnose. Front. Plant Sci. 13: 850829. doi:10.3389/fpls.2022.850829
  • Zuiderveen, G. H. 2015. The Genetics of Anthracnose Resistance in Common Bean. East Lansing, MI: Michigan State University. p. 75.
  • Zuiderveen, G. H., Padder, B. A., Kamfwa, K., Song, Q., and Kelly, J. D. 2016. Genome-Wide association study of anthracnose resistance in Andean beans (Phaseolus vulgaris). PLOS One 11: e0156391. doi:10.1371/journal.pone.0156391